v8/src/ppc/codegen-ppc.cc

697 lines
24 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_PPC
#include "src/codegen.h"
#include "src/macro-assembler.h"
#include "src/ppc/simulator-ppc.h"
namespace v8 {
namespace internal {
#define __ masm.
#if defined(USE_SIMULATOR)
byte* fast_exp_ppc_machine_code = NULL;
double fast_exp_simulator(double x) {
return Simulator::current(Isolate::Current())
->CallFPReturnsDouble(fast_exp_ppc_machine_code, x, 0);
}
#endif
UnaryMathFunction CreateExpFunction() {
if (!FLAG_fast_math) return &std::exp;
size_t actual_size;
byte* buffer =
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
if (buffer == NULL) return &std::exp;
ExternalReference::InitializeMathExpData();
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
{
DoubleRegister input = d1;
DoubleRegister result = d2;
DoubleRegister double_scratch1 = d3;
DoubleRegister double_scratch2 = d4;
Register temp1 = r7;
Register temp2 = r8;
Register temp3 = r9;
// Called from C
__ function_descriptor();
__ Push(temp3, temp2, temp1);
MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1,
double_scratch2, temp1, temp2, temp3);
__ Pop(temp3, temp2, temp1);
__ fmr(d1, result);
__ Ret();
}
CodeDesc desc;
masm.GetCode(&desc);
#if !ABI_USES_FUNCTION_DESCRIPTORS
DCHECK(!RelocInfo::RequiresRelocation(desc));
#endif
CpuFeatures::FlushICache(buffer, actual_size);
base::OS::ProtectCode(buffer, actual_size);
#if !defined(USE_SIMULATOR)
return FUNCTION_CAST<UnaryMathFunction>(buffer);
#else
fast_exp_ppc_machine_code = buffer;
return &fast_exp_simulator;
#endif
}
UnaryMathFunction CreateSqrtFunction() {
#if defined(USE_SIMULATOR)
return &std::sqrt;
#else
size_t actual_size;
byte* buffer =
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
if (buffer == NULL) return &std::sqrt;
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
// Called from C
__ function_descriptor();
__ MovFromFloatParameter(d1);
__ fsqrt(d1, d1);
__ MovToFloatResult(d1);
__ Ret();
CodeDesc desc;
masm.GetCode(&desc);
#if !ABI_USES_FUNCTION_DESCRIPTORS
DCHECK(!RelocInfo::RequiresRelocation(desc));
#endif
CpuFeatures::FlushICache(buffer, actual_size);
base::OS::ProtectCode(buffer, actual_size);
return FUNCTION_CAST<UnaryMathFunction>(buffer);
#endif
}
#undef __
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterFrame(StackFrame::INTERNAL);
DCHECK(!masm->has_frame());
masm->set_has_frame(true);
}
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveFrame(StackFrame::INTERNAL);
DCHECK(masm->has_frame());
masm->set_has_frame(false);
}
// -------------------------------------------------------------------------
// Code generators
#define __ ACCESS_MASM(masm)
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
MacroAssembler* masm, Register receiver, Register key, Register value,
Register target_map, AllocationSiteMode mode,
Label* allocation_memento_found) {
Register scratch_elements = r7;
DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements));
if (mode == TRACK_ALLOCATION_SITE) {
DCHECK(allocation_memento_found != NULL);
__ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements,
allocation_memento_found);
}
// Set transitioned map.
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0);
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r11,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
void ElementsTransitionGenerator::GenerateSmiToDouble(
MacroAssembler* masm, Register receiver, Register key, Register value,
Register target_map, AllocationSiteMode mode, Label* fail) {
// lr contains the return address
Label loop, entry, convert_hole, gc_required, only_change_map, done;
Register elements = r7;
Register length = r8;
Register array = r9;
Register array_end = array;
// target_map parameter can be clobbered.
Register scratch1 = target_map;
Register scratch2 = r11;
// Verify input registers don't conflict with locals.
DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array,
scratch2));
if (mode == TRACK_ALLOCATION_SITE) {
__ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
__ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
__ beq(&only_change_map);
// Preserve lr and use r17 as a temporary register.
__ mflr(r0);
__ Push(r0);
__ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
// length: number of elements (smi-tagged)
// Allocate new FixedDoubleArray.
__ SmiToDoubleArrayOffset(r17, length);
__ addi(r17, r17, Operand(FixedDoubleArray::kHeaderSize));
__ Allocate(r17, array, r10, scratch2, &gc_required, DOUBLE_ALIGNMENT);
// Set destination FixedDoubleArray's length and map.
__ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
__ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
// Update receiver's map.
__ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset));
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0);
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2,
kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Replace receiver's backing store with newly created FixedDoubleArray.
__ addi(scratch1, array, Operand(kHeapObjectTag));
__ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset), r0);
__ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2,
kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Prepare for conversion loop.
__ addi(target_map, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ addi(r10, array, Operand(FixedDoubleArray::kHeaderSize));
__ SmiToDoubleArrayOffset(array, length);
__ add(array_end, r10, array);
// Repurpose registers no longer in use.
#if V8_TARGET_ARCH_PPC64
Register hole_int64 = elements;
#else
Register hole_lower = elements;
Register hole_upper = length;
#endif
// scratch1: begin of source FixedArray element fields, not tagged
// hole_lower: kHoleNanLower32 OR hol_int64
// hole_upper: kHoleNanUpper32
// array_end: end of destination FixedDoubleArray, not tagged
// scratch2: begin of FixedDoubleArray element fields, not tagged
__ b(&entry);
__ bind(&only_change_map);
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0);
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ b(&done);
// Call into runtime if GC is required.
__ bind(&gc_required);
__ Pop(r0);
__ mtlr(r0);
__ b(fail);
// Convert and copy elements.
__ bind(&loop);
__ LoadP(r11, MemOperand(scratch1));
__ addi(scratch1, scratch1, Operand(kPointerSize));
// r11: current element
__ UntagAndJumpIfNotSmi(r11, r11, &convert_hole);
// Normal smi, convert to double and store.
__ ConvertIntToDouble(r11, d0);
__ stfd(d0, MemOperand(scratch2, 0));
__ addi(r10, r10, Operand(8));
__ b(&entry);
// Hole found, store the-hole NaN.
__ bind(&convert_hole);
if (FLAG_debug_code) {
// Restore a "smi-untagged" heap object.
__ LoadP(r11, MemOperand(r6, -kPointerSize));
__ CompareRoot(r11, Heap::kTheHoleValueRootIndex);
__ Assert(eq, kObjectFoundInSmiOnlyArray);
}
#if V8_TARGET_ARCH_PPC64
__ std(hole_int64, MemOperand(r10, 0));
#else
__ stw(hole_upper, MemOperand(r10, Register::kExponentOffset));
__ stw(hole_lower, MemOperand(r10, Register::kMantissaOffset));
#endif
__ addi(r10, r10, Operand(8));
__ bind(&entry);
__ cmp(r10, array_end);
__ blt(&loop);
__ Pop(r0);
__ mtlr(r0);
__ bind(&done);
}
void ElementsTransitionGenerator::GenerateDoubleToObject(
MacroAssembler* masm, Register receiver, Register key, Register value,
Register target_map, AllocationSiteMode mode, Label* fail) {
// Register lr contains the return address.
Label entry, loop, convert_hole, gc_required, only_change_map;
Register elements = r7;
Register array = r9;
Register length = r8;
Register scratch = r11;
// Verify input registers don't conflict with locals.
DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length,
scratch));
if (mode == TRACK_ALLOCATION_SITE) {
__ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
__ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
__ beq(&only_change_map);
__ Push(target_map, receiver, key, value);
__ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
// elements: source FixedDoubleArray
// length: number of elements (smi-tagged)
// Allocate new FixedArray.
// Re-use value and target_map registers, as they have been saved on the
// stack.
