v8/src/hydrogen.cc

12314 lines
425 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "hydrogen.h"
#include <algorithm>
#include "v8.h"
#include "codegen.h"
#include "full-codegen.h"
#include "hashmap.h"
#include "lithium-allocator.h"
#include "parser.h"
#include "scopeinfo.h"
#include "scopes.h"
#include "stub-cache.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-codegen-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-codegen-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
HBasicBlock::HBasicBlock(HGraph* graph)
: block_id_(graph->GetNextBlockID()),
graph_(graph),
phis_(4, graph->zone()),
first_(NULL),
last_(NULL),
end_(NULL),
loop_information_(NULL),
predecessors_(2, graph->zone()),
dominator_(NULL),
dominated_blocks_(4, graph->zone()),
last_environment_(NULL),
argument_count_(-1),
first_instruction_index_(-1),
last_instruction_index_(-1),
deleted_phis_(4, graph->zone()),
parent_loop_header_(NULL),
is_inline_return_target_(false),
is_deoptimizing_(false),
dominates_loop_successors_(false),
is_osr_entry_(false) { }
Isolate* HBasicBlock::isolate() const {
return graph_->isolate();
}
void HBasicBlock::AttachLoopInformation() {
ASSERT(!IsLoopHeader());
loop_information_ = new(zone()) HLoopInformation(this, zone());
}
void HBasicBlock::DetachLoopInformation() {
ASSERT(IsLoopHeader());
loop_information_ = NULL;
}
void HBasicBlock::AddPhi(HPhi* phi) {
ASSERT(!IsStartBlock());
phis_.Add(phi, zone());
phi->SetBlock(this);
}
void HBasicBlock::RemovePhi(HPhi* phi) {
ASSERT(phi->block() == this);
ASSERT(phis_.Contains(phi));
ASSERT(phi->HasNoUses() || !phi->is_live());
phi->Kill();
phis_.RemoveElement(phi);
phi->SetBlock(NULL);
}
void HBasicBlock::AddInstruction(HInstruction* instr) {
ASSERT(!IsStartBlock() || !IsFinished());
ASSERT(!instr->IsLinked());
ASSERT(!IsFinished());
if (first_ == NULL) {
ASSERT(last_environment() != NULL);
ASSERT(!last_environment()->ast_id().IsNone());
HBlockEntry* entry = new(zone()) HBlockEntry();
entry->InitializeAsFirst(this);
first_ = last_ = entry;
}
instr->InsertAfter(last_);
}
HDeoptimize* HBasicBlock::CreateDeoptimize(
HDeoptimize::UseEnvironment has_uses) {
ASSERT(HasEnvironment());
if (has_uses == HDeoptimize::kNoUses)
return new(zone()) HDeoptimize(0, zone());
HEnvironment* environment = last_environment();
HDeoptimize* instr = new(zone()) HDeoptimize(environment->length(), zone());
for (int i = 0; i < environment->length(); i++) {
HValue* val = environment->values()->at(i);
instr->AddEnvironmentValue(val, zone());
}
return instr;
}
HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
RemovableSimulate removable) {
ASSERT(HasEnvironment());
HEnvironment* environment = last_environment();
ASSERT(ast_id.IsNone() ||
ast_id == BailoutId::StubEntry() ||
environment->closure()->shared()->VerifyBailoutId(ast_id));
int push_count = environment->push_count();
int pop_count = environment->pop_count();
HSimulate* instr =
new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
// Order of pushed values: newest (top of stack) first. This allows
// HSimulate::MergeInto() to easily append additional pushed values
// that are older (from further down the stack).
for (int i = 0; i < push_count; ++i) {
instr->AddPushedValue(environment->ExpressionStackAt(i));
}
for (GrowableBitVector::Iterator it(environment->assigned_variables(),
zone());
!it.Done();
it.Advance()) {
int index = it.Current();
instr->AddAssignedValue(index, environment->Lookup(index));
}
environment->ClearHistory();
return instr;
}
void HBasicBlock::Finish(HControlInstruction* end) {
ASSERT(!IsFinished());
AddInstruction(end);
end_ = end;
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
it.Current()->RegisterPredecessor(this);
}
}
void HBasicBlock::Goto(HBasicBlock* block,
FunctionState* state,
bool add_simulate) {
bool drop_extra = state != NULL &&
state->inlining_kind() == DROP_EXTRA_ON_RETURN;
if (block->IsInlineReturnTarget()) {
AddInstruction(new(zone()) HLeaveInlined());
last_environment_ = last_environment()->DiscardInlined(drop_extra);
}
if (add_simulate) AddSimulate(BailoutId::None());
HGoto* instr = new(zone()) HGoto(block);
Finish(instr);
}
void HBasicBlock::AddLeaveInlined(HValue* return_value,
FunctionState* state) {
HBasicBlock* target = state->function_return();
bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
ASSERT(target->IsInlineReturnTarget());
ASSERT(return_value != NULL);
AddInstruction(new(zone()) HLeaveInlined());
last_environment_ = last_environment()->DiscardInlined(drop_extra);
last_environment()->Push(return_value);
AddSimulate(BailoutId::None());
HGoto* instr = new(zone()) HGoto(target);
Finish(instr);
}
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
ASSERT(!HasEnvironment());
ASSERT(first() == NULL);
UpdateEnvironment(env);
}
void HBasicBlock::SetJoinId(BailoutId ast_id) {
int length = predecessors_.length();
ASSERT(length > 0);
for (int i = 0; i < length; i++) {
HBasicBlock* predecessor = predecessors_[i];
ASSERT(predecessor->end()->IsGoto());
HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
ASSERT(i != 0 ||
(predecessor->last_environment()->closure().is_null() ||
predecessor->last_environment()->closure()->shared()
->VerifyBailoutId(ast_id)));
simulate->set_ast_id(ast_id);
predecessor->last_environment()->set_ast_id(ast_id);
}
}
bool HBasicBlock::Dominates(HBasicBlock* other) const {
HBasicBlock* current = other->dominator();
while (current != NULL) {
if (current == this) return true;
current = current->dominator();
}
return false;
}
int HBasicBlock::LoopNestingDepth() const {
const HBasicBlock* current = this;
int result = (current->IsLoopHeader()) ? 1 : 0;
while (current->parent_loop_header() != NULL) {
current = current->parent_loop_header();
result++;
}
return result;
}
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
ASSERT(IsLoopHeader());
SetJoinId(stmt->EntryId());
if (predecessors()->length() == 1) {
// This is a degenerated loop.
DetachLoopInformation();
return;
}
// Only the first entry into the loop is from outside the loop. All other
// entries must be back edges.
for (int i = 1; i < predecessors()->length(); ++i) {
loop_information()->RegisterBackEdge(predecessors()->at(i));
}
}
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
if (HasPredecessor()) {
// Only loop header blocks can have a predecessor added after
// instructions have been added to the block (they have phis for all
// values in the environment, these phis may be eliminated later).
ASSERT(IsLoopHeader() || first_ == NULL);
HEnvironment* incoming_env = pred->last_environment();
if (IsLoopHeader()) {
ASSERT(phis()->length() == incoming_env->length());
for (int i = 0; i < phis_.length(); ++i) {
phis_[i]->AddInput(incoming_env->values()->at(i));
}
} else {
last_environment()->AddIncomingEdge(this, pred->last_environment());
}
} else if (!HasEnvironment() && !IsFinished()) {
ASSERT(!IsLoopHeader());
SetInitialEnvironment(pred->last_environment()->Copy());
}
predecessors_.Add(pred, zone());
}
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
ASSERT(!dominated_blocks_.Contains(block));
// Keep the list of dominated blocks sorted such that if there is two
// succeeding block in this list, the predecessor is before the successor.
int index = 0;
while (index < dominated_blocks_.length() &&
dominated_blocks_[index]->block_id() < block->block_id()) {
++index;
}
dominated_blocks_.InsertAt(index, block, zone());
}
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
if (dominator_ == NULL) {
dominator_ = other;
other->AddDominatedBlock(this);
} else if (other->dominator() != NULL) {
HBasicBlock* first = dominator_;
HBasicBlock* second = other;
while (first != second) {
if (first->block_id() > second->block_id()) {
first = first->dominator();
} else {
second = second->dominator();
}
ASSERT(first != NULL && second != NULL);
}
if (dominator_ != first) {
ASSERT(dominator_->dominated_blocks_.Contains(this));
dominator_->dominated_blocks_.RemoveElement(this);
dominator_ = first;
first->AddDominatedBlock(this);
}
}
}
void HBasicBlock::AssignLoopSuccessorDominators() {
// Mark blocks that dominate all subsequent reachable blocks inside their
// loop. Exploit the fact that blocks are sorted in reverse post order. When
// the loop is visited in increasing block id order, if the number of
// non-loop-exiting successor edges at the dominator_candidate block doesn't
// exceed the number of previously encountered predecessor edges, there is no
// path from the loop header to any block with higher id that doesn't go
// through the dominator_candidate block. In this case, the
// dominator_candidate block is guaranteed to dominate all blocks reachable
// from it with higher ids.
HBasicBlock* last = loop_information()->GetLastBackEdge();
int outstanding_successors = 1; // one edge from the pre-header
// Header always dominates everything.
MarkAsLoopSuccessorDominator();
for (int j = block_id(); j <= last->block_id(); ++j) {
HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
for (HPredecessorIterator it(dominator_candidate); !it.Done();
it.Advance()) {
HBasicBlock* predecessor = it.Current();
// Don't count back edges.
if (predecessor->block_id() < dominator_candidate->block_id()) {
outstanding_successors--;
}
}
// If more successors than predecessors have been seen in the loop up to
// now, it's not possible to guarantee that the current block dominates
// all of the blocks with higher IDs. In this case, assume conservatively
// that those paths through loop that don't go through the current block
// contain all of the loop's dependencies. Also be careful to record
// dominator information about the current loop that's being processed,
// and not nested loops, which will be processed when
// AssignLoopSuccessorDominators gets called on their header.
ASSERT(outstanding_successors >= 0);
HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
if (outstanding_successors == 0 &&
(parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
dominator_candidate->MarkAsLoopSuccessorDominator();
}
HControlInstruction* end = dominator_candidate->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
HBasicBlock* successor = it.Current();
// Only count successors that remain inside the loop and don't loop back
// to a loop header.
if (successor->block_id() > dominator_candidate->block_id() &&
successor->block_id() <= last->block_id()) {
// Backwards edges must land on loop headers.
ASSERT(successor->block_id() > dominator_candidate->block_id() ||
successor->IsLoopHeader());
outstanding_successors++;
}
}
}
}
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
for (int i = 0; i < predecessors_.length(); ++i) {
if (predecessors_[i] == predecessor) return i;
}
UNREACHABLE();
return -1;
}
#ifdef DEBUG
void HBasicBlock::Verify() {
// Check that every block is finished.
ASSERT(IsFinished());
ASSERT(block_id() >= 0);
// Check that the incoming edges are in edge split form.
if (predecessors_.length() > 1) {
for (int i = 0; i < predecessors_.length(); ++i) {
ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
}
}
}
#endif
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
this->back_edges_.Add(block, block->zone());
AddBlock(block);
}
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
int max_id = -1;
HBasicBlock* result = NULL;
for (int i = 0; i < back_edges_.length(); ++i) {
HBasicBlock* cur = back_edges_[i];
if (cur->block_id() > max_id) {
max_id = cur->block_id();
result = cur;
}
}
return result;
}
void HLoopInformation::AddBlock(HBasicBlock* block) {
if (block == loop_header()) return;
if (block->parent_loop_header() == loop_header()) return;
if (block->parent_loop_header() != NULL) {
AddBlock(block->parent_loop_header());
} else {
block->set_parent_loop_header(loop_header());
blocks_.Add(block, block->zone());
for (int i = 0; i < block->predecessors()->length(); ++i) {
AddBlock(block->predecessors()->at(i));
}
}
}
#ifdef DEBUG
// Checks reachability of the blocks in this graph and stores a bit in
// the BitVector "reachable()" for every block that can be reached
// from the start block of the graph. If "dont_visit" is non-null, the given
// block is treated as if it would not be part of the graph. "visited_count()"
// returns the number of reachable blocks.
class ReachabilityAnalyzer BASE_EMBEDDED {
public:
ReachabilityAnalyzer(HBasicBlock* entry_block,
int block_count,
HBasicBlock* dont_visit)
: visited_count_(0),
stack_(16, entry_block->zone()),
reachable_(block_count, entry_block->zone()),
dont_visit_(dont_visit) {
PushBlock(entry_block);
Analyze();
}
int visited_count() const { return visited_count_; }
const BitVector* reachable() const { return &reachable_; }
private:
void PushBlock(HBasicBlock* block) {
if (block != NULL && block != dont_visit_ &&
!reachable_.Contains(block->block_id())) {
reachable_.Add(block->block_id());
stack_.Add(block, block->zone());
visited_count_++;
}
}
void Analyze() {
while (!stack_.is_empty()) {
HControlInstruction* end = stack_.RemoveLast()->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
PushBlock(it.Current());
}
}
}
int visited_count_;
ZoneList<HBasicBlock*> stack_;
BitVector reachable_;
HBasicBlock* dont_visit_;
};
void HGraph::Verify(bool do_full_verify) const {
Heap::RelocationLock(isolate()->heap());
ALLOW_HANDLE_DEREF(isolate(), "debug mode verification");
for (int i = 0; i < blocks_.length(); i++) {
HBasicBlock* block = blocks_.at(i);
block->Verify();
// Check that every block contains at least one node and that only the last
// node is a control instruction.
HInstruction* current = block->first();
ASSERT(current != NULL && current->IsBlockEntry());
while (current != NULL) {
ASSERT((current->next() == NULL) == current->IsControlInstruction());
ASSERT(current->block() == block);
current->Verify();
current = current->next();
}
// Check that successors are correctly set.
HBasicBlock* first = block->end()->FirstSuccessor();
HBasicBlock* second = block->end()->SecondSuccessor();
ASSERT(second == NULL || first != NULL);
// Check that the predecessor array is correct.
if (first != NULL) {
ASSERT(first->predecessors()->Contains(block));
if (second != NULL) {
ASSERT(second->predecessors()->Contains(block));
}
}
// Check that phis have correct arguments.
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
phi->Verify();
}
// Check that all join blocks have predecessors that end with an
// unconditional goto and agree on their environment node id.
if (block->predecessors()->length() >= 2) {
BailoutId id =
block->predecessors()->first()->last_environment()->ast_id();
for (int k = 0; k < block->predecessors()->length(); k++) {
HBasicBlock* predecessor = block->predecessors()->at(k);
ASSERT(predecessor->end()->IsGoto());
ASSERT(predecessor->last_environment()->ast_id() == id);
}
}
}
// Check special property of first block to have no predecessors.
ASSERT(blocks_.at(0)->predecessors()->is_empty());
if (do_full_verify) {
// Check that the graph is fully connected.
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
ASSERT(analyzer.visited_count() == blocks_.length());
// Check that entry block dominator is NULL.
ASSERT(entry_block_->dominator() == NULL);
// Check dominators.
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_.at(i);
if (block->dominator() == NULL) {
// Only start block may have no dominator assigned to.
ASSERT(i == 0);
} else {
// Assert that block is unreachable if dominator must not be visited.
ReachabilityAnalyzer dominator_analyzer(entry_block_,
blocks_.length(),
block->dominator());
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
}
}
}
}
#endif
HConstant* HGraph::GetConstantInt32(SetOncePointer<HConstant>* pointer,
int32_t value) {
if (!pointer->is_set()) {
HConstant* constant =
new(zone()) HConstant(value, Representation::Integer32());
constant->InsertAfter(GetConstantUndefined());
pointer->set(constant);
}
return pointer->get();
}
HConstant* HGraph::GetConstantSmi(SetOncePointer<HConstant>* pointer,
int32_t value) {
if (!pointer->is_set()) {
HConstant* constant =
new(zone()) HConstant(Handle<Object>(Smi::FromInt(value), isolate()),
Representation::Tagged());
constant->InsertAfter(GetConstantUndefined());
pointer->set(constant);
}
return pointer->get();
}
HConstant* HGraph::GetConstant0() {
return GetConstantInt32(&constant_0_, 0);
}
HConstant* HGraph::GetConstant1() {
return GetConstantInt32(&constant_1_, 1);
}
HConstant* HGraph::GetConstantMinus1() {
return GetConstantInt32(&constant_minus1_, -1);
}
#define DEFINE_GET_CONSTANT(Name, name, htype, boolean_value) \
HConstant* HGraph::GetConstant##Name() { \
if (!constant_##name##_.is_set()) { \
HConstant* constant = new(zone()) HConstant( \
isolate()->factory()->name##_value(), \
UniqueValueId(isolate()->heap()->name##_value()), \
Representation::Tagged(), \
htype, \
false, \
true, \
boolean_value); \
constant->InsertAfter(GetConstantUndefined()); \
constant_##name##_.set(constant); \
} \
return constant_##name##_.get(); \
}
DEFINE_GET_CONSTANT(True, true, HType::Boolean(), true)
DEFINE_GET_CONSTANT(False, false, HType::Boolean(), false)
DEFINE_GET_CONSTANT(Hole, the_hole, HType::Tagged(), false)
DEFINE_GET_CONSTANT(Null, null, HType::Tagged(), false)
HConstant* HGraph::GetConstantSmi0() {
return GetConstantSmi(&constant_smi_0_, 0);
}
HConstant* HGraph::GetConstantSmi1() {
return GetConstantSmi(&constant_smi_1_, 1);
}
#undef DEFINE_GET_CONSTANT
HConstant* HGraph::GetInvalidContext() {
return GetConstantInt32(&constant_invalid_context_, 0xFFFFC0C7);
}
HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder, int position)
: builder_(builder),
position_(position),
finished_(false),
did_then_(false),
did_else_(false),
did_and_(false),
did_or_(false),
captured_(false),
needs_compare_(true),
split_edge_merge_block_(NULL) {
HEnvironment* env = builder->environment();
first_true_block_ = builder->CreateBasicBlock(env->Copy());
last_true_block_ = NULL;
first_false_block_ = builder->CreateBasicBlock(env->Copy());
}
HGraphBuilder::IfBuilder::IfBuilder(
HGraphBuilder* builder,
HIfContinuation* continuation)
: builder_(builder),
position_(RelocInfo::kNoPosition),
finished_(false),
did_then_(false),
did_else_(false),
did_and_(false),
did_or_(false),
captured_(false),
needs_compare_(false),
first_true_block_(NULL),
first_false_block_(NULL),
split_edge_merge_block_(NULL),
merge_block_(NULL) {
continuation->Continue(&first_true_block_,
&first_false_block_,
&position_);
}
HInstruction* HGraphBuilder::IfBuilder::IfCompare(
HValue* left,
HValue* right,
Token::Value token,
Representation input_representation) {
HCompareIDAndBranch* compare =
new(zone()) HCompareIDAndBranch(left, right, token);
compare->set_observed_input_representation(input_representation,
input_representation);
compare->ChangeRepresentation(input_representation);
AddCompare(compare);
return compare;
}
HInstruction* HGraphBuilder::IfBuilder::IfCompareMap(HValue* left,
Handle<Map> map) {
HCompareMap* compare =
new(zone()) HCompareMap(left, map,
first_true_block_, first_false_block_);
AddCompare(compare);
return compare;
}
void HGraphBuilder::IfBuilder::AddCompare(HControlInstruction* compare) {
if (split_edge_merge_block_ != NULL) {
HEnvironment* env = first_false_block_->last_environment();
HBasicBlock* split_edge =
builder_->CreateBasicBlock(env->Copy());
if (did_or_) {
compare->SetSuccessorAt(0, split_edge);
compare->SetSuccessorAt(1, first_false_block_);
} else {
compare->SetSuccessorAt(0, first_true_block_);
compare->SetSuccessorAt(1, split_edge);
}
split_edge->GotoNoSimulate(split_edge_merge_block_);
} else {
compare->SetSuccessorAt(0, first_true_block_);
compare->SetSuccessorAt(1, first_false_block_);
}
builder_->current_block()->Finish(compare);
needs_compare_ = false;
}
void HGraphBuilder::IfBuilder::Or() {
ASSERT(!did_and_);
did_or_ = true;
HEnvironment* env = first_false_block_->last_environment();
if (split_edge_merge_block_ == NULL) {
split_edge_merge_block_ =
builder_->CreateBasicBlock(env->Copy());
first_true_block_->GotoNoSimulate(split_edge_merge_block_);
first_true_block_ = split_edge_merge_block_;
}
builder_->set_current_block(first_false_block_);
first_false_block_ = builder_->CreateBasicBlock(env->Copy());
}
void HGraphBuilder::IfBuilder::And() {
ASSERT(!did_or_);
did_and_ = true;
HEnvironment* env = first_false_block_->last_environment();
if (split_edge_merge_block_ == NULL) {
split_edge_merge_block_ = builder_->CreateBasicBlock(env->Copy());
first_false_block_->GotoNoSimulate(split_edge_merge_block_);
first_false_block_ = split_edge_merge_block_;
}
builder_->set_current_block(first_true_block_);
first_true_block_ = builder_->CreateBasicBlock(env->Copy());
}
void HGraphBuilder::IfBuilder::CaptureContinuation(
HIfContinuation* continuation) {
ASSERT(!finished_);
ASSERT(!captured_);
HBasicBlock* true_block = last_true_block_ == NULL
? first_true_block_
: last_true_block_;
HBasicBlock* false_block = did_else_ && (first_false_block_ != NULL)
? builder_->current_block()
: first_false_block_;
continuation->Capture(true_block, false_block, position_);
captured_ = true;
End();
}
void HGraphBuilder::IfBuilder::Then() {
ASSERT(!captured_);
ASSERT(!finished_);
did_then_ = true;
if (needs_compare_) {
// Handle if's without any expressions, they jump directly to the "else"
// branch.
builder_->current_block()->GotoNoSimulate(first_false_block_);
first_true_block_ = NULL;
}
builder_->set_current_block(first_true_block_);
}
void HGraphBuilder::IfBuilder::Else() {
ASSERT(did_then_);
ASSERT(!captured_);
ASSERT(!finished_);
last_true_block_ = builder_->current_block();
ASSERT(first_true_block_ == NULL || !last_true_block_->IsFinished());
builder_->set_current_block(first_false_block_);
did_else_ = true;
}
void HGraphBuilder::IfBuilder::Deopt() {
HBasicBlock* block = builder_->current_block();
block->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
if (did_else_) {
first_false_block_ = NULL;
} else {
first_true_block_ = NULL;
}
}
void HGraphBuilder::IfBuilder::Return(HValue* value) {
HBasicBlock* block = builder_->current_block();
block->Finish(new(zone()) HReturn(value,
builder_->environment()->LookupContext(),
builder_->graph()->GetConstantMinus1()));
if (did_else_) {
first_false_block_ = NULL;
} else {
first_true_block_ = NULL;
}
}
void HGraphBuilder::IfBuilder::End() {
if (!captured_) {
ASSERT(did_then_);
if (!did_else_) {
last_true_block_ = builder_->current_block();
}
if (first_true_block_ == NULL) {
// Deopt on true. Nothing to do, just continue the false block.
} else if (first_false_block_ == NULL) {
// Deopt on false. Nothing to do except switching to the true block.
builder_->set_current_block(last_true_block_);
} else {
HEnvironment* merge_env = last_true_block_->last_environment()->Copy();
merge_block_ = builder_->CreateBasicBlock(merge_env);
ASSERT(!finished_);
if (!did_else_) Else();
ASSERT(!last_true_block_->IsFinished());
HBasicBlock* last_false_block = builder_->current_block();
ASSERT(!last_false_block->IsFinished());
last_true_block_->GotoNoSimulate(merge_block_);
last_false_block->GotoNoSimulate(merge_block_);
builder_->set_current_block(merge_block_);
}
}
finished_ = true;
}
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
HValue* context,
LoopBuilder::Direction direction)
: builder_(builder),
context_(context),
direction_(direction),
finished_(false) {
header_block_ = builder->CreateLoopHeaderBlock();
body_block_ = NULL;
exit_block_ = NULL;
}
HValue* HGraphBuilder::LoopBuilder::BeginBody(
HValue* initial,
HValue* terminating,
Token::Value token,
Representation input_representation) {
HEnvironment* env = builder_->environment();
phi_ = new(zone()) HPhi(env->values()->length(), zone());
header_block_->AddPhi(phi_);
phi_->AddInput(initial);
phi_->ChangeRepresentation(Representation::Integer32());
env->Push(initial);
builder_->current_block()->GotoNoSimulate(header_block_);
HEnvironment* body_env = env->Copy();
HEnvironment* exit_env = env->Copy();
body_block_ = builder_->CreateBasicBlock(body_env);
exit_block_ = builder_->CreateBasicBlock(exit_env);
// Remove the phi from the expression stack
body_env->Pop();
builder_->set_current_block(header_block_);
HCompareIDAndBranch* compare =
new(zone()) HCompareIDAndBranch(phi_, terminating, token);
compare->set_observed_input_representation(input_representation,
input_representation);
compare->ChangeRepresentation(input_representation);
compare->SetSuccessorAt(0, body_block_);
compare->SetSuccessorAt(1, exit_block_);
builder_->current_block()->Finish(compare);
builder_->set_current_block(body_block_);
if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
HValue* one = builder_->graph()->GetConstant1();
if (direction_ == kPreIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, one);
} else {
increment_ = HSub::New(zone(), context_, phi_, one);
}
increment_->ClearFlag(HValue::kCanOverflow);
increment_->ChangeRepresentation(Representation::Integer32());
builder_->AddInstruction(increment_);
return increment_;
} else {
return phi_;
}
}
void HGraphBuilder::LoopBuilder::EndBody() {
ASSERT(!finished_);
if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
HValue* one = builder_->graph()->GetConstant1();
if (direction_ == kPostIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, one);
} else {
increment_ = HSub::New(zone(), context_, phi_, one);
}
increment_->ClearFlag(HValue::kCanOverflow);
increment_->ChangeRepresentation(Representation::Integer32());
builder_->AddInstruction(increment_);
}
// Push the new increment value on the expression stack to merge into the phi.
builder_->environment()->Push(increment_);
builder_->current_block()->GotoNoSimulate(header_block_);
header_block_->loop_information()->RegisterBackEdge(body_block_);
builder_->set_current_block(exit_block_);
// Pop the phi from the expression stack
builder_->environment()->Pop();
finished_ = true;
}
HGraph* HGraphBuilder::CreateGraph() {
graph_ = new(zone()) HGraph(info_);
if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
HPhase phase("H_Block building", isolate());
set_current_block(graph()->entry_block());
if (!BuildGraph()) return NULL;
graph()->FinalizeUniqueValueIds();
return graph_;
}
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
ASSERT(current_block() != NULL);
current_block()->AddInstruction(instr);
if (no_side_effects_scope_count_ > 0) {
instr->SetFlag(HValue::kHasNoObservableSideEffects);
}
return instr;
}
void HGraphBuilder::AddSimulate(BailoutId id,
RemovableSimulate removable) {
ASSERT(current_block() != NULL);
ASSERT(no_side_effects_scope_count_ == 0);
current_block()->AddSimulate(id, removable);
}
HBoundsCheck* HGraphBuilder::AddBoundsCheck(HValue* index,
HValue* length,
BoundsCheckKeyMode key_mode,
Representation r) {
if (!index->type().IsSmi()) {
index = new(graph()->zone()) HCheckSmiOrInt32(index);
AddInstruction(HCheckSmiOrInt32::cast(index));
}
if (!length->type().IsSmi()) {
length = new(graph()->zone()) HCheckSmiOrInt32(length);
AddInstruction(HCheckSmiOrInt32::cast(length));
}
HBoundsCheck* result = new(graph()->zone()) HBoundsCheck(
index, length, key_mode, r);
AddInstruction(result);
return result;
}
HReturn* HGraphBuilder::AddReturn(HValue* value) {
HValue* context = environment()->LookupContext();
int num_parameters = graph()->info()->num_parameters();
HValue* params = AddInstruction(new(graph()->zone())
HConstant(num_parameters, Representation::Integer32()));
HReturn* return_instruction = new(graph()->zone())
HReturn(value, context, params);
current_block()->FinishExit(return_instruction);
return return_instruction;
}
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
HBasicBlock* b = graph()->CreateBasicBlock();
b->SetInitialEnvironment(env);
return b;
}
HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
HBasicBlock* header = graph()->CreateBasicBlock();
HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
header->SetInitialEnvironment(entry_env);
header->AttachLoopInformation();
return header;
}
HValue* HGraphBuilder::BuildCheckNonSmi(HValue* obj) {
HCheckNonSmi* check = new(zone()) HCheckNonSmi(obj);
AddInstruction(check);
return check;
}
HValue* HGraphBuilder::BuildCheckMap(HValue* obj,
Handle<Map> map) {
HCheckMaps* check = HCheckMaps::New(obj, map, zone());
AddInstruction(check);
return check;
}
HInstruction* HGraphBuilder::BuildExternalArrayElementAccess(
HValue* external_elements,
HValue* checked_key,
HValue* val,
HValue* dependency,
ElementsKind elements_kind,
bool is_store) {
Zone* zone = this->zone();
if (is_store) {
ASSERT(val != NULL);
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS: {
val = AddInstruction(new(zone) HClampToUint8(val));
break;
}
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
break;
}
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
break;
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
return new(zone) HStoreKeyed(external_elements, checked_key,
val, elements_kind);
} else {
ASSERT(val == NULL);
HLoadKeyed* load =
new(zone) HLoadKeyed(
external_elements, checked_key, dependency, elements_kind);
if (FLAG_opt_safe_uint32_operations &&
elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
graph()->RecordUint32Instruction(load);
}
return load;
}
}
HInstruction* HGraphBuilder::BuildFastElementAccess(
HValue* elements,
HValue* checked_key,
HValue* val,
HValue* load_dependency,
ElementsKind elements_kind,
bool is_store,
KeyedAccessStoreMode store_mode) {
Zone* zone = this->zone();
if (is_store) {
ASSERT(val != NULL);
switch (elements_kind) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
// Smi-only arrays need a smi check.
AddInstruction(new(zone) HCheckSmi(val));
// Fall through.
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
return new(zone) HStoreKeyed(elements, checked_key, val, elements_kind);
default:
UNREACHABLE();
return NULL;
}
}
// It's an element load (!is_store).
return new(zone) HLoadKeyed(elements,
checked_key,
load_dependency,
elements_kind);
}
HValue* HGraphBuilder::BuildCheckForCapacityGrow(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length,
HValue* key,
bool is_js_array) {
Zone* zone = this->zone();
IfBuilder length_checker(this);
length_checker.IfCompare(length, key, Token::EQ);
length_checker.Then();
HValue* current_capacity =
AddInstruction(new(zone) HFixedArrayBaseLength(elements));
IfBuilder capacity_checker(this);
capacity_checker.IfCompare(length, current_capacity, Token::EQ);
capacity_checker.Then();
HValue* context = environment()->LookupContext();
HValue* new_capacity =
BuildNewElementsCapacity(context, current_capacity);
HValue* new_elements = BuildGrowElementsCapacity(object, elements,
kind, length,
new_capacity);
environment()->Push(new_elements);
capacity_checker.Else();
environment()->Push(elements);
capacity_checker.End();
if (is_js_array) {
HValue* new_length = AddInstruction(
HAdd::New(zone, context, length, graph_->GetConstant1()));
new_length->ChangeRepresentation(Representation::Integer32());
new_length->ClearFlag(HValue::kCanOverflow);
Factory* factory = isolate()->factory();
Representation representation = IsFastElementsKind(kind)
? Representation::Smi() : Representation::Tagged();
HInstruction* length_store = AddInstruction(new(zone) HStoreNamedField(
object,
factory->length_field_string(),
new_length, true,
representation,
JSArray::kLengthOffset));
length_store->SetGVNFlag(kChangesArrayLengths);
}
length_checker.Else();
AddBoundsCheck(key, length, ALLOW_SMI_KEY);
environment()->Push(elements);
length_checker.End();
return environment()->Pop();
}
HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length) {
Zone* zone = this->zone();
Heap* heap = isolate()->heap();
IfBuilder cow_checker(this);
cow_checker.IfCompareMap(elements,
Handle<Map>(heap->fixed_cow_array_map()));
cow_checker.Then();
HValue* capacity =
AddInstruction(new(zone) HFixedArrayBaseLength(elements));
HValue* new_elements = BuildGrowElementsCapacity(object, elements,
kind, length, capacity);
environment()->Push(new_elements);
cow_checker.Else();
environment()->Push(elements);
cow_checker.End();
return environment()->Pop();
}
HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
HCheckMaps* mapcheck,
bool is_js_array,
ElementsKind elements_kind,
bool is_store,
KeyedAccessStoreMode store_mode,
Representation checked_index_representation) {
ASSERT(!IsExternalArrayElementsKind(elements_kind) || !is_js_array);
Zone* zone = this->zone();
// No GVNFlag is necessary for ElementsKind if there is an explicit dependency
// on a HElementsTransition instruction. The flag can also be removed if the
// map to check has FAST_HOLEY_ELEMENTS, since there can be no further
// ElementsKind transitions. Finally, the dependency can be removed for stores
// for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
// generated store code.
if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
(elements_kind == FAST_ELEMENTS && is_store)) {
if (mapcheck != NULL) {
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
}
}
bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
bool fast_elements = IsFastObjectElementsKind(elements_kind);
HValue* elements = AddLoadElements(object, mapcheck);
if (is_store && (fast_elements || fast_smi_only_elements) &&
store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
HCheckMaps* check_cow_map = HCheckMaps::New(
elements, isolate()->factory()->fixed_array_map(), zone);
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
AddInstruction(check_cow_map);
}
HInstruction* length = NULL;
if (is_js_array) {
length = AddInstruction(
HLoadNamedField::NewArrayLength(zone, object, mapcheck, HType::Smi()));
} else {
length = AddInstruction(new(zone) HFixedArrayBaseLength(elements));
}
HValue* checked_key = NULL;
if (IsExternalArrayElementsKind(elements_kind)) {
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
NoObservableSideEffectsScope no_effects(this);
HLoadExternalArrayPointer* external_elements =
new(zone) HLoadExternalArrayPointer(elements);
AddInstruction(external_elements);
IfBuilder length_checker(this);
length_checker.IfCompare(key, length, Token::LT);
length_checker.Then();
IfBuilder negative_checker(this);
HValue* bounds_check = negative_checker.IfCompare(
key, graph()->GetConstant0(), Token::GTE);
negative_checker.Then();
HInstruction* result = BuildExternalArrayElementAccess(
external_elements, key, val, bounds_check,
elements_kind, is_store);
AddInstruction(result);
negative_checker.ElseDeopt();
length_checker.End();
return result;
} else {
ASSERT(store_mode == STANDARD_STORE);
checked_key = AddBoundsCheck(
key, length, ALLOW_SMI_KEY, checked_index_representation);
HLoadExternalArrayPointer* external_elements =
new(zone) HLoadExternalArrayPointer(elements);
AddInstruction(external_elements);
return AddInstruction(BuildExternalArrayElementAccess(
external_elements, checked_key, val, mapcheck,
elements_kind, is_store));
}
}
ASSERT(fast_smi_only_elements ||
fast_elements ||
IsFastDoubleElementsKind(elements_kind));
if (is_store && IsFastSmiElementsKind(elements_kind) &&
!val->type().IsSmi()) {
AddInstruction(new(zone) HCheckSmi(val));
}
if (IsGrowStoreMode(store_mode)) {
NoObservableSideEffectsScope no_effects(this);
elements = BuildCheckForCapacityGrow(object, elements, elements_kind,
length, key, is_js_array);
if (!key->type().IsSmi()) {
checked_key = AddInstruction(new(zone) HCheckSmiOrInt32(key));
} else {
checked_key = key;
}
} else {
checked_key = AddBoundsCheck(
key, length, ALLOW_SMI_KEY, checked_index_representation);
if (is_store && (fast_elements || fast_smi_only_elements)) {
if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
NoObservableSideEffectsScope no_effects(this);
elements = BuildCopyElementsOnWrite(object, elements, elements_kind,
length);
} else {
HCheckMaps* check_cow_map = HCheckMaps::New(
elements, isolate()->factory()->fixed_array_map(), zone);
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
AddInstruction(check_cow_map);
}
}
}
return AddInstruction(
BuildFastElementAccess(elements, checked_key, val, mapcheck,
elements_kind, is_store, store_mode));
}
HValue* HGraphBuilder::BuildAllocateElements(HValue* context,
ElementsKind kind,
HValue* capacity) {
Zone* zone = this->zone();
int elements_size = IsFastDoubleElementsKind(kind)
? kDoubleSize : kPointerSize;
HConstant* elements_size_value =
new(zone) HConstant(elements_size, Representation::Integer32());
AddInstruction(elements_size_value);
HValue* mul = AddInstruction(
HMul::New(zone, context, capacity, elements_size_value));
mul->ChangeRepresentation(Representation::Integer32());
mul->ClearFlag(HValue::kCanOverflow);
HConstant* header_size =
new(zone) HConstant(FixedArray::kHeaderSize, Representation::Integer32());
AddInstruction(header_size);
HValue* total_size = AddInstruction(
HAdd::New(zone, context, mul, header_size));
total_size->ChangeRepresentation(Representation::Integer32());
total_size->ClearFlag(HValue::kCanOverflow);
HAllocate::Flags flags = HAllocate::DefaultFlags(kind);
if (FLAG_pretenure_literals) {
// TODO(hpayer): When pretenuring can be internalized, flags can become
// private to HAllocate.
if (IsFastDoubleElementsKind(kind)) {
flags = static_cast<HAllocate::Flags>(
flags | HAllocate::CAN_ALLOCATE_IN_OLD_DATA_SPACE);
} else {
flags = static_cast<HAllocate::Flags>(
flags | HAllocate::CAN_ALLOCATE_IN_OLD_POINTER_SPACE);
}
}
HValue* elements =
AddInstruction(new(zone) HAllocate(context, total_size,
HType::JSArray(), flags));
return elements;
}
void HGraphBuilder::BuildInitializeElements(HValue* elements,
ElementsKind kind,
HValue* capacity) {
Zone* zone = this->zone();
Factory* factory = isolate()->factory();
Handle<Map> map = IsFastDoubleElementsKind(kind)
? factory->fixed_double_array_map()
: factory->fixed_array_map();
BuildStoreMap(elements, map);
Handle<String> fixed_array_length_field_name = factory->length_field_string();
Representation representation = IsFastElementsKind(kind)
? Representation::Smi() : Representation::Tagged();
HInstruction* store_length =
new(zone) HStoreNamedField(elements, fixed_array_length_field_name,
capacity, true, representation,
FixedArray::kLengthOffset);
AddInstruction(store_length);
}
HValue* HGraphBuilder::BuildAllocateAndInitializeElements(HValue* context,
ElementsKind kind,
HValue* capacity) {
HValue* new_elements = BuildAllocateElements(context, kind, capacity);
BuildInitializeElements(new_elements, kind, capacity);
return new_elements;
}
HInnerAllocatedObject* HGraphBuilder::BuildJSArrayHeader(HValue* array,
HValue* array_map,
AllocationSiteMode mode,
HValue* allocation_site_payload,
HValue* length_field) {
BuildStoreMap(array, array_map);
HConstant* empty_fixed_array =
new(zone()) HConstant(
Handle<FixedArray>(isolate()->heap()->empty_fixed_array()),
Representation::Tagged());
AddInstruction(empty_fixed_array);
AddInstruction(new(zone()) HStoreNamedField(array,
isolate()->factory()->properties_field_symbol(),
empty_fixed_array,
true,
Representation::Tagged(),
JSArray::kPropertiesOffset));
HInstruction* length_store = AddInstruction(
new(zone()) HStoreNamedField(array,
isolate()->factory()->length_field_string(),
length_field,
true,
Representation::Tagged(),
JSArray::kLengthOffset));
length_store->SetGVNFlag(kChangesArrayLengths);
if (mode == TRACK_ALLOCATION_SITE) {
BuildCreateAllocationSiteInfo(array,
JSArray::kSize,
allocation_site_payload);
}
int elements_location = JSArray::kSize;
if (mode == TRACK_ALLOCATION_SITE) {
elements_location += AllocationSiteInfo::kSize;
}
HInnerAllocatedObject* elements = new(zone()) HInnerAllocatedObject(
array,
elements_location);
AddInstruction(elements);
HInstruction* elements_store = AddInstruction(
new(zone()) HStoreNamedField(
array,
isolate()->factory()->elements_field_string(),
elements,
true,
Representation::Tagged(),
JSArray::kElementsOffset));
elements_store->SetGVNFlag(kChangesElementsPointer);
return elements;
}
HInstruction* HGraphBuilder::BuildStoreMap(HValue* object,
HValue* map) {
Zone* zone = this->zone();
Factory* factory = isolate()->factory();
Handle<String> map_field_name = factory->map_field_string();
HInstruction* store_map =
new(zone) HStoreNamedField(object, map_field_name, map,
true, Representation::Tagged(),
JSObject::kMapOffset);
store_map->ClearGVNFlag(kChangesInobjectFields);
store_map->SetGVNFlag(kChangesMaps);
AddInstruction(store_map);
return store_map;
}
HInstruction* HGraphBuilder::BuildStoreMap(HValue* object,
Handle<Map> map) {
Zone* zone = this->zone();
HValue* map_constant =
AddInstruction(new(zone) HConstant(map, Representation::Tagged()));
return BuildStoreMap(object, map_constant);
}
HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
HValue* typecheck) {
HLoadNamedField* instr = new(zone()) HLoadNamedField(object, true,
Representation::Tagged(), JSObject::kElementsOffset, typecheck);
AddInstruction(instr);
instr->SetGVNFlag(kDependsOnElementsPointer);
instr->ClearGVNFlag(kDependsOnMaps);
instr->ClearGVNFlag(kDependsOnInobjectFields);
return instr;
}
HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* context,
HValue* old_capacity) {
Zone* zone = this->zone();
HValue* half_old_capacity =
AddInstruction(HShr::New(zone, context, old_capacity,
graph_->GetConstant1()));
half_old_capacity->ChangeRepresentation(Representation::Integer32());
half_old_capacity->ClearFlag(HValue::kCanOverflow);
HValue* new_capacity = AddInstruction(
HAdd::New(zone, context, half_old_capacity, old_capacity));
new_capacity->ChangeRepresentation(Representation::Integer32());
new_capacity->ClearFlag(HValue::kCanOverflow);
HValue* min_growth =
AddInstruction(new(zone) HConstant(16, Representation::Integer32()));
new_capacity = AddInstruction(
HAdd::New(zone, context, new_capacity, min_growth));
new_capacity->ChangeRepresentation(Representation::Integer32());
new_capacity->ClearFlag(HValue::kCanOverflow);
return new_capacity;
}
void HGraphBuilder::BuildNewSpaceArrayCheck(HValue* length, ElementsKind kind) {
Zone* zone = this->zone();
Heap* heap = isolate()->heap();
int element_size = IsFastDoubleElementsKind(kind) ? kDoubleSize
: kPointerSize;
int max_size = heap->MaxNewSpaceAllocationSize() / element_size;
max_size -= JSArray::kSize / element_size;
HConstant* max_size_constant =
new(zone) HConstant(max_size, Representation::Integer32());
AddInstruction(max_size_constant);
// Since we're forcing Integer32 representation for this HBoundsCheck,
// there's no need to Smi-check the index.