Register array_size = value;
Register allocate_scratch = target_map;
__ li(array_size, Operand(FixedDoubleArray::kHeaderSize));
__ SmiToPtrArrayOffset(r0, length);
__ add(array_size, array_size, r0);
__ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
NO_ALLOCATION_FLAGS);
// array: destination FixedArray, not tagged as heap object
// Set destination FixedDoubleArray's length and map.
__ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
__ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
__ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset));
__ addi(array, array, Operand(kHeapObjectTag));
// Prepare for conversion loop.
Register src_elements = elements;
Register dst_elements = target_map;
Register dst_end = length;
Register heap_number_map = scratch;
__ addi(src_elements, elements,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
__ SmiToPtrArrayOffset(length, length);
__ LoadRoot(r10, Heap::kTheHoleValueRootIndex);
Label initialization_loop, loop_done;
__ ShiftRightImm(r0, length, Operand(kPointerSizeLog2), SetRC);
__ beq(&loop_done, cr0);
// Allocating heap numbers in the loop below can fail and cause a jump to
// gc_required. We can't leave a partly initialized FixedArray behind,
// so pessimistically fill it with holes now.
__ mtctr(r0);
__ addi(dst_elements, array,
Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
__ bind(&initialization_loop);
__ StorePU(r10, MemOperand(dst_elements, kPointerSize));
__ bdnz(&initialization_loop);
__ addi(dst_elements, array,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(dst_end, dst_elements, length);
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
// Using offsetted addresses in src_elements to fully take advantage of
// post-indexing.
// dst_elements: begin of destination FixedArray element fields, not tagged
// src_elements: begin of source FixedDoubleArray element fields,
// not tagged, +4
// dst_end: end of destination FixedArray, not tagged
// array: destination FixedArray
// r10: the-hole pointer
// heap_number_map: heap number map
__ b(&loop);
// Call into runtime if GC is required.
__ bind(&gc_required);
__ Pop(target_map, receiver, key, value);
__ b(fail);
// Replace the-hole NaN with the-hole pointer.
__ bind(&convert_hole);
__ StoreP(r10, MemOperand(dst_elements));
__ addi(dst_elements, dst_elements, Operand(kPointerSize));
__ cmpl(dst_elements, dst_end);
__ bge(&loop_done);
__ bind(&loop);
Register upper_bits = key;
__ lwz(upper_bits, MemOperand(src_elements, Register::kExponentOffset));
__ addi(src_elements, src_elements, Operand(kDoubleSize));
// upper_bits: current element's upper 32 bit
// src_elements: address of next element's upper 32 bit
__ Cmpi(upper_bits, Operand(kHoleNanUpper32), r0);
__ beq(&convert_hole);
// Non-hole double, copy value into a heap number.
Register heap_number = receiver;
Register scratch2 = value;
__ AllocateHeapNumber(heap_number, scratch2, r11, heap_number_map,
&gc_required);
// heap_number: new heap number
#if V8_TARGET_ARCH_PPC64
__ ld(scratch2, MemOperand(src_elements, -kDoubleSize));
// subtract tag for std
__ addi(upper_bits, heap_number, Operand(-kHeapObjectTag));
__ std(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset));
#else
__ lwz(scratch2,
MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize));
__ lwz(upper_bits,
MemOperand(src_elements, Register::kExponentOffset - kDoubleSize));
__ stw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
__ stw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
#endif
__ mr(scratch2, dst_elements);
__ StoreP(heap_number, MemOperand(dst_elements));
__ addi(dst_elements, dst_elements, Operand(kPointerSize));
__ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ b(&entry);
// Replace the-hole NaN with the-hole pointer.
__ bind(&convert_hole);
__ StoreP(r10, MemOperand(dst_elements));
__ addi(dst_elements, dst_elements, Operand(kPointerSize));
__ bind(&entry);
__ cmpl(dst_elements, dst_end);
__ blt(&loop);
__ bind(&loop_done);
__ Pop(target_map, receiver, key, value);
// Replace receiver's backing store with newly created and filled FixedArray.
__ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset), r0);
__ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ bind(&only_change_map);
// Update receiver's map.
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0);
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
// assume ip can be used as a scratch register below
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
Register index, Register result,
Label* call_runtime) {
// Fetch the instance type of the receiver into result register.
__ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for indirect strings.
Label check_sequential;
__ andi(r0, result, Operand(kIsIndirectStringMask));
__ beq(&check_sequential, cr0);
// Dispatch on the indirect string shape: slice or cons.
Label cons_string;
__ mov(ip, Operand(kSlicedNotConsMask));
__ and_(r0, result, ip, SetRC);
__ beq(&cons_string, cr0);
// Handle slices.
Label indirect_string_loaded;
__ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
__ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
__ SmiUntag(ip, result);
__ add(index, index, ip);
__ b(&indirect_string_loaded);
// Handle cons strings.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ bind(&cons_string);
__ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
__ CompareRoot(result, Heap::kempty_stringRootIndex);
__ bne(call_runtime);
// Get the first of the two strings and load its instance type.
__ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ bind(&indirect_string_loaded);
__ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// Distinguish sequential and external strings. Only these two string
// representations can reach here (slices and flat cons strings have been
// reduced to the underlying sequential or external string).
Label external_string, check_encoding;
__ bind(&check_sequential);
STATIC_ASSERT(kSeqStringTag == 0);
__ andi(r0, result, Operand(kStringRepresentationMask));
__ bne(&external_string, cr0);
// Prepare sequential strings
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ addi(string, string,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ b(&check_encoding);
// Handle external strings.
__ bind(&external_string);
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ andi(r0, result, Operand(kIsIndirectStringMask));
__ Assert(eq, kExternalStringExpectedButNotFound, cr0);
}
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ andi(r0, result, Operand(kShortExternalStringMask));
__ bne(call_runtime, cr0);
__ LoadP(string,
FieldMemOperand(string, ExternalString::kResourceDataOffset));
Label one_byte, done;
__ bind(&check_encoding);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ andi(r0, result, Operand(kStringEncodingMask));
__ bne(&one_byte, cr0);
// Two-byte string.
__ ShiftLeftImm(result, index, Operand(1));
__ lhzx(result, MemOperand(string, result));
__ b(&done);
__ bind(&one_byte);
// One-byte string.
__ lbzx(result, MemOperand(string, index));
__ bind(&done);
}
static MemOperand ExpConstant(int index, Register base) {
return MemOperand(base, index * kDoubleSize);
}
void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input,
DoubleRegister result,
DoubleRegister double_scratch1,
DoubleRegister double_scratch2,
Register temp1, Register temp2,
Register temp3) {
DCHECK(!input.is(result));
DCHECK(!input.is(double_scratch1));
DCHECK(!input.is(double_scratch2));
DCHECK(!result.is(double_scratch1));
DCHECK(!result.is(double_scratch2));
DCHECK(!double_scratch1.is(double_scratch2));
DCHECK(!temp1.is(temp2));
DCHECK(!temp1.is(temp3));
DCHECK(!temp2.is(temp3));
DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
DCHECK(!masm->serializer_enabled()); // External references not serializable.
Label zero, infinity, done;
__ mov(temp3, Operand(ExternalReference::math_exp_constants(0)));
__ lfd(double_scratch1, ExpConstant(0, temp3));
__ fcmpu(double_scratch1, input);
__ fmr(result, input);
__ bunordered(&done);
__ bge(&zero);
__ lfd(double_scratch2, ExpConstant(1, temp3));
__ fcmpu(input, double_scratch2);
__ bge(&infinity);
__ lfd(double_scratch1, ExpConstant(3, temp3));
__ lfd(result, ExpConstant(4, temp3));
__ fmul(double_scratch1, double_scratch1, input);
__ fadd(double_scratch1, double_scratch1, result);
__ MovDoubleLowToInt(temp2, double_scratch1);
__ fsub(double_scratch1, double_scratch1, result);
__ lfd(result, ExpConstant(6, temp3));
__ lfd(double_scratch2, ExpConstant(5, temp3));
__ fmul(double_scratch1, double_scratch1, double_scratch2);
__ fsub(double_scratch1, double_scratch1, input);
__ fsub(result, result, double_scratch1);
__ fmul(double_scratch2, double_scratch1, double_scratch1);
__ fmul(result, result, double_scratch2);
__ lfd(double_scratch2, ExpConstant(7, temp3));
__ fmul(result, result, double_scratch2);
__ fsub(result, result, double_scratch1);
__ lfd(double_scratch2, ExpConstant(8, temp3));
__ fadd(result, result, double_scratch2);
__ srwi(temp1, temp2, Operand(11));
__ andi(temp2, temp2, Operand(0x7ff));
__ addi(temp1, temp1, Operand(0x3ff));
// Must not call ExpConstant() after overwriting temp3!