AddInstruction(new(zone)
HBoundsCheck(length, max_size_constant,
DONT_ALLOW_SMI_KEY, Representation::Integer32()));
}
HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length,
HValue* new_capacity) {
Zone* zone = this->zone();
HValue* context = environment()->LookupContext();
BuildNewSpaceArrayCheck(new_capacity, kind);
HValue* new_elements =
BuildAllocateAndInitializeElements(context, kind, new_capacity);
BuildCopyElements(context, elements, kind,
new_elements, kind,
length, new_capacity);
Factory* factory = isolate()->factory();
HInstruction* elements_store = AddInstruction(new(zone) HStoreNamedField(
object,
factory->elements_field_string(),
new_elements, true, Representation::Tagged(),
JSArray::kElementsOffset));
elements_store->SetGVNFlag(kChangesElementsPointer);
return new_elements;
}
void HGraphBuilder::BuildFillElementsWithHole(HValue* context,
HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to) {
// Fast elements kinds need to be initialized in case statements below cause
// a garbage collection.
Factory* factory = isolate()->factory();
double nan_double = FixedDoubleArray::hole_nan_as_double();
Zone* zone = this->zone();
HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
? AddInstruction(new(zone) HConstant(factory->the_hole_value(),
Representation::Tagged()))
: AddInstruction(new(zone) HConstant(nan_double,
Representation::Double()));
// Special loop unfolding case
static const int kLoopUnfoldLimit = 4;
bool unfold_loop = false;
int initial_capacity = JSArray::kPreallocatedArrayElements;
if (from->IsConstant() && to->IsConstant() &&
initial_capacity <= kLoopUnfoldLimit) {
HConstant* constant_from = HConstant::cast(from);
HConstant* constant_to = HConstant::cast(to);
if (constant_from->HasInteger32Value() &&
constant_from->Integer32Value() == 0 &&
constant_to->HasInteger32Value() &&
constant_to->Integer32Value() == initial_capacity) {
unfold_loop = true;
}
}
if (unfold_loop) {
for (int i = 0; i < initial_capacity; i++) {
HInstruction* key = AddInstruction(new(zone)
HConstant(i, Representation::Integer32()));
AddInstruction(new(zone) HStoreKeyed(elements, key, hole, elements_kind));
}
} else {
LoopBuilder builder(this, context, LoopBuilder::kPostIncrement);
HValue* key = builder.BeginBody(from, to, Token::LT);
AddInstruction(new(zone) HStoreKeyed(elements, key, hole, elements_kind));
builder.EndBody();
}
}
void HGraphBuilder::BuildCopyElements(HValue* context,
HValue* from_elements,
ElementsKind from_elements_kind,
HValue* to_elements,
ElementsKind to_elements_kind,
HValue* length,
HValue* capacity) {
bool pre_fill_with_holes =
IsFastDoubleElementsKind(from_elements_kind) &&
IsFastObjectElementsKind(to_elements_kind);
if (pre_fill_with_holes) {
// If the copy might trigger a GC, make sure that the FixedArray is
// pre-initialized with holes to make sure that it's always in a consistent
// state.
BuildFillElementsWithHole(context, to_elements, to_elements_kind,
graph()->GetConstant0(), capacity);
}
LoopBuilder builder(this, context, LoopBuilder::kPostIncrement);
HValue* key = builder.BeginBody(graph()->GetConstant0(), length, Token::LT);
HValue* element =
AddInstruction(new(zone()) HLoadKeyed(from_elements, key, NULL,
from_elements_kind,
ALLOW_RETURN_HOLE));
AddInstruction(new(zone()) HStoreKeyed(to_elements, key, element,
to_elements_kind));
builder.EndBody();
if (!pre_fill_with_holes && length != capacity) {
// Fill unused capacity with the hole.
BuildFillElementsWithHole(context, to_elements, to_elements_kind,
key, capacity);
}
}
HValue* HGraphBuilder::BuildCloneShallowArray(HContext* context,
HValue* boilerplate,
AllocationSiteMode mode,
ElementsKind kind,
int length) {
Zone* zone = this->zone();
Factory* factory = isolate()->factory();
NoObservableSideEffectsScope no_effects(this);
// All sizes here are multiples of kPointerSize.
int size = JSArray::kSize;
if (mode == TRACK_ALLOCATION_SITE) {
size += AllocationSiteInfo::kSize;
}
int elems_offset = size;
if (length > 0) {
size += IsFastDoubleElementsKind(kind)
? FixedDoubleArray::SizeFor(length)
: FixedArray::SizeFor(length);
}
HAllocate::Flags allocate_flags = HAllocate::DefaultFlags(kind);
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
HValue* size_in_bytes =
AddInstruction(new(zone) HConstant(size, Representation::Integer32()));
HInstruction* object =
AddInstruction(new(zone) HAllocate(context,
size_in_bytes,
HType::JSObject(),
allocate_flags));
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length == 0)) {
HInstruction* value = AddInstruction(new(zone) HLoadNamedField(
boilerplate, true, Representation::Tagged(), i));
if (i != JSArray::kMapOffset) {
AddInstruction(new(zone) HStoreNamedField(object,
factory->empty_string(),
value, true,
Representation::Tagged(), i));
} else {
BuildStoreMap(object, value);
}
}
}
// Create an allocation site info if requested.
if (mode == TRACK_ALLOCATION_SITE) {
BuildCreateAllocationSiteInfo(object, JSArray::kSize, boilerplate);
}
if (length > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
HValue* boilerplate_elements = AddLoadElements(boilerplate);
HValue* object_elements =
AddInstruction(new(zone) HInnerAllocatedObject(object, elems_offset));
AddInstruction(new(zone) HStoreNamedField(object,
factory->elements_field_string(),
object_elements, true,
Representation::Tagged(),
JSObject::kElementsOffset));
// Copy the elements array header.
for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
HInstruction* value =
AddInstruction(new(zone) HLoadNamedField(
boilerplate_elements, true, Representation::Tagged(), i));
AddInstruction(new(zone) HStoreNamedField(object_elements,
factory->empty_string(),
value, true,
Representation::Tagged(), i));
}
// Copy the elements array contents.
// TODO(mstarzinger): Teach HGraphBuilder::BuildCopyElements to unfold
// copying loops with constant length up to a given boundary and use this
// helper here instead.
for (int i = 0; i < length; i++) {
HValue* key_constant =
AddInstruction(new(zone) HConstant(i, Representation::Integer32()));
HInstruction* value =
AddInstruction(new(zone) HLoadKeyed(boilerplate_elements,
key_constant,
NULL,
kind));
AddInstruction(new(zone) HStoreKeyed(object_elements,
key_constant,
value,
kind));
}
}
return object;
}
void HGraphBuilder::BuildCompareNil(
HValue* value,
EqualityKind kind,
CompareNilICStub::Types types,
Handle<Map> map,
int position,
HIfContinuation* continuation) {
IfBuilder if_nil(this, position);
bool needs_or = false;
if ((types & CompareNilICStub::kCompareAgainstNull) != 0) {
if (needs_or) if_nil.Or();
if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
needs_or = true;
}
if ((types & CompareNilICStub::kCompareAgainstUndefined) != 0) {
if (needs_or) if_nil.Or();
if_nil.If<HCompareObjectEqAndBranch>(value,
graph()->GetConstantUndefined());
needs_or = true;
}
// Handle either undetectable or monomorphic, not both.
ASSERT(((types & CompareNilICStub::kCompareAgainstUndetectable) == 0) ||
((types & CompareNilICStub::kCompareAgainstMonomorphicMap) == 0));
if ((types & CompareNilICStub::kCompareAgainstUndetectable) != 0) {
if (needs_or) if_nil.Or();
if_nil.If<HIsUndetectableAndBranch>(value);
} else {
if_nil.Then();
if_nil.Else();
if ((types & CompareNilICStub::kCompareAgainstMonomorphicMap) != 0) {
BuildCheckNonSmi(value);
// For ICs, the map checked below is a sentinel map that gets replaced by
// the monomorphic map when the code is used as a template to generate a
// new IC. For optimized functions, there is no sentinel map, the map
// emitted below is the actual monomorphic map.
BuildCheckMap(value, map);
} else {
if (kind == kNonStrictEquality) {
if_nil.Deopt();
}
}
}
if_nil.CaptureContinuation(continuation);
}
HValue* HGraphBuilder::BuildCreateAllocationSiteInfo(HValue* previous_object,
int previous_object_size,
HValue* payload) {
HInnerAllocatedObject* alloc_site = new(zone())
HInnerAllocatedObject(previous_object, previous_object_size);
AddInstruction(alloc_site);
Handle<Map> alloc_site_map(isolate()->heap()->allocation_site_info_map());
BuildStoreMap(alloc_site, alloc_site_map);
AddInstruction(new(zone()) HStoreNamedField(alloc_site,
isolate()->factory()->payload_string(),
payload,
true,
Representation::Tagged(),
AllocationSiteInfo::kPayloadOffset));
return alloc_site;
}
HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* context) {
HInstruction* global_object = AddInstruction(new(zone())
HGlobalObject(context));
HInstruction* native_context = AddInstruction(new(zone())
HLoadNamedField(global_object, true, Representation::Tagged(),
GlobalObject::kNativeContextOffset));
return native_context;
}
HInstruction* HGraphBuilder::BuildGetArrayFunction(HValue* context) {
HInstruction* native_context = BuildGetNativeContext(context);
int offset = Context::kHeaderSize +
kPointerSize * Context::ARRAY_FUNCTION_INDEX;
HInstruction* array_function = AddInstruction(new(zone())
HLoadNamedField(native_context, true, Representation::Tagged(), offset));
return array_function;
}
HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* allocation_site_payload,
AllocationSiteMode mode) :
builder_(builder),
kind_(kind),
allocation_site_payload_(allocation_site_payload) {
if (mode == DONT_TRACK_ALLOCATION_SITE) {
mode_ = mode;
} else {
mode_ = AllocationSiteInfo::GetMode(kind);
}
}
HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode(HValue* context) {
HInstruction* native_context = builder()->BuildGetNativeContext(context);
int offset = Context::kHeaderSize +
kPointerSize * Context::JS_ARRAY_MAPS_INDEX;
HInstruction* map_array = AddInstruction(new(zone())
HLoadNamedField(native_context, true, Representation::Tagged(), offset));
offset = kind_ * kPointerSize + FixedArrayBase::kHeaderSize;
return AddInstruction(new(zone()) HLoadNamedField(
map_array, true, Representation::Tagged(), offset));
}
HValue* HGraphBuilder::JSArrayBuilder::EstablishAllocationSize(
HValue* length_node) {
HValue* context = builder()->environment()->LookupContext();
ASSERT(length_node != NULL);
int base_size = JSArray::kSize;
if (mode_ == TRACK_ALLOCATION_SITE) {
base_size += AllocationSiteInfo::kSize;
}
if (IsFastDoubleElementsKind(kind_)) {
base_size += FixedDoubleArray::kHeaderSize;
} else {
base_size += FixedArray::kHeaderSize;
}
HInstruction* elements_size_value = new(zone())
HConstant(elements_size(), Representation::Integer32());
AddInstruction(elements_size_value);
HInstruction* mul = HMul::New(zone(), context, length_node,
elements_size_value);
mul->ChangeRepresentation(Representation::Integer32());
mul->ClearFlag(HValue::kCanOverflow);
AddInstruction(mul);
HInstruction* base = new(zone()) HConstant(base_size,
Representation::Integer32());
AddInstruction(base);
HInstruction* total_size = HAdd::New(zone(), context, base, mul);
total_size->ChangeRepresentation(Representation::Integer32());
total_size->ClearFlag(HValue::kCanOverflow);
AddInstruction(total_size);
return total_size;
}
HValue* HGraphBuilder::JSArrayBuilder::EstablishEmptyArrayAllocationSize() {
int base_size = JSArray::kSize;
if (mode_ == TRACK_ALLOCATION_SITE) {
base_size += AllocationSiteInfo::kSize;
}
base_size += IsFastDoubleElementsKind(kind_)
? FixedDoubleArray::SizeFor(initial_capacity())
: FixedArray::SizeFor(initial_capacity());
HConstant* array_size =
new(zone()) HConstant(base_size, Representation::Integer32());
AddInstruction(array_size);
return array_size;
}
HValue* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
HValue* size_in_bytes = EstablishEmptyArrayAllocationSize();
HConstant* capacity =
new(zone()) HConstant(initial_capacity(), Representation::Integer32());
AddInstruction(capacity);
return AllocateArray(size_in_bytes,
capacity,
builder()->graph()->GetConstant0(),
true);
}
HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* capacity,
HValue* length_field,
bool fill_with_hole) {
HValue* size_in_bytes = EstablishAllocationSize(capacity);
return AllocateArray(size_in_bytes, capacity, length_field, fill_with_hole);
}
HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* size_in_bytes,
HValue* capacity,
HValue* length_field,
bool fill_with_hole) {
HValue* context = builder()->environment()->LookupContext();
// Allocate (dealing with failure appropriately)
HAllocate::Flags flags = HAllocate::DefaultFlags(kind_);
HAllocate* new_object = new(zone()) HAllocate(context, size_in_bytes,
HType::JSArray(), flags);
AddInstruction(new_object);
// Fill in the fields: map, properties, length
HValue* map = EmitMapCode(context);
elements_location_ = builder()->BuildJSArrayHeader(new_object,
map,
mode_,
allocation_site_payload_,
length_field);
// Initialize the elements
builder()->BuildInitializeElements(elements_location_, kind_, capacity);
if (fill_with_hole) {
builder()->BuildFillElementsWithHole(context, elements_location_, kind_,
graph()->GetConstant0(), capacity);
}
return new_object;
}
HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info,
TypeFeedbackOracle* oracle)
: HGraphBuilder(info),
function_state_(NULL),
initial_function_state_(this, info, oracle, NORMAL_RETURN),
ast_context_(NULL),
break_scope_(NULL),
inlined_count_(0),
globals_(10, info->zone()),
inline_bailout_(false) {
// This is not initialized in the initializer list because the
// constructor for the initial state relies on function_state_ == NULL
// to know it's the initial state.
function_state_= &initial_function_state_;
InitializeAstVisitor();
}
HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
HBasicBlock* second,
BailoutId join_id) {
if (first == NULL) {
return second;
} else if (second == NULL) {
return first;
} else {
HBasicBlock* join_block = graph()->CreateBasicBlock();
first->Goto(join_block);
second->Goto(join_block);
join_block->SetJoinId(join_id);
return join_block;
}
}
HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
HBasicBlock* exit_block,
HBasicBlock* continue_block) {
if (continue_block != NULL) {
if (exit_block != NULL) exit_block->Goto(continue_block);
continue_block->SetJoinId(statement->ContinueId());
return continue_block;
}
return exit_block;
}
HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
HBasicBlock* loop_entry,
HBasicBlock* body_exit,
HBasicBlock* loop_successor,
HBasicBlock* break_block) {
if (body_exit != NULL) body_exit->Goto(loop_entry);
loop_entry->PostProcessLoopHeader(statement);
if (break_block != NULL) {
if (loop_successor != NULL) loop_successor->Goto(break_block);
break_block->SetJoinId(statement->ExitId());
return break_block;
}
return loop_successor;
}
void HBasicBlock::FinishExit(HControlInstruction* instruction) {
Finish(instruction);
ClearEnvironment();
}
HGraph::HGraph(CompilationInfo* info)
: isolate_(info->isolate()),
next_block_id_(0),
entry_block_(NULL),
blocks_(8, info->zone()),
values_(16, info->zone()),
phi_list_(NULL),
uint32_instructions_(NULL),
info_(info),
zone_(info->zone()),
is_recursive_(false),
use_optimistic_licm_(false),
has_soft_deoptimize_(false),
type_change_checksum_(0) {
if (info->IsStub()) {
HydrogenCodeStub* stub = info->code_stub();
CodeStubInterfaceDescriptor* descriptor =
stub->GetInterfaceDescriptor(isolate_);
start_environment_ =
new(zone_) HEnvironment(zone_, descriptor->environment_length());
} else {
start_environment_ =
new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
}
start_environment_->set_ast_id(BailoutId::FunctionEntry());
entry_block_ = CreateBasicBlock();
entry_block_->SetInitialEnvironment(start_environment_);
}
HBasicBlock* HGraph::CreateBasicBlock() {
HBasicBlock* result = new(zone()) HBasicBlock(this);
blocks_.Add(result, zone());
return result;
}
void HGraph::FinalizeUniqueValueIds() {
AssertNoAllocation no_gc;
ASSERT(!isolate()->optimizing_compiler_thread()->IsOptimizerThread());
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstruction* instr = blocks()->at(i)->first();
instr != NULL;
instr = instr->next()) {
instr->FinalizeUniqueValueId();
}
}
}
void HGraph::Canonicalize() {
if (!FLAG_use_canonicalizing) return;
HPhase phase("H_Canonicalize", this);
for (int i = 0; i < blocks()->length(); ++i) {
HInstruction* instr = blocks()->at(i)->first();
while (instr != NULL) {
HValue* value = instr->Canonicalize();
if (value != instr) instr->DeleteAndReplaceWith(value);
instr = instr->next();
}
}
}
// Block ordering was implemented with two mutually recursive methods,
// HGraph::Postorder and HGraph::PostorderLoopBlocks.
// The recursion could lead to stack overflow so the algorithm has been
// implemented iteratively.
// At a high level the algorithm looks like this:
//
// Postorder(block, loop_header) : {
// if (block has already been visited or is of another loop) return;
// mark block as visited;
// if (block is a loop header) {
// VisitLoopMembers(block, loop_header);
// VisitSuccessorsOfLoopHeader(block);
// } else {
// VisitSuccessors(block)
// }
// put block in result list;
// }
//
// VisitLoopMembers(block, outer_loop_header) {
// foreach (block b in block loop members) {
// VisitSuccessorsOfLoopMember(b, outer_loop_header);
// if (b is loop header) VisitLoopMembers(b);
// }
// }
//
// VisitSuccessorsOfLoopMember(block, outer_loop_header) {
// foreach (block b in block successors) Postorder(b, outer_loop_header)
// }
//
// VisitSuccessorsOfLoopHeader(block) {
// foreach (block b in block successors) Postorder(b, block)
// }
//
// VisitSuccessors(block, loop_header) {
// foreach (block b in block successors) Postorder(b, loop_header)
// }
//
// The ordering is started calling Postorder(entry, NULL).
//
// Each instance of PostorderProcessor represents the "stack frame" of the
// recursion, and particularly keeps the state of the loop (iteration) of the
// "Visit..." function it represents.
// To recycle memory we keep all the frames in a double linked list but
// this means that we cannot use constructors to initialize the frames.
//
class PostorderProcessor : public ZoneObject {
public:
// Back link (towards the stack bottom).
PostorderProcessor* parent() {return father_; }
// Forward link (towards the stack top).
PostorderProcessor* child() {return child_; }
HBasicBlock* block() { return block_; }
HLoopInformation* loop() { return loop_; }
HBasicBlock* loop_header() { return loop_header_; }
static PostorderProcessor* CreateEntryProcessor(Zone* zone,
HBasicBlock* block,
BitVector* visited) {
PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
return result->SetupSuccessors(zone, block, NULL, visited);
}
PostorderProcessor* PerformStep(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* next =
PerformNonBacktrackingStep(zone, visited, order);
if (next != NULL) {
return next;
} else {
return Backtrack(zone, visited, order);
}
}
private:
explicit PostorderProcessor(PostorderProcessor* father)
: father_(father), child_(NULL), successor_iterator(NULL) { }
// Each enum value states the cycle whose state is kept by this instance.
enum LoopKind {
NONE,
SUCCESSORS,
SUCCESSORS_OF_LOOP_HEADER,
LOOP_MEMBERS,
SUCCESSORS_OF_LOOP_MEMBER
};
// Each "Setup..." method is like a constructor for a cycle state.
PostorderProcessor* SetupSuccessors(Zone* zone,
HBasicBlock* block,
HBasicBlock* loop_header,
BitVector* visited) {
if (block == NULL || visited->Contains(block->block_id()) ||
block->parent_loop_header() != loop_header) {
kind_ = NONE;
block_ = NULL;
loop_ = NULL;
loop_header_ = NULL;
return this;
} else {
block_ = block;
loop_ = NULL;
visited->Add(block->block_id());
if (block->IsLoopHeader()) {
kind_ = SUCCESSORS_OF_LOOP_HEADER;
loop_header_ = block;
InitializeSuccessors();
PostorderProcessor* result = Push(zone);
return result->SetupLoopMembers(zone, block, block->loop_information(),
loop_header);
} else {
ASSERT(block->IsFinished());
kind_ = SUCCESSORS;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
}
}
PostorderProcessor* SetupLoopMembers(Zone* zone,
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = LOOP_MEMBERS;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeLoopMembers();
return this;
}
PostorderProcessor* SetupSuccessorsOfLoopMember(
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = SUCCESSORS_OF_LOOP_MEMBER;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
// This method "allocates" a new stack frame.
PostorderProcessor* Push(Zone* zone) {
if (child_ == NULL) {
child_ = new(zone) PostorderProcessor(this);
}
return child_;
}
void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
ASSERT(block_->end()->FirstSuccessor() == NULL ||
order->Contains(block_->end()->FirstSuccessor()) ||
block_->end()->FirstSuccessor()->IsLoopHeader());
ASSERT(block_->end()->SecondSuccessor() == NULL ||
order->Contains(block_->end()->SecondSuccessor()) ||
block_->end()->SecondSuccessor()->IsLoopHeader());
order->Add(block_, zone);
}
// This method is the basic block to walk up the stack.
PostorderProcessor* Pop(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
switch (kind_) {
case SUCCESSORS:
case SUCCESSORS_OF_LOOP_HEADER:
ClosePostorder(order, zone);
return father_;
case LOOP_MEMBERS:
return father_;
case SUCCESSORS_OF_LOOP_MEMBER:
if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
// In this case we need to perform a LOOP_MEMBERS cycle so we
// initialize it and return this instead of father.
return SetupLoopMembers(zone, block(),
block()->loop_information(), loop_header_);
} else {
return father_;
}
case NONE:
return father_;
}
UNREACHABLE();
return NULL;
}
// Walks up the stack.
PostorderProcessor* Backtrack(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* parent = Pop(zone, visited, order);
while (parent != NULL) {
PostorderProcessor* next =
parent->PerformNonBacktrackingStep(zone, visited, order);
if (next != NULL) {
return next;
} else {
parent = parent->Pop(zone, visited, order);
}
}
return NULL;
}
PostorderProcessor* PerformNonBacktrackingStep(
Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
HBasicBlock* next_block;
switch (kind_) {
case SUCCESSORS:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
loop_header_, visited);
}
break;
case SUCCESSORS_OF_LOOP_HEADER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
block(), visited);
}
break;
case LOOP_MEMBERS:
next_block = AdvanceLoopMembers();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessorsOfLoopMember(next_block,
loop_, loop_header_);
}
break;
case SUCCESSORS_OF_LOOP_MEMBER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
loop_header_, visited);
}
break;
case NONE:
return NULL;
}
return NULL;
}
// The following two methods implement a "foreach b in successors" cycle.
void InitializeSuccessors() {
loop_index = 0;
loop_length = 0;
successor_iterator = HSuccessorIterator(block_->end());
}
HBasicBlock* AdvanceSuccessors() {
if (!successor_iterator.Done()) {
HBasicBlock* result = successor_iterator.Current();
successor_iterator.Advance();
return result;
}
return NULL;
}
// The following two methods implement a "foreach b in loop members" cycle.
void InitializeLoopMembers() {
loop_index = 0;
loop_length = loop_->blocks()->length();
}
HBasicBlock* AdvanceLoopMembers() {
if (loop_index < loop_length) {
HBasicBlock* result = loop_->blocks()->at(loop_index);
loop_index++;
return result;
} else {
return NULL;
}
}
LoopKind kind_;
PostorderProcessor* father_;
PostorderProcessor* child_;
HLoopInformation* loop_;
HBasicBlock* block_;
HBasicBlock* loop_header_;
int loop_index;
int loop_length;
HSuccessorIterator successor_iterator;
};
void HGraph::OrderBlocks() {
HPhase phase("H_Block ordering", isolate());
BitVector visited(blocks_.length(), zone());
ZoneList<HBasicBlock*> reverse_result(8, zone());
HBasicBlock* start = blocks_[0];
PostorderProcessor* postorder =
PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
while (postorder != NULL) {
postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
}
blocks_.Rewind(0);
int index = 0;
for (int i = reverse_result.length() - 1; i >= 0; --i) {
HBasicBlock* b = reverse_result[i];
blocks_.Add(b, zone());
b->set_block_id(index++);
}
}
void HGraph::AssignDominators() {
HPhase phase("H_Assign dominators", this);
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_[i];
if (block->IsLoopHeader()) {
// Only the first predecessor of a loop header is from outside the loop.
// All others are back edges, and thus cannot dominate the loop header.
block->AssignCommonDominator(block->predecessors()->first());
block->AssignLoopSuccessorDominators();
} else {
for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
}
}
}
}
// Mark all blocks that are dominated by an unconditional soft deoptimize to
// prevent code motion across those blocks.
void HGraph::PropagateDeoptimizingMark() {
HPhase phase("H_Propagate deoptimizing mark", this);
// Skip this phase if there is nothing to be done anyway.
if (!has_soft_deoptimize()) return;
MarkAsDeoptimizingRecursively(entry_block());
NullifyUnreachableInstructions();
}
void HGraph::MarkAsDeoptimizingRecursively(HBasicBlock* block) {
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
HBasicBlock* dominated = block->dominated_blocks()->at(i);
if (block->IsDeoptimizing()) dominated->MarkAsDeoptimizing();
MarkAsDeoptimizingRecursively(dominated);
}
}
void HGraph::NullifyUnreachableInstructions() {
if (!FLAG_unreachable_code_elimination) return;
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
HBasicBlock* block = blocks_.at(i);
bool nullify = false;
const ZoneList<HBasicBlock*>* predecessors = block->predecessors();
int predecessors_length = predecessors->length();
bool all_predecessors_deoptimizing = (predecessors_length > 0);
for (int j = 0; j < predecessors_length; ++j) {
if (!predecessors->at(j)->IsDeoptimizing()) {
all_predecessors_deoptimizing = false;
break;
}
}
if (all_predecessors_deoptimizing) nullify = true;
for (HInstruction* instr = block->first(); instr != NULL;
instr = instr->next()) {
// Leave the basic structure of the graph intact.
if (instr->IsBlockEntry()) continue;
if (instr->IsControlInstruction()) continue;
if (instr->IsSimulate()) continue;
if (instr->IsEnterInlined()) continue;
if (instr->IsLeaveInlined()) continue;
if (nullify) {
HInstruction* last_dummy = NULL;
for (int j = 0; j < instr->OperandCount(); ++j) {
HValue* operand = instr->OperandAt(j);
// Insert an HDummyUse for each operand, unless the operand
// is an HDummyUse itself. If it's even from the same block,
// remember it as a potential replacement for the instruction.
if (operand->IsDummyUse()) {
if (operand->block() == instr->block() &&
last_dummy == NULL) {
last_dummy = HInstruction::cast(operand);
}
continue;
}
if (operand->IsControlInstruction()) {
// Inserting a dummy use for a value that's not defined anywhere
// will fail. Some instructions define fake inputs on such
// values as control flow dependencies.
continue;
}
HDummyUse* dummy = new(zone()) HDummyUse(operand);
dummy->InsertBefore(instr);
last_dummy = dummy;
}
if (last_dummy == NULL) last_dummy = GetConstant1();
instr->DeleteAndReplaceWith(last_dummy);
continue;
}
if (instr->IsSoftDeoptimize()) {
ASSERT(block->IsDeoptimizing());
nullify = true;
}
}
}
}
// Replace all phis consisting of a single non-loop operand plus any number of
// loop operands by that single non-loop operand.
void HGraph::EliminateRedundantPhis() {
HPhase phase("H_Redundant phi elimination", this);
// We do a simple fixed point iteration without any work list, because
// machine-generated JavaScript can lead to a very dense Hydrogen graph with
// an enormous work list and will consequently result in OOM. Experiments
// showed that this simple algorithm is good enough, and even e.g. tracking
// the set or range of blocks to consider is not a real improvement.
bool need_another_iteration;
ZoneList<HPhi*> redundant_phis(blocks_.length(), zone());
do {
need_another_iteration = false;
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_[i];
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
HValue* replacement = phi->GetRedundantReplacement();
if (replacement != NULL) {
// Remember phi to avoid concurrent modification of the block's phis.
redundant_phis.Add(phi, zone());
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
value->SetOperandAt(it.index(), replacement);
need_another_iteration |= value->IsPhi();
}
}
}
for (int i = 0; i < redundant_phis.length(); i++) {
block->RemovePhi(redundant_phis[i]);
}
redundant_phis.Clear();
}
} while (need_another_iteration);
#if DEBUG
// Make sure that we *really* removed all redundant phis.
for (int i = 0; i < blocks_.length(); ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
ASSERT(blocks_[i]->phis()->at(j)->GetRedundantReplacement() == NULL);
}
}
#endif
}
void HGraph::EliminateUnreachablePhis() {
HPhase phase("H_Unreachable phi elimination", this);
// Initialize worklist.
ZoneList<HPhi*> phi_list(blocks_.length(), zone());
ZoneList<HPhi*> worklist(blocks_.length(), zone());
for (int i = 0; i < blocks_.length(); ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
HPhi* phi = blocks_[i]->phis()->at(j);
phi_list.Add(phi, zone());
// We can't eliminate phis in the receiver position in the environment
// because in case of throwing an error we need this value to
// construct a stack trace.
if (phi->HasRealUses() || phi->IsReceiver()) {
phi->set_is_live(true);
worklist.Add(phi, zone());
}
}
}
// Iteratively mark live phis.
while (!worklist.is_empty()) {
HPhi* phi = worklist.RemoveLast();
for (int i = 0; i < phi->OperandCount(); i++) {
HValue* operand = phi->OperandAt(i);
if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) {
HPhi::cast(operand)->set_is_live(true);
worklist.Add(HPhi::cast(operand), zone());
}
}
}
// Remove unreachable phis.
for (int i = 0; i < phi_list.length(); i++) {
HPhi* phi = phi_list[i];
if (!phi->is_live()) {
HBasicBlock* block = phi->block();
block->RemovePhi(phi);
block->RecordDeletedPhi(phi->merged_index());
}
}
}
bool HGraph::CheckArgumentsPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// We don't support phi uses of arguments for now.
if (phi->CheckFlag(HValue::kIsArguments)) return false;
}
}
return true;
}
bool HGraph::CheckConstPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// Check for the hole value (from an uninitialized const).
for (int k = 0; k < phi->OperandCount(); k++) {
if (phi->OperandAt(k) == GetConstantHole()) return false;
}
}
}
return true;
}
void HGraph::CollectPhis() {
int block_count = blocks_.length();
phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
phi_list_->Add(phi, zone());
}
}
}
void HGraph::InferTypes(ZoneList<HValue*>* worklist) {
BitVector in_worklist(GetMaximumValueID(), zone());
for (int i = 0; i < worklist->length(); ++i) {
ASSERT(!in_worklist.Contains(worklist->at(i)->id()));
in_worklist.Add(worklist->at(i)->id());
}
while (!worklist->is_empty()) {
HValue* current = worklist->RemoveLast();
in_worklist.Remove(current->id());
if (current->UpdateInferredType()) {
for (HUseIterator it(current->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!in_worklist.Contains(use->id())) {
in_worklist.Add(use->id());
worklist->Add(use, zone());
}
}
}
}
}
class HRangeAnalysis BASE_EMBEDDED {
public:
explicit HRangeAnalysis(HGraph* graph) :
graph_(graph), zone_(graph->zone()), changed_ranges_(16, zone_) { }
void Analyze();
private:
void TraceRange(const char* msg, ...);
void Analyze(HBasicBlock* block);
void InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest);
void UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other);
void InferRange(HValue* value);
void RollBackTo(int index);
void AddRange(HValue* value, Range* range);
HGraph* graph_;
Zone* zone_;
ZoneList<HValue*> changed_ranges_;
};
void HRangeAnalysis::TraceRange(const char* msg, ...) {
if (FLAG_trace_range) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
}
void HRangeAnalysis::Analyze() {
HPhase phase("H_Range analysis", graph_);
Analyze(graph_->entry_block());
}
void HRangeAnalysis::Analyze(HBasicBlock* block) {
TraceRange("Analyzing block B%d\n", block->block_id());
int last_changed_range = changed_ranges_.length() - 1;
// Infer range based on control flow.
if (block->predecessors()->length() == 1) {
HBasicBlock* pred = block->predecessors()->first();
if (pred->end()->IsCompareIDAndBranch()) {
InferControlFlowRange(HCompareIDAndBranch::cast(pred->end()), block);
}
}
// Process phi instructions.
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
InferRange(phi);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != block->end()) {
InferRange(instr);
instr = instr->next();
}
// Continue analysis in all dominated blocks.
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
Analyze(block->dominated_blocks()->at(i));
}
RollBackTo(last_changed_range);
}
void HRangeAnalysis::InferControlFlowRange(HCompareIDAndBranch* test,
HBasicBlock* dest) {
ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
if (test->representation().IsInteger32()) {
Token::Value op = test->token();
if (test->SecondSuccessor() == dest) {
op = Token::NegateCompareOp(op);
}
Token::Value inverted_op = Token::ReverseCompareOp(op);
UpdateControlFlowRange(op, test->left(), test->right());
UpdateControlFlowRange(inverted_op, test->right(), test->left());
}
}
// We know that value [op] other. Use this information to update the range on
// value.
void HRangeAnalysis::UpdateControlFlowRange(Token::Value op,
HValue* value,
HValue* other) {
Range temp_range;
Range* range = other->range() != NULL ? other->range() : &temp_range;
Range* new_range = NULL;
TraceRange("Control flow range infer %d %s %d\n",
value->id(),
Token::Name(op),
other->id());
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The same range has to apply for value.
new_range = range->Copy(zone_);
} else if (op == Token::LT || op == Token::LTE) {
new_range = range->CopyClearLower(zone_);
if (op == Token::LT) {
new_range->AddConstant(-1);
}
} else if (op == Token::GT || op == Token::GTE) {
new_range = range->CopyClearUpper(zone_);
if (op == Token::GT) {
new_range->AddConstant(1);
}
}
if (new_range != NULL && !new_range->IsMostGeneric()) {
AddRange(value, new_range);
}
}
void HRangeAnalysis::InferRange(HValue* value) {
ASSERT(!value->HasRange());
if (!value->representation().IsNone()) {
value->ComputeInitialRange(zone_);
Range* range = value->range();
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
value->id(),
value->Mnemonic(),
range->lower(),
range->upper());
}
}
void HRangeAnalysis::RollBackTo(int index) {
for (int i = index + 1; i < changed_ranges_.length(); ++i) {
changed_ranges_[i]->RemoveLastAddedRange();
}
changed_ranges_.Rewind(index + 1);
}
void HRangeAnalysis::AddRange(HValue* value, Range* range) {
Range* original_range = value->range();
value->AddNewRange(range, zone_);
changed_ranges_.Add(value, zone_);
Range* new_range = value->range();
TraceRange("Updated range of %d set to [%d,%d]\n",
value->id(),
new_range->lower(),
new_range->upper());
if (original_range != NULL) {
TraceRange("Original range was [%d,%d]\n",
original_range->lower(),
original_range->upper());
}
TraceRange("New information was [%d,%d]\n",
range->lower(),
range->upper());
}
void TraceGVN(const char* msg, ...) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
// Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when
// --trace-gvn is off.
#define TRACE_GVN_1(msg, a1) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1); \
}
#define TRACE_GVN_2(msg, a1, a2) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2); \
}
#define TRACE_GVN_3(msg, a1, a2, a3) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3); \
}
#define TRACE_GVN_4(msg, a1, a2, a3, a4) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4); \
}
#define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4, a5); \
}
HValueMap::HValueMap(Zone* zone, const HValueMap* other)
: array_size_(other->array_size_),
lists_size_(other->lists_size_),
count_(other->count_),
present_flags_(other->present_flags_),
array_(zone->NewArray<HValueMapListElement>(other->array_size_)),
lists_(zone->NewArray<HValueMapListElement>(other->lists_size_)),
free_list_head_(other->free_list_head_) {
OS::MemCopy(
array_, other->array_, array_size_ * sizeof(HValueMapListElement));
OS::MemCopy(
lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
}
void HValueMap::Kill(GVNFlagSet flags) {
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags);
if (!present_flags_.ContainsAnyOf(depends_flags)) return;
present_flags_.RemoveAll();
for (int i = 0; i < array_size_; ++i) {
HValue* value = array_[i].value;
if (value != NULL) {
// Clear list of collisions first, so we know if it becomes empty.
int kept = kNil; // List of kept elements.
int next;
for (int current = array_[i].next; current != kNil; current = next) {
next = lists_[current].next;
HValue* value = lists_[current].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) {
// Drop it.
count_--;
lists_[current].next = free_list_head_;
free_list_head_ = current;
} else {
// Keep it.
lists_[current].next = kept;
kept = current;
present_flags_.Add(value->gvn_flags());
}
}
array_[i].next = kept;
// Now possibly drop directly indexed element.
value = array_[i].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it.
count_--;
int head = array_[i].next;
if (head == kNil) {
array_[i].value = NULL;
} else {
array_[i].value = lists_[head].value;
array_[i].next = lists_[head].next;
lists_[head].next = free_list_head_;
free_list_head_ = head;
}
} else {
present_flags_.Add(value->gvn_flags()); // Keep it.
}
}
}
}
HValue* HValueMap::Lookup(HValue* value) const {
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
uint32_t pos = Bound(hash);
if (array_[pos].value != NULL) {
if (array_[pos].value->Equals(value)) return array_[pos].value;
int next = array_[pos].next;
while (next != kNil) {
if (lists_[next].value->Equals(value)) return lists_[next].value;
next = lists_[next].next;
}
}
return NULL;
}
void HValueMap::Resize(int new_size, Zone* zone) {
ASSERT(new_size > count_);
// Hashing the values into the new array has no more collisions than in the
// old hash map, so we can use the existing lists_ array, if we are careful.
// Make sure we have at least one free element.
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
HValueMapListElement* new_array =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_array = array_;
int old_size = array_size_;
int old_count = count_;
count_ = 0;
// Do not modify present_flags_. It is currently correct.
array_size_ = new_size;
array_ = new_array;
if (old_array != NULL) {
// Iterate over all the elements in lists, rehashing them.
for (int i = 0; i < old_size; ++i) {
if (old_array[i].value != NULL) {
int current = old_array[i].next;
while (current != kNil) {
Insert(lists_[current].value, zone);
int next = lists_[current].next;
lists_[current].next = free_list_head_;
free_list_head_ = current;
current = next;
}
// Rehash the directly stored value.
Insert(old_array[i].value, zone);
}
}
}
USE(old_count);
ASSERT(count_ == old_count);
}
void HValueMap::ResizeLists(int new_size, Zone* zone) {
ASSERT(new_size > lists_size_);
HValueMapListElement* new_lists =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_lists = lists_;
int old_size = lists_size_;
lists_size_ = new_size;
lists_ = new_lists;
if (old_lists != NULL) {
OS::MemCopy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
}
for (int i = old_size; i < lists_size_; ++i) {
lists_[i].next = free_list_head_;
free_list_head_ = i;
}
}
void HValueMap::Insert(HValue* value, Zone* zone) {
ASSERT(value != NULL);
// Resizing when half of the hashtable is filled up.
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1, zone);
ASSERT(count_ < array_size_);
count_++;
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
if (array_[pos].value == NULL) {
array_[pos].value = value;
array_[pos].next = kNil;
} else {
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
int new_element_pos = free_list_head_;
ASSERT(new_element_pos != kNil);
free_list_head_ = lists_[free_list_head_].next;
lists_[new_element_pos].value = value;
lists_[new_element_pos].next = array_[pos].next;
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
array_[pos].next = new_element_pos;
}
}
HSideEffectMap::HSideEffectMap() : count_(0) {
memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize);
}
HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) {
*this = *other; // Calls operator=.
}
HSideEffectMap& HSideEffectMap::operator= (const HSideEffectMap& other) {
if (this != &other) {
OS::MemCopy(data_, other.data_, kNumberOfTrackedSideEffects * kPointerSize);
}
return *this;
}
void HSideEffectMap::Kill(GVNFlagSet flags) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] != NULL) count_--;
data_[i] = NULL;
}
}
}
void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] == NULL) count_++;
data_[i] = instr;
}
}
}
class HStackCheckEliminator BASE_EMBEDDED {
public:
explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { }
void Process();
private:
HGraph* graph_;
};
void HStackCheckEliminator::Process() {
// For each loop block walk the dominator tree from the backwards branch to
// the loop header. If a call instruction is encountered the backwards branch
// is dominated by a call and the stack check in the backwards branch can be
// removed.
for (int i = 0; i < graph_->blocks()->length(); i++) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
HBasicBlock* dominator = back_edge;
while (true) {
HInstruction* instr = dominator->first();
while (instr != NULL) {
if (instr->IsCall()) {
block->loop_information()->stack_check()->Eliminate();
break;
}
instr = instr->next();
}
// Done when the loop header is processed.
if (dominator == block) break;
// Move up the dominator tree.
dominator = dominator->dominator();
}
}
}
}
// Simple sparse set with O(1) add, contains, and clear.
class SparseSet {
public:
SparseSet(Zone* zone, int capacity)
: capacity_(capacity),
length_(0),
dense_(zone->NewArray<int>(capacity)),
sparse_(zone->NewArray<int>(capacity)) {
#ifndef NVALGRIND
// Initialize the sparse array to make valgrind happy.
memset(sparse_, 0, sizeof(sparse_[0]) * capacity);
#endif
}
bool Contains(int n) const {
ASSERT(0 <= n && n < capacity_);
int d = sparse_[n];
return 0 <= d && d < length_ && dense_[d] == n;
}
bool Add(int n) {
if (Contains(n)) return false;
dense_[length_] = n;
sparse_[n] = length_;
++length_;
return true;
}
void Clear() { length_ = 0; }
private:
int capacity_;
int length_;
int* dense_;
int* sparse_;
DISALLOW_COPY_AND_ASSIGN(SparseSet);
};
class HGlobalValueNumberer BASE_EMBEDDED {
public:
explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info)
: graph_(graph),
info_(info),
removed_side_effects_(false),
block_side_effects_(graph->blocks()->length(), graph->zone()),
loop_side_effects_(graph->blocks()->length(), graph->zone()),
visited_on_paths_(graph->zone(), graph->blocks()->length()) {
#ifdef DEBUG
ASSERT(info->isolate()->optimizing_compiler_thread()->IsOptimizerThread() ||
!info->isolate()->heap()->IsAllocationAllowed());
#endif
block_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
graph_->zone());
loop_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
graph_->zone());
}
// Returns true if values with side effects are removed.
bool Analyze();
private:
GVNFlagSet CollectSideEffectsOnPathsToDominatedBlock(
HBasicBlock* dominator,
HBasicBlock* dominated);
void AnalyzeGraph();
void ComputeBlockSideEffects();
void LoopInvariantCodeMotion();
void ProcessLoopBlock(HBasicBlock* block,
HBasicBlock* before_loop,
GVNFlagSet loop_kills,
GVNFlagSet* accumulated_first_time_depends,
GVNFlagSet* accumulated_first_time_changes);
bool AllowCodeMotion();
bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header);
HGraph* graph() { return graph_; }
CompilationInfo* info() { return info_; }
Zone* zone() const { return graph_->zone(); }
HGraph* graph_;
CompilationInfo* info_;
bool removed_side_effects_;
// A map of block IDs to their side effects.
ZoneList<GVNFlagSet> block_side_effects_;
// A map of loop header block IDs to their loop's side effects.
ZoneList<GVNFlagSet> loop_side_effects_;
// Used when collecting side effects on paths from dominator to
// dominated.