__ mov(temp3, Operand(ExternalReference::math_exp_log_table()));
__ slwi(temp2, temp2, Operand(3));
#if V8_TARGET_ARCH_PPC64
__ ldx(temp2, MemOperand(temp3, temp2));
__ sldi(temp1, temp1, Operand(52));
__ orx(temp2, temp1, temp2);
__ MovInt64ToDouble(double_scratch1, temp2);
#else
__ add(ip, temp3, temp2);
__ lwz(temp3, MemOperand(ip, Register::kExponentOffset));
__ lwz(temp2, MemOperand(ip, Register::kMantissaOffset));
__ slwi(temp1, temp1, Operand(20));
__ orx(temp3, temp1, temp3);
__ MovInt64ToDouble(double_scratch1, temp3, temp2);
#endif
__ fmul(result, result, double_scratch1);
__ b(&done);
__ bind(&zero);
__ fmr(result, kDoubleRegZero);
__ b(&done);
__ bind(&infinity);
__ lfd(result, ExpConstant(2, temp3));
__ bind(&done);
}
#undef __
CodeAgingHelper::CodeAgingHelper() {
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
// Since patcher is a large object, allocate it dynamically when needed,
// to avoid overloading the stack in stress conditions.
// DONT_FLUSH is used because the CodeAgingHelper is initialized early in
// the process, before ARM simulator ICache is setup.
SmartPointer<CodePatcher> patcher(new CodePatcher(
young_sequence_.start(), young_sequence_.length() / Assembler::kInstrSize,
CodePatcher::DONT_FLUSH));
PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
patcher->masm()->PushFixedFrame(r4);
patcher->masm()->addi(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
patcher->masm()->nop();
}
}
#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
return Assembler::IsNop(Assembler::instr_at(candidate));
}
#endif
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
bool result = isolate->code_aging_helper()->IsYoung(sequence);
DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
return result;
}
void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
MarkingParity* parity) {
if (IsYoungSequence(isolate, sequence)) {
*age = kNoAgeCodeAge;
*parity = NO_MARKING_PARITY;
} else {
ConstantPoolArray* constant_pool = NULL;
Address target_address = Assembler::target_address_at(
sequence + kCodeAgingTargetDelta, constant_pool);
Code* stub = GetCodeFromTargetAddress(target_address);
GetCodeAgeAndParity(stub, age, parity);
}
}
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age,
MarkingParity parity) {
uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
if (age == kNoAgeCodeAge) {
isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
CpuFeatures::FlushICache(sequence, young_length);
} else {
// FIXED_SEQUENCE
Code* stub = GetCodeAgeStub(isolate, age, parity);
CodePatcher patcher(sequence, young_length / Assembler::kInstrSize);
Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm());
intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
// Don't use Call -- we need to preserve ip and lr.
// GenerateMakeCodeYoungAgainCommon for the stub code.
patcher.masm()->nop(); // marker to detect sequence (see IsOld)
patcher.masm()->mov(r3, Operand(target));
patcher.masm()->Jump(r3);
for (int i = 0; i < kCodeAgingSequenceNops; i++) {
patcher.masm()->nop();
}
}
}
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_PPC