SparseSet visited_on_paths_;
};
bool HGlobalValueNumberer::Analyze() {
removed_side_effects_ = false;
ComputeBlockSideEffects();
if (FLAG_loop_invariant_code_motion) {
LoopInvariantCodeMotion();
}
AnalyzeGraph();
return removed_side_effects_;
}
void HGlobalValueNumberer::ComputeBlockSideEffects() {
// The Analyze phase of GVN can be called multiple times. Clear loop side
// effects before computing them to erase the contents from previous Analyze
// passes.
for (int i = 0; i < loop_side_effects_.length(); ++i) {
loop_side_effects_[i].RemoveAll();
}
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
// Compute side effects for the block.
HBasicBlock* block = graph_->blocks()->at(i);
HInstruction* instr = block->first();
int id = block->block_id();
GVNFlagSet side_effects;
while (instr != NULL) {
side_effects.Add(instr->ChangesFlags());
if (instr->IsSoftDeoptimize()) {
block_side_effects_[id].RemoveAll();
side_effects.RemoveAll();
break;
}
instr = instr->next();
}
block_side_effects_[id].Add(side_effects);
// Loop headers are part of their loop.
if (block->IsLoopHeader()) {
loop_side_effects_[id].Add(side_effects);
}
// Propagate loop side effects upwards.
if (block->HasParentLoopHeader()) {
int header_id = block->parent_loop_header()->block_id();
loop_side_effects_[header_id].Add(block->IsLoopHeader()
? loop_side_effects_[id]
: side_effects);
}
}
}
SmartArrayPointer<char> GetGVNFlagsString(GVNFlagSet flags) {
char underlying_buffer[kLastFlag * 128];
Vector<char> buffer(underlying_buffer, sizeof(underlying_buffer));
#if DEBUG
int offset = 0;
const char* separator = "";
const char* comma = ", ";
buffer[0] = 0;
uint32_t set_depends_on = 0;
uint32_t set_changes = 0;
for (int bit = 0; bit < kLastFlag; ++bit) {
if ((flags.ToIntegral() & (1 << bit)) != 0) {
if (bit % 2 == 0) {
set_changes++;
} else {
set_depends_on++;
}
}
}
bool positive_changes = set_changes < (kLastFlag / 2);
bool positive_depends_on = set_depends_on < (kLastFlag / 2);
if (set_changes > 0) {
if (positive_changes) {
offset += OS::SNPrintF(buffer + offset, "changes [");
} else {
offset += OS::SNPrintF(buffer + offset, "changes all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_changes) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kChanges##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
if (set_depends_on > 0) {
separator = "";
if (set_changes > 0) {
offset += OS::SNPrintF(buffer + offset, ", ");
}
if (positive_depends_on) {
offset += OS::SNPrintF(buffer + offset, "depends on [");
} else {
offset += OS::SNPrintF(buffer + offset, "depends on all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_depends_on) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kDependsOn##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
#else
OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral());
#endif
size_t string_len = strlen(underlying_buffer) + 1;
ASSERT(string_len <= sizeof(underlying_buffer));
char* result = new char[strlen(underlying_buffer) + 1];
OS::MemCopy(result, underlying_buffer, string_len);
return SmartArrayPointer<char>(result);
}
void HGlobalValueNumberer::LoopInvariantCodeMotion() {
TRACE_GVN_1("Using optimistic loop invariant code motion: %s\n",
graph_->use_optimistic_licm() ? "yes" : "no");
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
GVNFlagSet side_effects = loop_side_effects_[block->block_id()];
TRACE_GVN_2("Try loop invariant motion for block B%d %s\n",
block->block_id(),
*GetGVNFlagsString(side_effects));
GVNFlagSet accumulated_first_time_depends;
GVNFlagSet accumulated_first_time_changes;
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
for (int j = block->block_id(); j <= last->block_id(); ++j) {
ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects,
&accumulated_first_time_depends,
&accumulated_first_time_changes);
}
}
}
}
void HGlobalValueNumberer::ProcessLoopBlock(
HBasicBlock* block,
HBasicBlock* loop_header,
GVNFlagSet loop_kills,
GVNFlagSet* first_time_depends,
GVNFlagSet* first_time_changes) {
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
TRACE_GVN_2("Loop invariant motion for B%d %s\n",
block->block_id(),
*GetGVNFlagsString(depends_flags));
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
bool hoisted = false;
if (instr->CheckFlag(HValue::kUseGVN)) {
TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n",
instr->id(),
instr->Mnemonic(),
*GetGVNFlagsString(instr->gvn_flags()),
*GetGVNFlagsString(loop_kills));
bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags);
if (can_hoist && !graph()->use_optimistic_licm()) {
can_hoist = block->IsLoopSuccessorDominator();
}
if (can_hoist) {
bool inputs_loop_invariant = true;
for (int i = 0; i < instr->OperandCount(); ++i) {
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
inputs_loop_invariant = false;
}
}
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
TRACE_GVN_1("Hoisting loop invariant instruction %d\n", instr->id());
// Move the instruction out of the loop.
instr->Unlink();
instr->InsertBefore(pre_header->end());
if (instr->HasSideEffects()) removed_side_effects_ = true;
hoisted = true;
}
}
}
if (!hoisted) {
// If an instruction is not hoisted, we have to account for its side
// effects when hoisting later HTransitionElementsKind instructions.
GVNFlagSet previous_depends = *first_time_depends;
GVNFlagSet previous_changes = *first_time_changes;
first_time_depends->Add(instr->DependsOnFlags());
first_time_changes->Add(instr->ChangesFlags());
if (!(previous_depends == *first_time_depends)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_depends));
}
if (!(previous_changes == *first_time_changes)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_changes));
}
}
instr = next;
}
}
bool HGlobalValueNumberer::AllowCodeMotion() {
return info()->IsStub() || info()->opt_count() + 1 < FLAG_max_opt_count;
}
bool HGlobalValueNumberer::ShouldMove(HInstruction* instr,
HBasicBlock* loop_header) {
// If we've disabled code motion or we're in a block that unconditionally
// deoptimizes, don't move any instructions.
return AllowCodeMotion() && !instr->block()->IsDeoptimizing();
}
GVNFlagSet HGlobalValueNumberer::CollectSideEffectsOnPathsToDominatedBlock(
HBasicBlock* dominator, HBasicBlock* dominated) {
GVNFlagSet side_effects;
for (int i = 0; i < dominated->predecessors()->length(); ++i) {
HBasicBlock* block = dominated->predecessors()->at(i);
if (dominator->block_id() < block->block_id() &&
block->block_id() < dominated->block_id() &&
visited_on_paths_.Add(block->block_id())) {
side_effects.Add(block_side_effects_[block->block_id()]);
if (block->IsLoopHeader()) {
side_effects.Add(loop_side_effects_[block->block_id()]);
}
side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock(
dominator, block));
}
}
return side_effects;
}
// Each instance of this class is like a "stack frame" for the recursive
// traversal of the dominator tree done during GVN (the stack is handled
// as a double linked list).
// We reuse frames when possible so the list length is limited by the depth
// of the dominator tree but this forces us to initialize each frame calling
// an explicit "Initialize" method instead of a using constructor.
class GvnBasicBlockState: public ZoneObject {
public:
static GvnBasicBlockState* CreateEntry(Zone* zone,
HBasicBlock* entry_block,
HValueMap* entry_map) {
return new(zone)
GvnBasicBlockState(NULL, entry_block, entry_map, NULL, zone);
}
HBasicBlock* block() { return block_; }
HValueMap* map() { return map_; }
HSideEffectMap* dominators() { return &dominators_; }
GvnBasicBlockState* next_in_dominator_tree_traversal(
Zone* zone,
HBasicBlock** dominator) {
// This assignment needs to happen before calling next_dominated() because
// that call can reuse "this" if we are at the last dominated block.
*dominator = block();
GvnBasicBlockState* result = next_dominated(zone);
if (result == NULL) {
GvnBasicBlockState* dominator_state = pop();
if (dominator_state != NULL) {
// This branch is guaranteed not to return NULL because pop() never
// returns a state where "is_done() == true".
*dominator = dominator_state->block();
result = dominator_state->next_dominated(zone);
} else {
// Unnecessary (we are returning NULL) but done for cleanness.
*dominator = NULL;
}
}
return result;
}
private:
void Initialize(HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
bool copy_map,
Zone* zone) {
block_ = block;
map_ = copy_map ? map->Copy(zone) : map;
dominated_index_ = -1;
length_ = block->dominated_blocks()->length();
if (dominators != NULL) {
dominators_ = *dominators;
}
}
bool is_done() { return dominated_index_ >= length_; }
GvnBasicBlockState(GvnBasicBlockState* previous,
HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
Zone* zone)
: previous_(previous), next_(NULL) {
Initialize(block, map, dominators, true, zone);
}
GvnBasicBlockState* next_dominated(Zone* zone) {
dominated_index_++;
if (dominated_index_ == length_ - 1) {
// No need to copy the map for the last child in the dominator tree.
Initialize(block_->dominated_blocks()->at(dominated_index_),
map(),
dominators(),
false,
zone);
return this;
} else if (dominated_index_ < length_) {
return push(zone,
block_->dominated_blocks()->at(dominated_index_),
dominators());
} else {
return NULL;
}
}
GvnBasicBlockState* push(Zone* zone,
HBasicBlock* block,
HSideEffectMap* dominators) {
if (next_ == NULL) {
next_ =
new(zone) GvnBasicBlockState(this, block, map(), dominators, zone);
} else {
next_->Initialize(block, map(), dominators, true, zone);
}
return next_;
}
GvnBasicBlockState* pop() {
GvnBasicBlockState* result = previous_;
while (result != NULL && result->is_done()) {
TRACE_GVN_2("Backtracking from block B%d to block b%d\n",
block()->block_id(),
previous_->block()->block_id())
result = result->previous_;
}
return result;
}
GvnBasicBlockState* previous_;
GvnBasicBlockState* next_;
HBasicBlock* block_;
HValueMap* map_;
HSideEffectMap dominators_;
int dominated_index_;
int length_;
};
// This is a recursive traversal of the dominator tree but it has been turned
// into a loop to avoid stack overflows.
// The logical "stack frames" of the recursion are kept in a list of
// GvnBasicBlockState instances.
void HGlobalValueNumberer::AnalyzeGraph() {
HBasicBlock* entry_block = graph_->entry_block();
HValueMap* entry_map = new(zone()) HValueMap(zone());
GvnBasicBlockState* current =
GvnBasicBlockState::CreateEntry(zone(), entry_block, entry_map);
while (current != NULL) {
HBasicBlock* block = current->block();
HValueMap* map = current->map();
HSideEffectMap* dominators = current->dominators();
TRACE_GVN_2("Analyzing block B%d%s\n",
block->block_id(),
block->IsLoopHeader() ? " (loop header)" : "");
// If this is a loop header kill everything killed by the loop.
if (block->IsLoopHeader()) {
map->Kill(loop_side_effects_[block->block_id()]);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
GVNFlagSet flags = instr->ChangesFlags();
if (!flags.IsEmpty()) {
// Clear all instructions in the map that are affected by side effects.
// Store instruction as the dominating one for tracked side effects.
map->Kill(flags);
dominators->Store(flags, instr);
TRACE_GVN_2("Instruction %d %s\n", instr->id(),
*GetGVNFlagsString(flags));
}
if (instr->CheckFlag(HValue::kUseGVN)) {
ASSERT(!instr->HasObservableSideEffects());
HValue* other = map->Lookup(instr);
if (other != NULL) {
ASSERT(instr->Equals(other) && other->Equals(instr));
TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n",
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
if (instr->HasSideEffects()) removed_side_effects_ = true;
instr->DeleteAndReplaceWith(other);
} else {
map->Add(instr, zone());
}
}
if (instr->IsLinked() &&
instr->CheckFlag(HValue::kTrackSideEffectDominators)) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
HValue* other = dominators->at(i);
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i);
if (instr->DependsOnFlags().Contains(depends_on_flag) &&
(other != NULL)) {
TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n",
i,
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
instr->SetSideEffectDominator(changes_flag, other);
}
}
}
instr = next;
}
HBasicBlock* dominator_block;
GvnBasicBlockState* next =
current->next_in_dominator_tree_traversal(zone(), &dominator_block);
if (next != NULL) {
HBasicBlock* dominated = next->block();
HValueMap* successor_map = next->map();
HSideEffectMap* successor_dominators = next->dominators();
// Kill everything killed on any path between this block and the
// dominated block. We don't have to traverse these paths if the
// value map and the dominators list is already empty. If the range
// of block ids (block_id, dominated_id) is empty there are no such
// paths.
if ((!successor_map->IsEmpty() || !successor_dominators->IsEmpty()) &&
dominator_block->block_id() + 1 < dominated->block_id()) {
visited_on_paths_.Clear();
GVNFlagSet side_effects_on_all_paths =
CollectSideEffectsOnPathsToDominatedBlock(dominator_block,
dominated);
successor_map->Kill(side_effects_on_all_paths);
successor_dominators->Kill(side_effects_on_all_paths);
}
}
current = next;
}
}
void HInferRepresentation::AddToWorklist(HValue* current) {
if (current->representation().IsTagged()) return;
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
if (in_worklist_.Contains(current->id())) return;
worklist_.Add(current, zone());
in_worklist_.Add(current->id());
}
void HInferRepresentation::Analyze() {
HPhase phase("H_Infer representations", graph_);
// (1) Initialize bit vectors and count real uses. Each phi gets a
// bit-vector of length <number of phis>.
const ZoneList<HPhi*>* phi_list = graph_->phi_list();
int phi_count = phi_list->length();
ZoneList<BitVector*> connected_phis(phi_count, graph_->zone());
for (int i = 0; i < phi_count; ++i) {
phi_list->at(i)->InitRealUses(i);
BitVector* connected_set = new(zone()) BitVector(phi_count, graph_->zone());
connected_set->Add(i);
connected_phis.Add(connected_set, zone());
}
// (2) Do a fixed point iteration to find the set of connected phis. A
// phi is connected to another phi if its value is used either directly or
// indirectly through a transitive closure of the def-use relation.
bool change = true;
while (change) {
change = false;
// We normally have far more "forward edges" than "backward edges",
// so we terminate faster when we walk backwards.
for (int i = phi_count - 1; i >= 0; --i) {
HPhi* phi = phi_list->at(i);
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsPhi()) {
int id = HPhi::cast(use)->phi_id();
if (connected_phis[i]->UnionIsChanged(*connected_phis[id]))
change = true;
}
}
}
}
// Set truncation flags for groups of connected phis. This is a conservative
// approximation; the flag will be properly re-computed after representations
// have been determined.
if (phi_count > 0) {
BitVector* done = new(zone()) BitVector(phi_count, graph_->zone());
for (int i = 0; i < phi_count; ++i) {
if (done->Contains(i)) continue;
// Check if all uses of all connected phis in this group are truncating.
bool all_uses_everywhere_truncating = true;
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
int index = it.Current();
all_uses_everywhere_truncating &=
phi_list->at(index)->CheckFlag(HInstruction::kTruncatingToInt32);
done->Add(index);
}
if (all_uses_everywhere_truncating) {
continue; // Great, nothing to do.
}
// Clear truncation flag of this group of connected phis.
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
int index = it.Current();
phi_list->at(index)->ClearFlag(HInstruction::kTruncatingToInt32);
}
}
}
// Simplify constant phi inputs where possible.
// This step uses kTruncatingToInt32 flags of phis.
for (int i = 0; i < phi_count; ++i) {
phi_list->at(i)->SimplifyConstantInputs();
}
// Use the phi reachability information from step 2 to
// push information about values which can't be converted to integer
// without deoptimization through the phi use-def chains, avoiding
// unnecessary deoptimizations later.
for (int i = 0; i < phi_count; ++i) {
HPhi* phi = phi_list->at(i);
bool cti = phi->AllOperandsConvertibleToInteger();
if (cti) continue;
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
HPhi* phi = phi_list->at(it.Current());
phi->set_is_convertible_to_integer(false);
}
}
// Use the phi reachability information from step 2 to
// sum up the non-phi use counts of all connected phis.
for (int i = 0; i < phi_count; ++i) {
HPhi* phi = phi_list->at(i);
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
int index = it.Current();
HPhi* it_use = phi_list->at(index);
if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice.
}
}
// Initialize work list
for (int i = 0; i < graph_->blocks()->length(); ++i) {
HBasicBlock* block = graph_->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
AddToWorklist(phis->at(j));
}
HInstruction* current = block->first();
while (current != NULL) {
AddToWorklist(current);
current = current->next();
}
}
// Do a fixed point iteration, trying to improve representations
while (!worklist_.is_empty()) {
HValue* current = worklist_.RemoveLast();
in_worklist_.Remove(current->id());
current->InferRepresentation(this);
}
// Lastly: any instruction that we don't have representation information
// for defaults to Tagged.
for (int i = 0; i < graph_->blocks()->length(); ++i) {
HBasicBlock* block = graph_->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
HPhi* phi = phis->at(j);
if (phi->representation().IsNone()) {
phi->ChangeRepresentation(Representation::Tagged());
}
}
for (HInstruction* current = block->first();
current != NULL; current = current->next()) {
if (current->representation().IsNone() &&
current->CheckFlag(HInstruction::kFlexibleRepresentation)) {
current->ChangeRepresentation(Representation::Tagged());
}
}
}
}
void HGraph::MergeRemovableSimulates() {
ZoneList<HSimulate*> mergelist(2, zone());
for (int i = 0; i < blocks()->length(); ++i) {
HBasicBlock* block = blocks()->at(i);
// Make sure the merge list is empty at the start of a block.
ASSERT(mergelist.is_empty());
// Nasty heuristic: Never remove the first simulate in a block. This
// just so happens to have a beneficial effect on register allocation.
bool first = true;
for (HInstruction* current = block->first();
current != NULL; current = current->next()) {
if (current->IsLeaveInlined()) {
// Never fold simulates from inlined environments into simulates
// in the outer environment.
// (Before each HEnterInlined, there is a non-foldable HSimulate
// anyway, so we get the barrier in the other direction for free.)
// Simply remove all accumulated simulates without merging. This
// is safe because simulates after instructions with side effects
// are never added to the merge list.
while (!mergelist.is_empty()) {
mergelist.RemoveLast()->DeleteAndReplaceWith(NULL);
}
continue;
}
// Skip the non-simulates and the first simulate.
if (!current->IsSimulate()) continue;
if (first) {
first = false;
continue;
}
HSimulate* current_simulate = HSimulate::cast(current);
if ((current_simulate->previous()->HasObservableSideEffects() &&
!current_simulate->next()->IsSimulate()) ||
!current_simulate->is_candidate_for_removal()) {
// This simulate is not suitable for folding.
// Fold the ones accumulated so far.
current_simulate->MergeWith(&mergelist);
continue;
} else {
// Accumulate this simulate for folding later on.
mergelist.Add(current_simulate, zone());
}
}
if (!mergelist.is_empty()) {
// Merge the accumulated simulates at the end of the block.
HSimulate* last = mergelist.RemoveLast();
last->MergeWith(&mergelist);
}
}
}
void HGraph::InitializeInferredTypes() {
HPhase phase("H_Inferring types", this);
InitializeInferredTypes(0, this->blocks_.length() - 1);
}
void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) {
for (int i = from_inclusive; i <= to_inclusive; ++i) {
HBasicBlock* block = blocks_[i];
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); j++) {
phis->at(j)->UpdateInferredType();
}
HInstruction* current = block->first();
while (current != NULL) {
current->UpdateInferredType();
current = current->next();
}
if (block->IsLoopHeader()) {
HBasicBlock* last_back_edge =
block->loop_information()->GetLastBackEdge();
InitializeInferredTypes(i + 1, last_back_edge->block_id());
// Skip all blocks already processed by the recursive call.
i = last_back_edge->block_id();
// Update phis of the loop header now after the whole loop body is
// guaranteed to be processed.
ZoneList<HValue*> worklist(block->phis()->length(), zone());
for (int j = 0; j < block->phis()->length(); ++j) {
worklist.Add(block->phis()->at(j), zone());
}
InferTypes(&worklist);
}
}
}
void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) {
HValue* current = value;
while (current != NULL) {
if (visited->Contains(current->id())) return;
// For phis, we must propagate the check to all of its inputs.
if (current->IsPhi()) {
visited->Add(current->id());
HPhi* phi = HPhi::cast(current);
for (int i = 0; i < phi->OperandCount(); ++i) {
PropagateMinusZeroChecks(phi->OperandAt(i), visited);
}
break;
}
// For multiplication, division, and Math.min/max(), we must propagate
// to the left and the right side.
if (current->IsMul()) {
HMul* mul = HMul::cast(current);
mul->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(mul->left(), visited);
PropagateMinusZeroChecks(mul->right(), visited);
} else if (current->IsDiv()) {
HDiv* div = HDiv::cast(current);
div->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(div->left(), visited);
PropagateMinusZeroChecks(div->right(), visited);
} else if (current->IsMathMinMax()) {
HMathMinMax* minmax = HMathMinMax::cast(current);
visited->Add(minmax->id());
PropagateMinusZeroChecks(minmax->left(), visited);
PropagateMinusZeroChecks(minmax->right(), visited);
}
current = current->EnsureAndPropagateNotMinusZero(visited);
}
}
void HGraph::InsertRepresentationChangeForUse(HValue* value,
HValue* use_value,
int use_index,
Representation to) {
// Insert the representation change right before its use. For phi-uses we
// insert at the end of the corresponding predecessor.
HInstruction* next = NULL;
if (use_value->IsPhi()) {
next = use_value->block()->predecessors()->at(use_index)->end();
} else {
next = HInstruction::cast(use_value);
}
// For constants we try to make the representation change at compile
// time. When a representation change is not possible without loss of
// information we treat constants like normal instructions and insert the
// change instructions for them.
HInstruction* new_value = NULL;
bool is_truncating = use_value->CheckFlag(HValue::kTruncatingToInt32);
bool deoptimize_on_undefined =
use_value->CheckFlag(HValue::kDeoptimizeOnUndefined);
if (value->IsConstant()) {
HConstant* constant = HConstant::cast(value);
// Try to create a new copy of the constant with the new representation.
new_value = (is_truncating && to.IsInteger32())
? constant->CopyToTruncatedInt32(zone())
: constant->CopyToRepresentation(to, zone());
}
if (new_value == NULL) {
new_value = new(zone()) HChange(value, to,
is_truncating, deoptimize_on_undefined);
}
new_value->InsertBefore(next);
use_value->SetOperandAt(use_index, new_value);
}
void HGraph::InsertRepresentationChangesForValue(HValue* value) {
Representation r = value->representation();
if (r.IsNone()) return;
if (value->HasNoUses()) return;
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
HValue* use_value = it.value();
int use_index = it.index();
Representation req = use_value->RequiredInputRepresentation(use_index);
if (req.IsNone() || req.Equals(r)) continue;
InsertRepresentationChangeForUse(value, use_value, use_index, req);
}
if (value->HasNoUses()) {
ASSERT(value->IsConstant());
value->DeleteAndReplaceWith(NULL);
}
// The only purpose of a HForceRepresentation is to represent the value
// after the (possible) HChange instruction. We make it disappear.
if (value->IsForceRepresentation()) {
value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value());
}
}
void HGraph::InsertRepresentationChanges() {
HPhase phase("H_Representation changes", this);
// Compute truncation flag for phis: Initially assume that all
// int32-phis allow truncation and iteratively remove the ones that
// are used in an operation that does not allow a truncating
// conversion.
ZoneList<HPhi*> worklist(8, zone());
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (phi->representation().IsInteger32()) {
phi->SetFlag(HValue::kTruncatingToInt32);
}
}
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
// If a Phi is used as a non-truncating int32 or as a double,
// clear its "truncating" flag.
HValue* use = it.value();
Representation input_representation =
use->RequiredInputRepresentation(it.index());
if ((input_representation.IsInteger32() &&
!use->CheckFlag(HValue::kTruncatingToInt32)) ||
input_representation.IsDouble()) {
if (FLAG_trace_representation) {
PrintF("#%d Phi is not truncating because of #%d %s\n",
phi->id(), it.value()->id(), it.value()->Mnemonic());
}
phi->ClearFlag(HValue::kTruncatingToInt32);
worklist.Add(phi, zone());
break;
}
}
}
while (!worklist.is_empty()) {
HPhi* current = worklist.RemoveLast();
for (int i = 0; i < current->OperandCount(); ++i) {
HValue* input = current->OperandAt(i);
if (input->IsPhi() &&
input->representation().IsInteger32() &&
input->CheckFlag(HValue::kTruncatingToInt32)) {
if (FLAG_trace_representation) {
PrintF("#%d Phi is not truncating because of #%d %s\n",
input->id(), current->id(), current->Mnemonic());
}
input->ClearFlag(HValue::kTruncatingToInt32);
worklist.Add(HPhi::cast(input), zone());
}
}
}
for (int i = 0; i < blocks_.length(); ++i) {
// Process phi instructions first.
const ZoneList<HPhi*>* phis = blocks_[i]->phis();
for (int j = 0; j < phis->length(); j++) {
InsertRepresentationChangesForValue(phis->at(j));
}
// Process normal instructions.
HInstruction* current = blocks_[i]->first();
while (current != NULL) {
HInstruction* next = current->next();
InsertRepresentationChangesForValue(current);
current = next;
}
}
}
void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) {
if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return;
phi->SetFlag(HValue::kDeoptimizeOnUndefined);
for (int i = 0; i < phi->OperandCount(); ++i) {
HValue* input = phi->OperandAt(i);
if (input->IsPhi()) {
RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input));
}
}
}
void HGraph::MarkDeoptimizeOnUndefined() {
HPhase phase("H_MarkDeoptimizeOnUndefined", this);
// Compute DeoptimizeOnUndefined flag for phis.
// Any phi that can reach a use with DeoptimizeOnUndefined set must
// have DeoptimizeOnUndefined set. Currently only HCompareIDAndBranch, with
// double input representation, has this flag set.
// The flag is used by HChange tagged->double, which must deoptimize
// if one of its uses has this flag set.
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (phi->representation().IsDouble()) {
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
if (it.value()->CheckFlag(HValue::kDeoptimizeOnUndefined)) {
RecursivelyMarkPhiDeoptimizeOnUndefined(phi);
break;
}
}
}
}
}
// Discover instructions that can be marked with kUint32 flag allowing
// them to produce full range uint32 values.
class Uint32Analysis BASE_EMBEDDED {
public:
explicit Uint32Analysis(Zone* zone) : zone_(zone), phis_(4, zone) { }
void Analyze(HInstruction* current);
void UnmarkUnsafePhis();
private:
bool IsSafeUint32Use(HValue* val, HValue* use);
bool Uint32UsesAreSafe(HValue* uint32val);
bool CheckPhiOperands(HPhi* phi);
void UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist);
Zone* zone_;
ZoneList<HPhi*> phis_;
};
bool Uint32Analysis::IsSafeUint32Use(HValue* val, HValue* use) {
// Operations that operatate on bits are safe.
if (use->IsBitwise() ||
use->IsShl() ||
use->IsSar() ||
use->IsShr() ||
use->IsBitNot()) {
return true;
} else if (use->IsChange() || use->IsSimulate()) {
// Conversions and deoptimization have special support for unt32.
return true;
} else if (use->IsStoreKeyed()) {
HStoreKeyed* store = HStoreKeyed::cast(use);
if (store->is_external()) {
// Storing a value into an external integer array is a bit level
// operation.
if (store->value() == val) {
// Clamping or a conversion to double should have beed inserted.
ASSERT(store->elements_kind() != EXTERNAL_PIXEL_ELEMENTS);
ASSERT(store->elements_kind() != EXTERNAL_FLOAT_ELEMENTS);
ASSERT(store->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS);
return true;
}
}
}
return false;
}
// Iterate over all uses and verify that they are uint32 safe: either don't
// distinguish between int32 and uint32 due to their bitwise nature or
// have special support for uint32 values.
// Encountered phis are optimisitically treated as safe uint32 uses,
// marked with kUint32 flag and collected in the phis_ list. A separate
// path will be performed later by UnmarkUnsafePhis to clear kUint32 from
// phis that are not actually uint32-safe (it requries fix point iteration).
bool Uint32Analysis::Uint32UsesAreSafe(HValue* uint32val) {
bool collect_phi_uses = false;
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsPhi()) {
if (!use->CheckFlag(HInstruction::kUint32)) {
// There is a phi use of this value from a phis that is not yet
// collected in phis_ array. Separate pass is required.
collect_phi_uses = true;
}
// Optimistically treat phis as uint32 safe.
continue;
}
if (!IsSafeUint32Use(uint32val, use)) {
return false;
}
}
if (collect_phi_uses) {
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
// There is a phi use of this value from a phis that is not yet
// collected in phis_ array. Separate pass is required.
if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) {
use->SetFlag(HInstruction::kUint32);
phis_.Add(HPhi::cast(use), zone_);
}
}
}
return true;
}
// Analyze instruction and mark it with kUint32 if all its uses are uint32
// safe.
void Uint32Analysis::Analyze(HInstruction* current) {
if (Uint32UsesAreSafe(current)) current->SetFlag(HInstruction::kUint32);
}
// Check if all operands to the given phi are marked with kUint32 flag.
bool Uint32Analysis::CheckPhiOperands(HPhi* phi) {
if (!phi->CheckFlag(HInstruction::kUint32)) {
// This phi is not uint32 safe. No need to check operands.
return false;
}
for (int j = 0; j < phi->OperandCount(); j++) {
HValue* operand = phi->OperandAt(j);
if (!operand->CheckFlag(HInstruction::kUint32)) {
// Lazyly mark constants that fit into uint32 range with kUint32 flag.
if (operand->IsInteger32Constant() &&
operand->GetInteger32Constant() >= 0) {
operand->SetFlag(HInstruction::kUint32);
continue;
}
// This phi is not safe, some operands are not uint32 values.
return false;
}
}
return true;
}
// Remove kUint32 flag from the phi itself and its operands. If any operand
// was a phi marked with kUint32 place it into a worklist for
// transitive clearing of kUint32 flag.
void Uint32Analysis::UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist) {
phi->ClearFlag(HInstruction::kUint32);
for (int j = 0; j < phi->OperandCount(); j++) {
HValue* operand = phi->OperandAt(j);
if (operand->CheckFlag(HInstruction::kUint32)) {
operand->ClearFlag(HInstruction::kUint32);
if (operand->IsPhi()) {
worklist->Add(HPhi::cast(operand), zone_);
}
}
}
}
void Uint32Analysis::UnmarkUnsafePhis() {
// No phis were collected. Nothing to do.
if (phis_.length() == 0) return;
// Worklist used to transitively clear kUint32 from phis that
// are used as arguments to other phis.
ZoneList<HPhi*> worklist(phis_.length(), zone_);
// Phi can be used as a uint32 value if and only if
// all its operands are uint32 values and all its
// uses are uint32 safe.
// Iterate over collected phis and unmark those that
// are unsafe. When unmarking phi unmark its operands
// and add it to the worklist if it is a phi as well.
// Phis that are still marked as safe are shifted down
// so that all safe phis form a prefix of the phis_ array.
int phi_count = 0;
for (int i = 0; i < phis_.length(); i++) {
HPhi* phi = phis_[i];
if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) {
phis_[phi_count++] = phi;
} else {
UnmarkPhi(phi, &worklist);
}
}
// Now phis array contains only those phis that have safe
// non-phi uses. Start transitively clearing kUint32 flag
// from phi operands of discovered non-safe phies until
// only safe phies are left.
while (!worklist.is_empty()) {
while (!worklist.is_empty()) {
HPhi* phi = worklist.RemoveLast();
UnmarkPhi(phi, &worklist);
}
// Check if any operands to safe phies were unmarked
// turning a safe phi into unsafe. The same value
// can flow into several phis.
int new_phi_count = 0;
for (int i = 0; i < phi_count; i++) {
HPhi* phi = phis_[i];
if (CheckPhiOperands(phi)) {
phis_[new_phi_count++] = phi;
} else {
UnmarkPhi(phi, &worklist);
}
}
phi_count = new_phi_count;
}
}
void HGraph::ComputeSafeUint32Operations() {
if (!FLAG_opt_safe_uint32_operations || uint32_instructions_ == NULL) {
return;
}
Uint32Analysis analysis(zone());
for (int i = 0; i < uint32_instructions_->length(); ++i) {
HInstruction* current = uint32_instructions_->at(i);
if (current->IsLinked() && current->representation().IsInteger32()) {
analysis.Analyze(current);
}
}
// Some phis might have been optimistically marked with kUint32 flag.
// Remove this flag from those phis that are unsafe and propagate
// this information transitively potentially clearing kUint32 flag
// from some non-phi operations that are used as operands to unsafe phis.
analysis.UnmarkUnsafePhis();
}
void HGraph::ComputeMinusZeroChecks() {
BitVector visited(GetMaximumValueID(), zone());
for (int i = 0; i < blocks_.length(); ++i) {
for (HInstruction* current = blocks_[i]->first();
current != NULL;
current = current->next()) {
if (current->IsChange()) {
HChange* change = HChange::cast(current);
// Propagate flags for negative zero checks upwards from conversions
// int32-to-tagged and int32-to-double.
Representation from = change->value()->representation();
ASSERT(from.Equals(change->from()));
if (from.IsInteger32()) {
ASSERT(change->to().IsTagged() || change->to().IsDouble());
ASSERT(visited.IsEmpty());
PropagateMinusZeroChecks(change->value(), &visited);
visited.Clear();
}
}
}
}
}
// Implementation of utility class to encapsulate the translation state for
// a (possibly inlined) function.
FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
CompilationInfo* info,
TypeFeedbackOracle* oracle,
InliningKind inlining_kind)
: owner_(owner),
compilation_info_(info),
oracle_(oracle),
call_context_(NULL),
inlining_kind_(inlining_kind),
function_return_(NULL),
test_context_(NULL),
entry_(NULL),
arguments_elements_(NULL),
outer_(owner->function_state()) {
if (outer_ != NULL) {
// State for an inline function.
if (owner->ast_context()->IsTest()) {
HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
if_true->MarkAsInlineReturnTarget();
if_false->MarkAsInlineReturnTarget();
TestContext* outer_test_context = TestContext::cast(owner->ast_context());
Expression* cond = outer_test_context->condition();
TypeFeedbackOracle* outer_oracle = outer_test_context->oracle();
// The AstContext constructor pushed on the context stack. This newed
// instance is the reason that AstContext can't be BASE_EMBEDDED.
test_context_ =
new TestContext(owner, cond, outer_oracle, if_true, if_false);
} else {
function_return_ = owner->graph()->CreateBasicBlock();
function_return()->MarkAsInlineReturnTarget();
}
// Set this after possibly allocating a new TestContext above.
call_context_ = owner->ast_context();
}
// Push on the state stack.
owner->set_function_state(this);
}
FunctionState::~FunctionState() {
delete test_context_;
owner_->set_function_state(outer_);
}
// Implementation of utility classes to represent an expression's context in
// the AST.
AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
: owner_(owner),
kind_(kind),
outer_(owner->ast_context()),
for_typeof_(false) {
owner->set_ast_context(this); // Push.
#ifdef DEBUG
ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
original_length_ = owner->environment()->length();
#endif
}
AstContext::~AstContext() {
owner_->set_ast_context(outer_); // Pop.
}
EffectContext::~EffectContext() {
ASSERT(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
ValueContext::~ValueContext() {
ASSERT(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ + 1 &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
void EffectContext::ReturnValue(HValue* value) {
// The value is simply ignored.
}
void ValueContext::ReturnValue(HValue* value) {
// The value is tracked in the bailout environment, and communicated
// through the environment as the result of the expression.
if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
owner()->Bailout("bad value context for arguments value");
}
owner()->Push(value);
}
void TestContext::ReturnValue(HValue* value) {
BuildBranch(value);
}
void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
owner()->AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void EffectContext::ReturnControl(HControlInstruction* instr,
BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->current_block()->Finish(instr);
HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
owner()->set_current_block(join);
}
void EffectContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* true_branch = NULL;
HBasicBlock* false_branch = NULL;
continuation->Continue(&true_branch, &false_branch, NULL);
if (!continuation->IsTrueReachable()) {
owner()->set_current_block(false_branch);
} else if (!continuation->IsFalseReachable()) {
owner()->set_current_block(true_branch);
} else {
HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
owner()->set_current_block(join);
}
}
void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout("bad value context for arguments object value");
}
owner()->AddInstruction(instr);
owner()->Push(instr);
if (instr->HasObservableSideEffects()) {
owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout("bad value context for arguments object value");
}
HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, materialize_true);
instr->SetSuccessorAt(1, materialize_false);
owner()->current_block()->Finish(instr);
owner()->set_current_block(materialize_true);
owner()->Push(owner()->graph()->GetConstantTrue());
owner()->set_current_block(materialize_false);
owner()->Push(owner()->graph()->GetConstantFalse());
HBasicBlock* join =
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
owner()->set_current_block(join);
}
void ValueContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* materialize_true = NULL;
HBasicBlock* materialize_false = NULL;
continuation->Continue(&materialize_true, &materialize_false, NULL);
if (continuation->IsTrueReachable()) {
owner()->set_current_block(materialize_true);
owner()->Push(owner()->graph()->GetConstantTrue());
owner()->set_current_block(materialize_true);
}
if (continuation->IsFalseReachable()) {
owner()->set_current_block(materialize_false);
owner()->Push(owner()->graph()->GetConstantFalse());
owner()->set_current_block(materialize_false);
}
if (continuation->TrueAndFalseReachable()) {
HBasicBlock* join =
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
owner()->set_current_block(join);
}
}
void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
HOptimizedGraphBuilder* builder = owner();
builder->AddInstruction(instr);
// We expect a simulate after every expression with side effects, though
// this one isn't actually needed (and wouldn't work if it were targeted).
if (instr->HasObservableSideEffects()) {
builder->Push(instr);
builder->AddSimulate(ast_id, REMOVABLE_SIMULATE);
builder->Pop();
}
BuildBranch(instr);
}
void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->current_block()->Finish(instr);
empty_true->Goto(if_true(), owner()->function_state());
empty_false->Goto(if_false(), owner()->function_state());
owner()->set_current_block(NULL);
}
void TestContext::ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) {
HBasicBlock* true_branch = NULL;
HBasicBlock* false_branch = NULL;
continuation->Continue(&true_branch, &false_branch, NULL);
if (continuation->IsTrueReachable()) {
true_branch->Goto(if_true(), owner()->function_state());
}
if (continuation->IsFalseReachable()) {
false_branch->Goto(if_false(), owner()->function_state());
}
owner()->set_current_block(NULL);
}
void TestContext::BuildBranch(HValue* value) {
// We expect the graph to be in edge-split form: there is no edge that
// connects a branch node to a join node. We conservatively ensure that
// property by always adding an empty block on the outgoing edges of this
// branch.
HOptimizedGraphBuilder* builder = owner();
if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
builder->Bailout("arguments object value in a test context");
}
if (value->IsConstant()) {
HConstant* constant_value = HConstant::cast(value);
if (constant_value->BooleanValue()) {
builder->current_block()->Goto(if_true(), builder->function_state());
} else {
builder->current_block()->Goto(if_false(), builder->function_state());
}
builder->set_current_block(NULL);
return;
}
HBasicBlock* empty_true = builder->graph()->CreateBasicBlock();
HBasicBlock* empty_false = builder->graph()->CreateBasicBlock();
TypeFeedbackId test_id = condition()->test_id();
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
HBranch* test = new(zone()) HBranch(value, empty_true, empty_false, expected);
builder->current_block()->Finish(test);
empty_true->Goto(if_true(), builder->function_state());
empty_false->Goto(if_false(), builder->function_state());
builder->set_current_block(NULL);
}
// HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
#define CHECK_BAILOUT(call) \
do { \
call; \
if (HasStackOverflow()) return; \
} while (false)
#define CHECK_ALIVE(call) \
do { \
call; \
if (HasStackOverflow() || current_block() == NULL) return; \
} while (false)
void HOptimizedGraphBuilder::Bailout(const char* reason) {
info()->set_bailout_reason(reason);
SetStackOverflow();
}
void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
EffectContext for_effect(this);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
ArgumentsAllowedFlag flag) {
ValueContext for_value(this, flag);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
for_value.set_for_typeof(true);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block) {
TestContext for_test(this, expr, oracle(), true_block, false_block);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitArgument(Expression* expr) {
CHECK_ALIVE(VisitForValue(expr));
Push(AddInstruction(new(zone()) HPushArgument(Pop())));
}
void HOptimizedGraphBuilder::VisitArgumentList(
ZoneList<Expression*>* arguments) {
for (int i = 0; i < arguments->length(); i++) {
CHECK_ALIVE(VisitArgument(arguments->at(i)));
}
}
void HOptimizedGraphBuilder::VisitExpressions(
ZoneList<Expression*>* exprs) {
for (int i = 0; i < exprs->length(); ++i) {
CHECK_ALIVE(VisitForValue(exprs->at(i)));
}
}
bool HOptimizedGraphBuilder::BuildGraph() {
if (info()->function()->is_generator()) {
Bailout("function is a generator");
return false;
}
Scope* scope = info()->scope();
if (scope->HasIllegalRedeclaration()) {
Bailout("function with illegal redeclaration");
return false;
}
if (scope->calls_eval()) {
Bailout("function calls eval");
return false;
}
SetUpScope(scope);
// Add an edge to the body entry. This is warty: the graph's start
// environment will be used by the Lithium translation as the initial
// environment on graph entry, but it has now been mutated by the
// Hydrogen translation of the instructions in the start block. This
// environment uses values which have not been defined yet. These
// Hydrogen instructions will then be replayed by the Lithium
// translation, so they cannot have an environment effect. The edge to
// the body's entry block (along with some special logic for the start
// block in HInstruction::InsertAfter) seals the start block from
// getting unwanted instructions inserted.
//
// TODO(kmillikin): Fix this. Stop mutating the initial environment.
// Make the Hydrogen instructions in the initial block into Hydrogen
// values (but not instructions), present in the initial environment and
// not replayed by the Lithium translation.
HEnvironment* initial_env = environment()->CopyWithoutHistory();
HBasicBlock* body_entry = CreateBasicBlock(initial_env);
current_block()->Goto(body_entry);
body_entry->SetJoinId(BailoutId::FunctionEntry());
set_current_block(body_entry);
// Handle implicit declaration of the function name in named function
// expressions before other declarations.
if (scope->is_function_scope() && scope->function() != NULL) {
VisitVariableDeclaration(scope->function());
}
VisitDeclarations(scope->declarations());
AddSimulate(BailoutId::Declarations());
HValue* context = environment()->LookupContext();
AddInstruction(
new(zone()) HStackCheck(context, HStackCheck::kFunctionEntry));
VisitStatements(info()->function()->body());
if (HasStackOverflow()) return false;
if (current_block() != NULL) {
AddReturn(graph()->GetConstantUndefined());
set_current_block(NULL);
}
// If the checksum of the number of type info changes is the same as the
// last time this function was compiled, then this recompile is likely not
// due to missing/inadequate type feedback, but rather too aggressive
// optimization. Disable optimistic LICM in that case.
Handle<Code> unoptimized_code(info()->shared_info()->code());
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
int checksum = type_info->own_type_change_checksum();
int composite_checksum = graph()->update_type_change_checksum(checksum);
graph()->set_use_optimistic_licm(
!type_info->matches_inlined_type_change_checksum(composite_checksum));
type_info->set_inlined_type_change_checksum(composite_checksum);
return true;
}
void HGraph::GlobalValueNumbering() {
// Perform common subexpression elimination and loop-invariant code motion.
if (FLAG_use_gvn) {
HPhase phase("H_Global value numbering", this);
HGlobalValueNumberer gvn(this, info());
bool removed_side_effects = gvn.Analyze();
// Trigger a second analysis pass to further eliminate duplicate values that
// could only be discovered by removing side-effect-generating instructions
// during the first pass.
if (FLAG_smi_only_arrays && removed_side_effects) {
removed_side_effects = gvn.Analyze();
ASSERT(!removed_side_effects);
}
}
}
bool HGraph::Optimize(SmartArrayPointer<char>* bailout_reason) {
*bailout_reason = SmartArrayPointer<char>();
OrderBlocks();
AssignDominators();
// We need to create a HConstant "zero" now so that GVN will fold every
// zero-valued constant in the graph together.
// The constant is needed to make idef-based bounds check work: the pass
// evaluates relations with "zero" and that zero cannot be created after GVN.
GetConstant0();
#ifdef DEBUG
// Do a full verify after building the graph and computing dominators.
Verify(true);
#endif
PropagateDeoptimizingMark();
if (!CheckConstPhiUses()) {
*bailout_reason = SmartArrayPointer<char>(StrDup(
"Unsupported phi use of const variable"));
return false;
}
EliminateRedundantPhis();
if (!CheckArgumentsPhiUses()) {
*bailout_reason = SmartArrayPointer<char>(StrDup(
"Unsupported phi use of arguments"));
return false;
}
if (FLAG_eliminate_dead_phis) EliminateUnreachablePhis();
CollectPhis();
if (has_osr_loop_entry()) {
const ZoneList<HPhi*>* phis = osr_loop_entry()->phis();
for (int j = 0; j < phis->length(); j++) {
HPhi* phi = phis->at(j);
osr_values()->at(phi->merged_index())->set_incoming_value(phi);
}
}
HInferRepresentation rep(this);
rep.Analyze();
// Remove HSimulate instructions that have turned out not to be needed
// after all by folding them into the following HSimulate.
// This must happen after inferring representations.
MergeRemovableSimulates();
MarkDeoptimizeOnUndefined();
InsertRepresentationChanges();
InitializeInferredTypes();
// Must be performed before canonicalization to ensure that Canonicalize
// will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
// zero.
ComputeSafeUint32Operations();
Canonicalize();
GlobalValueNumbering();
if (FLAG_use_range) {
HRangeAnalysis rangeAnalysis(this);
rangeAnalysis.Analyze();
}
ComputeMinusZeroChecks();
// Eliminate redundant stack checks on backwards branches.
HStackCheckEliminator sce(this);
sce.Process();
if (FLAG_idefs) SetupInformativeDefinitions();
if (FLAG_array_bounds_checks_elimination && !FLAG_idefs) {
EliminateRedundantBoundsChecks();
}
if (FLAG_array_index_dehoisting) DehoistSimpleArrayIndexComputations();
if (FLAG_dead_code_elimination) DeadCodeElimination();
RestoreActualValues();
return true;
}
void HGraph::SetupInformativeDefinitionsInBlock(HBasicBlock* block) {
for (int phi_index = 0; phi_index < block->phis()->length(); phi_index++) {
HPhi* phi = block->phis()->at(phi_index);
phi->AddInformativeDefinitions();
phi->SetFlag(HValue::kIDefsProcessingDone);
// We do not support phis that "redefine just one operand".
ASSERT(!phi->IsInformativeDefinition());
}
for (HInstruction* i = block->first(); i != NULL; i = i->next()) {
i->AddInformativeDefinitions();
i->SetFlag(HValue::kIDefsProcessingDone);
i->UpdateRedefinedUsesWhileSettingUpInformativeDefinitions();
}
}
// This method is recursive, so if its stack frame is large it could
// cause a stack overflow.
// To keep the individual stack frames small we do the actual work inside
// SetupInformativeDefinitionsInBlock();
void HGraph::SetupInformativeDefinitionsRecursively(HBasicBlock* block) {
SetupInformativeDefinitionsInBlock(block);
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
SetupInformativeDefinitionsRecursively(block->dominated_blocks()->at(i));
}
for (HInstruction* i = block->first(); i != NULL; i = i->next()) {
if (i->IsBoundsCheck()) {
HBoundsCheck* check = HBoundsCheck::cast(i);
check->ApplyIndexChange();
}
}
}
void HGraph::SetupInformativeDefinitions() {
HPhase phase("H_Setup informative definitions", this);
SetupInformativeDefinitionsRecursively(entry_block());
}
// We try to "factor up" HBoundsCheck instructions towards the root of the
// dominator tree.
// For now we handle checks where the index is like "exp + int32value".
// If in the dominator tree we check "exp + v1" and later (dominated)
// "exp + v2", if v2 <= v1 we can safely remove the second check, and if
// v2 > v1 we can use v2 in the 1st check and again remove the second.
// To do so we keep a dictionary of all checks where the key if the pair
// "exp, length".
// The class BoundsCheckKey represents this key.
class BoundsCheckKey : public ZoneObject {
public:
HValue* IndexBase() const { return index_base_; }
HValue* Length() const { return length_; }
uint32_t Hash() {
return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
}
static BoundsCheckKey* Create(Zone* zone,
HBoundsCheck* check,
int32_t* offset) {
if (!check->index()->representation().IsInteger32()) return NULL;
HValue* index_base = NULL;
HConstant* constant = NULL;
bool is_sub = false;
if (check->index()->IsAdd()) {
HAdd* index = HAdd::cast(check->index());
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
} else if (check->index()->IsSub()) {
HSub* index = HSub::cast(check->index());
is_sub = true;
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
}
if (constant != NULL && constant->HasInteger32Value()) {
*offset = is_sub ? - constant->Integer32Value()
: constant->Integer32Value();
} else {
*offset = 0;
index_base = check->index();
}
return new(zone) BoundsCheckKey(index_base, check->length());
}
private:
BoundsCheckKey(HValue* index_base, HValue* length)
: index_base_(index_base),
length_(length) { }
HValue* index_base_;
HValue* length_;
};
// Data about each HBoundsCheck that can be eliminated or moved.
// It is the "value" in the dictionary indexed by "base-index, length"
// (the key is BoundsCheckKey).
// We scan the code with a dominator tree traversal.
// Traversing the dominator tree we keep a stack (implemented as a singly
// linked list) of "data" for each basic block that contains a relevant check
// with the same key (the dictionary holds the head of the list).
// We also keep all the "data" created for a given basic block in a list, and
// use it to "clean up" the dictionary when backtracking in the dominator tree
// traversal.
// Doing this each dictionary entry always directly points to the check that
// is dominating the code being examined now.
// We also track the current "offset" of the index expression and use it to
// decide if any check is already "covered" (so it can be removed) or not.
class BoundsCheckBbData: public ZoneObject {
public:
BoundsCheckKey* Key() const { return key_; }
int32_t LowerOffset() const { return lower_offset_; }
int32_t UpperOffset() const { return upper_offset_; }
HBasicBlock* BasicBlock() const { return basic_block_; }
HBoundsCheck* LowerCheck() const { return lower_check_; }
HBoundsCheck* UpperCheck() const { return upper_check_; }
BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
bool OffsetIsCovered(int32_t offset) const {
return offset >= LowerOffset() && offset <= UpperOffset();
}
bool HasSingleCheck() { return lower_check_ == upper_check_; }
// The goal of this method is to modify either upper_offset_ or
// lower_offset_ so that also new_offset is covered (the covered
// range grows).
//
// The precondition is that new_check follows UpperCheck() and
// LowerCheck() in the same basic block, and that new_offset is not
// covered (otherwise we could simply remove new_check).
//
// If HasSingleCheck() is true then new_check is added as "second check"
// (either upper or lower; note that HasSingleCheck() becomes false).
// Otherwise one of the current checks is modified so that it also covers
// new_offset, and new_check is removed.
//
// If the check cannot be modified because the context is unknown it
// returns false, otherwise it returns true.
bool CoverCheck(HBoundsCheck* new_check,
int32_t new_offset) {
ASSERT(new_check->index()->representation().IsInteger32());
bool keep_new_check = false;
if (new_offset > upper_offset_) {
upper_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
upper_check_ = new_check;
} else {
bool result = BuildOffsetAdd(upper_check_,
&added_upper_index_,
&added_upper_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
upper_check_->ReplaceAllUsesWith(upper_check_->index());
upper_check_->SetOperandAt(0, added_upper_index_);
}
} else if (new_offset < lower_offset_) {
lower_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
lower_check_ = new_check;
} else {
bool result = BuildOffsetAdd(lower_check_,
&added_lower_index_,
&added_lower_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
lower_check_->ReplaceAllUsesWith(lower_check_->index());
lower_check_->SetOperandAt(0, added_lower_index_);
}
} else {
ASSERT(false);
}
if (!keep_new_check) {
new_check->DeleteAndReplaceWith(new_check->ActualValue());
}
return true;
}
void RemoveZeroOperations() {
RemoveZeroAdd(&added_lower_index_, &added_lower_offset_);
RemoveZeroAdd(&added_upper_index_, &added_upper_offset_);
}
BoundsCheckBbData(BoundsCheckKey* key,
int32_t lower_offset,
int32_t upper_offset,
HBasicBlock* bb,
HBoundsCheck* lower_check,
HBoundsCheck* upper_check,
BoundsCheckBbData* next_in_bb,
BoundsCheckBbData* father_in_dt)
: key_(key),
lower_offset_(lower_offset),
upper_offset_(upper_offset),
basic_block_(bb),
lower_check_(lower_check),
upper_check_(upper_check),
added_lower_index_(NULL),
added_lower_offset_(NULL),
added_upper_index_(NULL),
added_upper_offset_(NULL),
next_in_bb_(next_in_bb),
father_in_dt_(father_in_dt) { }
private:
BoundsCheckKey* key_;
int32_t lower_offset_;
int32_t upper_offset_;
HBasicBlock* basic_block_;
HBoundsCheck* lower_check_;
HBoundsCheck* upper_check_;
HInstruction* added_lower_index_;
HConstant* added_lower_offset_;
HInstruction* added_upper_index_;
HConstant* added_upper_offset_;
BoundsCheckBbData* next_in_bb_;
BoundsCheckBbData* father_in_dt_;
// Given an existing add instruction and a bounds check it tries to
// find the current context (either of the add or of the check index).
HValue* IndexContext(HInstruction* add, HBoundsCheck* check) {
if (add != NULL && add->IsAdd()) {
return HAdd::cast(add)->context();
}
if (check->index()->IsBinaryOperation()) {
return HBinaryOperation::cast(check->index())->context();
}
return NULL;
}
// This function returns false if it cannot build the add because the
// current context cannot be determined.
bool BuildOffsetAdd(HBoundsCheck* check,
HInstruction** add,
HConstant** constant,
HValue* original_value,
Representation representation,
int32_t new_offset) {
HValue* index_context = IndexContext(*add, check);
if (index_context == NULL) return false;
HConstant* new_constant = new(BasicBlock()->zone())
HConstant(new_offset, Representation::Integer32());
if (*add == NULL) {
new_constant->InsertBefore(check);
(*add) = HAdd::New(
BasicBlock()->zone(), index_context, original_value, new_constant);
(*add)->AssumeRepresentation(representation);
(*add)->InsertBefore(check);
} else {
new_constant->InsertBefore(*add);
(*constant)->DeleteAndReplaceWith(new_constant);
}
*constant = new_constant;
return true;
}
void RemoveZeroAdd(HInstruction** add, HConstant** constant) {
if (*add != NULL && (*add)->IsAdd() && (*constant)->Integer32Value() == 0) {
(*add)->DeleteAndReplaceWith(HAdd::cast(*add)->left());
(*constant)->DeleteAndReplaceWith(NULL);
}
}
};
static bool BoundsCheckKeyMatch(void* key1, void* key2) {
BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
}
class BoundsCheckTable : private ZoneHashMap {
public:
BoundsCheckBbData** LookupOrInsert(BoundsCheckKey* key, Zone* zone) {
return reinterpret_cast<BoundsCheckBbData**>(
&(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
}
void Insert(BoundsCheckKey* key, BoundsCheckBbData* data, Zone* zone) {
Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
}
void Delete(BoundsCheckKey* key) {
Remove(key, key->Hash());
}
explicit BoundsCheckTable(Zone* zone)
: ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)) { }
};
// Eliminates checks in bb and recursively in the dominated blocks.
// Also replace the results of check instructions with the original value, if
// the result is used. This is safe now, since we don't do code motion after
// this point. It enables better register allocation since the value produced
// by check instructions is really a copy of the original value.
void HGraph::EliminateRedundantBoundsChecks(HBasicBlock* bb,
BoundsCheckTable* table) {
BoundsCheckBbData* bb_data_list = NULL;
for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
if (!i->IsBoundsCheck()) continue;
HBoundsCheck* check = HBoundsCheck::cast(i);
int32_t offset;
BoundsCheckKey* key =
BoundsCheckKey::Create(zone(), check, &offset);
if (key == NULL) continue;
BoundsCheckBbData** data_p = table->LookupOrInsert(key, zone());
BoundsCheckBbData* data = *data_p;
if (data == NULL) {
bb_data_list = new(zone()) BoundsCheckBbData(key,
offset,
offset,
bb,
check,
check,
bb_data_list,
NULL);
*data_p = bb_data_list;
} else if (data->OffsetIsCovered(offset)) {
check->DeleteAndReplaceWith(check->ActualValue());
} else if (data->BasicBlock() != bb ||
!data->CoverCheck(check, offset)) {
// If the check is in the current BB we try to modify it by calling
// "CoverCheck", but if also that fails we record the current offsets
// in a new data instance because from now on they are covered.
int32_t new_lower_offset = offset < data->LowerOffset()
? offset
: data->LowerOffset();
int32_t new_upper_offset = offset > data->UpperOffset()
? offset
: data->UpperOffset();
bb_data_list = new(zone()) BoundsCheckBbData(key,
new_lower_offset,
new_upper_offset,
bb,
data->LowerCheck(),
data->UpperCheck(),
bb_data_list,
data);
table->Insert(key, bb_data_list, zone());
}
}
for (int i = 0; i < bb->dominated_blocks()->length(); ++i) {
EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i), table);
}
for (BoundsCheckBbData* data = bb_data_list;
data != NULL;
data = data->NextInBasicBlock()) {
data->RemoveZeroOperations();
if (data->FatherInDominatorTree()) {
table->Insert(data->Key(), data->FatherInDominatorTree(), zone());
} else {
table->Delete(data->Key());
}
}
}
void HGraph::EliminateRedundantBoundsChecks() {
HPhase phase("H_Eliminate bounds checks", this);
BoundsCheckTable checks_table(zone());
EliminateRedundantBoundsChecks(entry_block(), &checks_table);
}
static void DehoistArrayIndex(ArrayInstructionInterface* array_operation) {
HValue* index = array_operation->GetKey()->ActualValue();
if (!index->representation().IsInteger32()) return;
HConstant* constant;
HValue* subexpression;
int32_t sign;
if (index->IsAdd()) {
sign = 1;
HAdd* add = HAdd::cast(index);
if (add->left()->IsConstant()) {
subexpression = add->right();
constant = HConstant::cast(add->left());
} else if (add->right()->IsConstant()) {
subexpression = add->left();
constant = HConstant::cast(add->right());
} else {
return;
}
} else if (index->IsSub()) {
sign = -1;
HSub* sub = HSub::cast(index);
if (sub->left()->IsConstant()) {
subexpression = sub->right();
constant = HConstant::cast(sub->left());
} else if (sub->right()->IsConstant()) {
subexpression = sub->left();
constant = HConstant::cast(sub->right());
} return;
} else {
return;
}
if (!constant->HasInteger32Value()) return;
int32_t value = constant->Integer32Value() * sign;
// We limit offset values to 30 bits because we want to avoid the risk of
// overflows when the offset is added to the object header size.
if (value >= 1 << 30 || value < 0) return;
array_operation->SetKey(subexpression);
if (index->HasNoUses()) {
index->DeleteAndReplaceWith(NULL);
}
ASSERT(value >= 0);
array_operation->SetIndexOffset(static_cast<uint32_t>(value));
array_operation->SetDehoisted(true);
}
void HGraph::DehoistSimpleArrayIndexComputations() {
HPhase phase("H_Dehoist index computations", this);
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstruction* instr = blocks()->at(i)->first();
instr != NULL;
instr = instr->next()) {
ArrayInstructionInterface* array_instruction = NULL;
if (instr->IsLoadKeyed()) {
HLoadKeyed* op = HLoadKeyed::cast(instr);
array_instruction = static_cast<ArrayInstructionInterface*>(op);
} else if (instr->IsStoreKeyed()) {
HStoreKeyed* op = HStoreKeyed::cast(instr);
array_instruction = static_cast<ArrayInstructionInterface*>(op);
} else {
continue;
}
DehoistArrayIndex(array_instruction);
}
}
}
void HGraph::DeadCodeElimination() {
HPhase phase("H_Dead code elimination", this);
ZoneList<HInstruction*> worklist(blocks_.length(), zone());
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstruction* instr = blocks()->at(i)->first();
instr != NULL;
instr = instr->next()) {
if (instr->IsDead()) worklist.Add(instr, zone());
}
}
while (!worklist.is_empty()) {
HInstruction* instr = worklist.RemoveLast();
// This happens when an instruction is used multiple times as operand. That
// in turn could happen through GVN.
if (!instr->IsLinked()) continue;
if (FLAG_trace_dead_code_elimination) {
HeapStringAllocator allocator;
StringStream stream(&allocator);
instr->PrintNameTo(&stream);
stream.Add(" = ");
instr->PrintTo(&stream);
PrintF("[removing dead instruction %s]\n", *stream.ToCString());
}
instr->DeleteAndReplaceWith(NULL);
for (int i = 0; i < instr->OperandCount(); ++i) {
HValue* operand = instr->OperandAt(i);
if (operand->IsDead()) worklist.Add(HInstruction::cast(operand), zone());
}
}
}
void HGraph::RestoreActualValues() {
HPhase phase("H_Restore actual values", this);
for (int block_index = 0; block_index < blocks()->length(); block_index++) {
HBasicBlock* block = blocks()->at(block_index);
#ifdef DEBUG
for (int i = 0; i < block->phis()->length(); i++) {
HPhi* phi = block->phis()->at(i);
ASSERT(phi->ActualValue() == phi);
}
#endif
for (HInstruction* instruction = block->first();
instruction != NULL;
instruction = instruction->next()) {
if (instruction->ActualValue() != instruction) {
ASSERT(instruction->IsInformativeDefinition());
if (instruction->IsPurelyInformativeDefinition()) {
instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
} else {
instruction->ReplaceAllUsesWith(instruction->ActualValue());
}
}
}
}
}
void HOptimizedGraphBuilder::AddPhi(HPhi* instr) {
ASSERT(current_block() != NULL);
current_block()->AddPhi(instr);
}
void HOptimizedGraphBuilder::PushAndAdd(HInstruction* instr) {
Push(instr);
AddInstruction(instr);
}
void HOptimizedGraphBuilder::AddSoftDeoptimize() {
if (FLAG_always_opt) return;
if (current_block()->IsDeoptimizing()) return;
AddInstruction(new(zone()) HSoftDeoptimize());
current_block()->MarkAsDeoptimizing();
graph()->set_has_soft_deoptimize(true);
}
template <class Instruction>
HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
int count = call->argument_count();
ZoneList<HValue*> arguments(count, zone());
for (int i = 0; i < count; ++i) {
arguments.Add(Pop(), zone());
}
while (!arguments.is_empty()) {
AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast()));
}
return call;
}
void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
HConstant* undefined_constant = new(zone()) HConstant(
isolate()->factory()->undefined_value(), Representation::Tagged());
AddInstruction(undefined_constant);
graph()->set_undefined_constant(undefined_constant);
HArgumentsObject* object = new(zone()) HArgumentsObject;
AddInstruction(object);
graph()->SetArgumentsObject(object);
// Set the initial values of parameters including "this". "This" has
// parameter index 0.
ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
for (int i = 0; i < environment()->parameter_count(); ++i) {
HInstruction* parameter = AddInstruction(new(zone()) HParameter(i));
environment()->Bind(i, parameter);
}
// First special is HContext.
HInstruction* context = AddInstruction(new(zone()) HContext);
environment()->BindContext(context);
// Initialize specials and locals to undefined.
for (int i = environment()->parameter_count() + 1;
i < environment()->length();
++i) {
environment()->Bind(i, undefined_constant);
}
// Handle the arguments and arguments shadow variables specially (they do
// not have declarations).
if (scope->arguments() != NULL) {
if (!scope->arguments()->IsStackAllocated()) {
return Bailout("context-allocated arguments");
}
environment()->Bind(scope->arguments(),
graph()->GetArgumentsObject());
}
}
void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
CHECK_ALIVE(Visit(statements->at(i)));
}
}
void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->scope() != NULL) {
return Bailout("ScopedBlock");
}
BreakAndContinueInfo break_info(stmt);
{ BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitStatements(stmt->statements()));
}
HBasicBlock* break_block = break_info.break_block();
if (break_block != NULL) {
if (current_block() != NULL) current_block()->Goto(break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
void HOptimizedGraphBuilder::VisitExpressionStatement(
ExpressionStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
VisitForEffect(stmt->expression());
}
void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
}
void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->condition()->ToBooleanIsTrue()) {
AddSimulate(stmt->ThenId());
Visit(stmt->then_statement());
} else if (stmt->condition()->ToBooleanIsFalse()) {
AddSimulate(stmt->ElseId());
Visit(stmt->else_statement());
} else {
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(stmt->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(stmt->then_statement()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(stmt->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(stmt->else_statement()));
cond_false = current_block();
} else {
cond_false = NULL;
}
HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
set_current_block(join);
}
}
HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
BreakableStatement* stmt,
BreakType type,
int* drop_extra) {
*drop_extra = 0;
BreakAndContinueScope* current = this;
while (current != NULL && current->info()->target() != stmt) {
*drop_extra += current->info()->drop_extra();
current = current->next();
}
ASSERT(current != NULL); // Always found (unless stack is malformed).
if (type == BREAK) {
*drop_extra += current->info()->drop_extra();
}
HBasicBlock* block = NULL;
switch (type) {
case BREAK:
block = current->info()->break_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_break_block(block);
}
break;
case CONTINUE:
block = current->info()->continue_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_continue_block(block);
}
break;
}
return block;
}
void HOptimizedGraphBuilder::VisitContinueStatement(
ContinueStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
int drop_extra = 0;
HBasicBlock* continue_block = break_scope()->Get(stmt->target(),
CONTINUE,
&drop_extra);
Drop(drop_extra);
current_block()->Goto(continue_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
int drop_extra = 0;
HBasicBlock* break_block = break_scope()->Get(stmt->target(),
BREAK,
&drop_extra);
Drop(drop_extra);
current_block()->Goto(break_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
FunctionState* state = function_state();
AstContext* context = call_context();
if (context == NULL) {
// Not an inlined return, so an actual one.
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* result = environment()->Pop();
AddReturn(result);
} else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Return from an inlined construct call. In a test context the return value
// will always evaluate to true, in a value context the return value needs
// to be a JSObject.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(test->if_true(), state);
} else if (context->IsEffect()) {
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* return_value = Pop();
HValue* receiver = environment()->arguments_environment()->Lookup(0);
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(return_value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_spec_object);
typecheck->SetSuccessorAt(1, not_spec_object);
current_block()->Finish(typecheck);
if_spec_object->AddLeaveInlined(return_value, state);
not_spec_object->AddLeaveInlined(receiver, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Return from an inlined setter call. The returned value is never used, the
// value of an assignment is always the value of the RHS of the assignment.
CHECK_ALIVE(VisitForEffect(stmt->expression()));
if (context->IsTest()) {
HValue* rhs = environment()->arguments_environment()->Lookup(1);
context->ReturnValue(rhs);
} else if (context->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
HValue* rhs = environment()->arguments_environment()->Lookup(1);
current_block()->AddLeaveInlined(rhs, state);
}
} else {
// Return from a normal inlined function. Visit the subexpression in the
// expression context of the call.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
VisitForControl(stmt->expression(), test->if_true(), test->if_false());
} else if (context->IsEffect()) {
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
current_block()->AddLeaveInlined(Pop(), state);
}
}
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("WithStatement");
}
void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
// We only optimize switch statements with smi-literal smi comparisons,
// with a bounded number of clauses.
const int kCaseClauseLimit = 128;
ZoneList<CaseClause*>* clauses = stmt->cases();
int clause_count = clauses->length();
if (clause_count > kCaseClauseLimit) {
return Bailout("SwitchStatement: too many clauses");
}
HValue* context = environment()->LookupContext();
CHECK_ALIVE(VisitForValue(stmt->tag()));
AddSimulate(stmt->EntryId());
HValue* tag_value = Pop();
HBasicBlock* first_test_block = current_block();
SwitchType switch_type = UNKNOWN_SWITCH;
// 1. Extract clause type
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) continue;
if (switch_type == UNKNOWN_SWITCH) {
if (clause->label()->IsSmiLiteral()) {
switch_type = SMI_SWITCH;
} else if (clause->label()->IsStringLiteral()) {
switch_type = STRING_SWITCH;
} else {
return Bailout("SwitchStatement: non-literal switch label");
}
} else if ((switch_type == STRING_SWITCH &&
!clause->label()->IsStringLiteral()) ||
(switch_type == SMI_SWITCH &&
!clause->label()->IsSmiLiteral())) {
return Bailout("SwitchStatement: mixed label types are not supported");
}
}
HUnaryControlInstruction* string_check = NULL;
HBasicBlock* not_string_block = NULL;
// Test switch's tag value if all clauses are string literals
if (switch_type == STRING_SWITCH) {
string_check = new(zone()) HIsStringAndBranch(tag_value);
first_test_block = graph()->CreateBasicBlock();
not_string_block = graph()->CreateBasicBlock();
string_check->SetSuccessorAt(0, first_test_block);
string_check->SetSuccessorAt(1, not_string_block);
current_block()->Finish(string_check);
set_current_block(first_test_block);
}
// 2. Build all the tests, with dangling true branches
BailoutId default_id = BailoutId::None();
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) {
default_id = clause->EntryId();
continue;
}
if (switch_type == SMI_SWITCH) {
clause->RecordTypeFeedback(oracle());
}
// Generate a compare and branch.
CHECK_ALIVE(VisitForValue(clause->label()));
HValue* label_value = Pop();
HBasicBlock* next_test_block = graph()->CreateBasicBlock();
HBasicBlock* body_block = graph()->CreateBasicBlock();
HControlInstruction* compare;
if (switch_type == SMI_SWITCH) {
if (!clause->IsSmiCompare()) {
// Finish with deoptimize and add uses of enviroment values to
// account for invisible uses.
current_block()->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
set_current_block(NULL);
break;
}
HCompareIDAndBranch* compare_ =
new(zone()) HCompareIDAndBranch(tag_value,
label_value,
Token::EQ_STRICT);
compare_->set_observed_input_representation(
Representation::Integer32(), Representation::Integer32());
compare = compare_;
} else {
compare = new(zone()) HStringCompareAndBranch(context, tag_value,
label_value,
Token::EQ_STRICT);
}
compare->SetSuccessorAt(0, body_block);
compare->SetSuccessorAt(1, next_test_block);
current_block()->Finish(compare);
set_current_block(next_test_block);
}
// Save the current block to use for the default or to join with the
// exit. This block is NULL if we deoptimized.
HBasicBlock* last_block = current_block();
if (not_string_block != NULL) {
BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId();
last_block = CreateJoin(last_block, not_string_block, join_id);
}
// 3. Loop over the clauses and the linked list of tests in lockstep,
// translating the clause bodies.
HBasicBlock* curr_test_block = first_test_block;
HBasicBlock* fall_through_block = NULL;
BreakAndContinueInfo break_info(stmt);
{ BreakAndContinueScope push(&break_info, this);
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
// Identify the block where normal (non-fall-through) control flow
// goes to.
HBasicBlock* normal_block = NULL;
if (clause->is_default()) {
if (last_block != NULL) {
normal_block = last_block;
last_block = NULL; // Cleared to indicate we've handled it.
}
} else if (!curr_test_block->end()->IsDeoptimize()) {
normal_block = curr_test_block->end()->FirstSuccessor();
curr_test_block = curr_test_block->end()->SecondSuccessor();
}
// Identify a block to emit the body into.
if (normal_block == NULL) {
if (fall_through_block == NULL) {
// (a) Unreachable.
if (clause->is_default()) {
continue; // Might still be reachable clause bodies.
} else {
break;
}
} else {
// (b) Reachable only as fall through.
set_current_block(fall_through_block);
}
} else if (fall_through_block == NULL) {
// (c) Reachable only normally.
set_current_block(normal_block);
} else {
// (d) Reachable both ways.
HBasicBlock* join = CreateJoin(fall_through_block,
normal_block,
clause->EntryId());
set_current_block(join);
}
CHECK_BAILOUT(VisitStatements(clause->statements()));
fall_through_block = current_block();
}
}
// Create an up-to-3-way join. Use the break block if it exists since
// it's already a join block.
HBasicBlock* break_block = break_info.break_block();
if (break_block == NULL) {
set_current_block(CreateJoin(fall_through_block,
last_block,
stmt->ExitId()));
} else {
if (fall_through_block != NULL) fall_through_block->Goto(break_block);
if (last_block != NULL) last_block->Goto(break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
bool HOptimizedGraphBuilder::HasOsrEntryAt(IterationStatement* statement) {
return statement->OsrEntryId() == info()->osr_ast_id();
}
bool HOptimizedGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) {
if (!HasOsrEntryAt(statement)) return false;
HBasicBlock* non_osr_entry = graph()->CreateBasicBlock();
HBasicBlock* osr_entry = graph()->CreateBasicBlock();
HValue* true_value = graph()->GetConstantTrue();
HBranch* test = new(zone()) HBranch(true_value, non_osr_entry, osr_entry);
current_block()->Finish(test);
HBasicBlock* loop_predecessor = graph()->CreateBasicBlock();
non_osr_entry->Goto(loop_predecessor);
set_current_block(osr_entry);
osr_entry->set_osr_entry();
BailoutId osr_entry_id = statement->OsrEntryId();
int first_expression_index = environment()->first_expression_index();
int length = environment()->length();
ZoneList<HUnknownOSRValue*>* osr_values =
new(zone()) ZoneList<HUnknownOSRValue*>(length, zone());
for (int i = 0; i < first_expression_index; ++i) {
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
AddInstruction(osr_value);
environment()->Bind(i, osr_value);
osr_values->Add(osr_value, zone());
}
if (first_expression_index != length) {
environment()->Drop(length - first_expression_index);
for (int i = first_expression_index; i < length; ++i) {
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
AddInstruction(osr_value);
environment()->Push(osr_value);
osr_values->Add(osr_value, zone());
}
}
graph()->set_osr_values(osr_values);
AddSimulate(osr_entry_id);
AddInstruction(new(zone()) HOsrEntry(osr_entry_id));
HContext* context = new(zone()) HContext;
AddInstruction(context);
environment()->BindContext(context);
current_block()->Goto(loop_predecessor);
loop_predecessor->SetJoinId(statement->EntryId());
set_current_block(loop_predecessor);
return true;
}
void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
HBasicBlock* loop_entry,
BreakAndContinueInfo* break_info) {
BreakAndContinueScope push(break_info, this);
AddSimulate(stmt->StackCheckId());
HValue* context = environment()->LookupContext();
HStackCheck* stack_check =
new(zone()) HStackCheck(context, HStackCheck::kBackwardsBranch);
AddInstruction(stack_check);
ASSERT(loop_entry->IsLoopHeader());
loop_entry->loop_information()->set_stack_check(stack_check);
CHECK_BAILOUT(Visit(stmt->body()));
}
void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
BreakAndContinueInfo break_info(stmt);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_successor = NULL;
if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
set_current_block(body_exit);
// The block for a true condition, the actual predecessor block of the
// back edge.
body_exit = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
if (body_exit->HasPredecessor()) {
body_exit->SetJoinId(stmt->BackEdgeId());
} else {
body_exit = NULL;
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
// If the condition is constant true, do not generate a branch.
HBasicBlock* loop_successor = NULL;
if (!stmt->cond()->ToBooleanIsTrue()) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt);
if (current_block() != NULL) {
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->init() != NULL) {
CHECK_ALIVE(Visit(stmt->init()));
}
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
HBasicBlock* loop_successor = NULL;
if (stmt->cond() != NULL) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt);
if (current_block() != NULL) {
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (stmt->next() != NULL && body_exit != NULL) {
set_current_block(body_exit);
CHECK_BAILOUT(Visit(stmt->next()));
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (!FLAG_optimize_for_in) {
return Bailout("ForInStatement optimization is disabled");
}
if (!oracle()->IsForInFastCase(stmt)) {
return Bailout("ForInStatement is not fast case");
}
if (!stmt->each()->IsVariableProxy() ||
!stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
return Bailout("ForInStatement with non-local each variable");
}
Variable* each_var = stmt->each()->AsVariableProxy()->var();
CHECK_ALIVE(VisitForValue(stmt->enumerable()));
HValue* enumerable = Top(); // Leave enumerable at the top.
HInstruction* map = AddInstruction(new(zone()) HForInPrepareMap(
environment()->LookupContext(), enumerable));
AddSimulate(stmt->PrepareId());
HInstruction* array = AddInstruction(
new(zone()) HForInCacheArray(
enumerable,
map,
DescriptorArray::kEnumCacheBridgeCacheIndex));
HInstruction* enum_length = AddInstruction(new(zone()) HMapEnumLength(map));
HInstruction* start_index = AddInstruction(new(zone()) HConstant(
Handle<Object>(Smi::FromInt(0), isolate()), Representation::Integer32()));
Push(map);
Push(array);
Push(enum_length);
Push(start_index);
HInstruction* index_cache = AddInstruction(
new(zone()) HForInCacheArray(
enumerable,
map,
DescriptorArray::kEnumCacheBridgeIndicesCacheIndex));
HForInCacheArray::cast(array)->set_index_cache(
HForInCacheArray::cast(index_cache));
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
HValue* index = environment()->ExpressionStackAt(0);
HValue* limit = environment()->ExpressionStackAt(1);
// Check that we still have more keys.
HCompareIDAndBranch* compare_index =
new(zone()) HCompareIDAndBranch(index, limit, Token::LT);
compare_index->set_observed_input_representation(
Representation::Integer32(), Representation::Integer32());
HBasicBlock* loop_body = graph()->CreateBasicBlock();
HBasicBlock* loop_successor = graph()->CreateBasicBlock();
compare_index->SetSuccessorAt(0, loop_body);
compare_index->SetSuccessorAt(1, loop_successor);
current_block()->Finish(compare_index);
set_current_block(loop_successor);
Drop(5);
set_current_block(loop_body);
HValue* key = AddInstruction(
new(zone()) HLoadKeyed(
environment()->ExpressionStackAt(2), // Enum cache.
environment()->ExpressionStackAt(0), // Iteration index.
environment()->ExpressionStackAt(0),
FAST_ELEMENTS));
// Check if the expected map still matches that of the enumerable.
// If not just deoptimize.
AddInstruction(new(zone()) HCheckMapValue(
environment()->ExpressionStackAt(4),
environment()->ExpressionStackAt(3)));
Bind(each_var, key);
BreakAndContinueInfo break_info(stmt, 5);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (body_exit != NULL) {
set_current_block(body_exit);
HValue* current_index = Pop();
HInstruction* new_index = HAdd::New(zone(),
environment()->LookupContext(),
current_index,
graph()->GetConstant1());
new_index->AssumeRepresentation(Representation::Integer32());
PushAndAdd(new_index);
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("TryCatchStatement");
}
void HOptimizedGraphBuilder::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("TryFinallyStatement");
}
void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("DebuggerStatement");
}
static Handle<SharedFunctionInfo> SearchSharedFunctionInfo(
Code* unoptimized_code, FunctionLiteral* expr) {
int start_position = expr->start_position();
RelocIterator it(unoptimized_code);
for (;!it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
Object* obj = rinfo->target_object();
if (obj->IsSharedFunctionInfo()) {
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
if (shared->start_position() == start_position) {
return Handle<SharedFunctionInfo>(shared);
}
}
}
return Handle<SharedFunctionInfo>();
}
void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<SharedFunctionInfo> shared_info =
SearchSharedFunctionInfo(info()->shared_info()->code(),
expr);
if (shared_info.is_null()) {
shared_info = Compiler::BuildFunctionInfo(expr, info()->script());
}
// We also have a stack overflow if the recursive compilation did.
if (HasStackOverflow()) return;
HValue* context = environment()->LookupContext();
HFunctionLiteral* instr =
new(zone()) HFunctionLiteral(context, shared_info, expr->pretenure());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("SharedFunctionInfoLiteral");
}
void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
// Visit the true and false subexpressions in the same AST context as the
// whole expression.
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(expr->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(expr->then_expression()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(expr->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(expr->else_expression()));
cond_false = current_block();
} else {
cond_false = NULL;
}
if (!ast_context()->IsTest()) {
HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
set_current_block(join);
if (join != NULL && !ast_context()->IsEffect()) {
return ast_context()->ReturnValue(Pop());
}
}
}
HOptimizedGraphBuilder::GlobalPropertyAccess
HOptimizedGraphBuilder::LookupGlobalProperty(
Variable* var, LookupResult* lookup, bool is_store) {
if (var->is_this() || !info()->has_global_object()) {
return kUseGeneric;
}
Handle<GlobalObject> global(info()->global_object());
global->Lookup(*var->name(), lookup);
if (!lookup->IsNormal() ||
(is_store && lookup->IsReadOnly()) ||
lookup->holder() != *global) {
return kUseGeneric;
}
return kUseCell;
}
HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
ASSERT(var->IsContextSlot());
HValue* context = environment()->LookupContext();
int length = info()->scope()->ContextChainLength(var->scope());
while (length-- > 0) {
HInstruction* context_instruction = new(zone()) HOuterContext(context);
AddInstruction(context_instruction);
context = context_instruction;
}
return context;
}
void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Variable* variable = expr->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
if (IsLexicalVariableMode(variable->mode())) {
// TODO(rossberg): should this be an ASSERT?
return Bailout("reference to global lexical variable");
}
// Handle known global constants like 'undefined' specially to avoid a
// load from a global cell for them.
Handle<Object> constant_value =
isolate()->factory()->GlobalConstantFor(variable->name());
if (!constant_value.is_null()) {
HConstant* instr =
new(zone()) HConstant(constant_value, Representation::Tagged());
return ast_context()->ReturnInstruction(instr, expr->id());
}
LookupResult lookup(isolate());
GlobalPropertyAccess type =
LookupGlobalProperty(variable, &lookup, false);
if (type == kUseCell &&
info()->global_object()->IsAccessCheckNeeded()) {
type = kUseGeneric;
}
if (type == kUseCell) {
Handle<GlobalObject> global(info()->global_object());
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
HLoadGlobalCell* instr =
new(zone()) HLoadGlobalCell(cell, lookup.GetPropertyDetails());
return ast_context()->ReturnInstruction(instr, expr->id());
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HLoadGlobalGeneric* instr =
new(zone()) HLoadGlobalGeneric(context,
global_object,
variable->name(),
ast_context()->is_for_typeof());
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
}
case Variable::PARAMETER:
case Variable::LOCAL: {
HValue* value = environment()->Lookup(variable);
if (value == graph()->GetConstantHole()) {
ASSERT(IsDeclaredVariableMode(variable->mode()) &&
variable->mode() != VAR);
return Bailout("reference to uninitialized variable");
}
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
HValue* context = BuildContextChainWalk(variable);
HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
return ast_context()->ReturnInstruction(instr, expr->id());
}
case Variable::LOOKUP:
return Bailout("reference to a variable which requires dynamic lookup");
}
}
void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HConstant* instr =
new(zone()) HConstant(expr->handle(), Representation::None());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
Handle<FixedArray> literals(closure->literals());
HValue* context = environment()->LookupContext();
HRegExpLiteral* instr = new(zone()) HRegExpLiteral(context,
literals,
expr->pattern(),
expr->flags(),
expr->literal_index());
return ast_context()->ReturnInstruction(instr, expr->id());
}
static void LookupInPrototypes(Handle<Map> map,
Handle<String> name,
LookupResult* lookup) {
while (map->prototype()->IsJSObject()) {
Handle<JSObject> holder(JSObject::cast(map->prototype()));
if (!holder->HasFastProperties()) break;
map = Handle<Map>(holder->map());
map->LookupDescriptor(*holder, *name, lookup);
if (lookup->IsFound()) return;
}
lookup->NotFound();
}
// Tries to find a JavaScript accessor of the given name in the prototype chain
// starting at the given map. Return true iff there is one, including the
// corresponding AccessorPair plus its holder (which could be null when the
// accessor is found directly in the given map).
static bool LookupAccessorPair(Handle<Map> map,
Handle<String> name,
Handle<AccessorPair>* accessors,
Handle<JSObject>* holder) {
Isolate* isolate = map->GetIsolate();
LookupResult lookup(isolate);
// Check for a JavaScript accessor directly in the map.
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsPropertyCallbacks()) {
Handle<Object> callback(lookup.GetValueFromMap(*map), isolate);
if (!callback->IsAccessorPair()) return false;
*accessors = Handle<AccessorPair>::cast(callback);
*holder = Handle<JSObject>();
return true;
}
// Everything else, e.g. a field, can't be an accessor call.
if (lookup.IsFound()) return false;
// Check for a JavaScript accessor somewhere in the proto chain.
LookupInPrototypes(map, name, &lookup);
if (lookup.IsPropertyCallbacks()) {
Handle<Object> callback(lookup.GetValue(), isolate);
if (!callback->IsAccessorPair()) return false;
*accessors = Handle<AccessorPair>::cast(callback);
*holder = Handle<JSObject>(lookup.holder());
return true;
}
// We haven't found a JavaScript accessor anywhere.
return false;
}
static bool LookupGetter(Handle<Map> map,
Handle<String> name,
Handle<JSFunction>* getter,
Handle<JSObject>* holder) {
Handle<AccessorPair> accessors;
if (LookupAccessorPair(map, name, &accessors, holder) &&
accessors->getter()->IsJSFunction()) {
*getter = Handle<JSFunction>(JSFunction::cast(accessors->getter()));
return true;
}
return false;
}
static bool LookupSetter(Handle<Map> map,
Handle<String> name,
Handle<JSFunction>* setter,
Handle<JSObject>* holder) {
Handle<AccessorPair> accessors;
if (LookupAccessorPair(map, name, &accessors, holder) &&
accessors->setter()->IsJSFunction()) {
*setter = Handle<JSFunction>(JSFunction::cast(accessors->setter()));
return true;
}
return false;
}
// Determines whether the given array or object literal boilerplate satisfies
// all limits to be considered for fast deep-copying and computes the total
// size of all objects that are part of the graph.
static bool IsFastLiteral(Handle<JSObject> boilerplate,
int max_depth,
int* max_properties,
int* data_size,
int* pointer_size) {
ASSERT(max_depth >= 0 && *max_properties >= 0);
if (max_depth == 0) return false;
Isolate* isolate = boilerplate->GetIsolate();
Handle<FixedArrayBase> elements(boilerplate->elements());
if (elements->length() > 0 &&
elements->map() != isolate->heap()->fixed_cow_array_map()) {
if (boilerplate->HasFastDoubleElements()) {
*data_size += FixedDoubleArray::SizeFor(elements->length());
} else if (boilerplate->HasFastObjectElements()) {
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
int length = elements->length();
for (int i = 0; i < length; i++) {
if ((*max_properties)-- == 0) return false;
Handle<Object> value(fast_elements->get(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties,
data_size,
pointer_size)) {
return false;
}
}
}
*pointer_size += FixedArray::SizeFor(length);
} else {
return false;
}
}
Handle<FixedArray> properties(boilerplate->properties());
if (properties->length() > 0) {
return false;
} else {
int nof = boilerplate->map()->inobject_properties();
for (int i = 0; i < nof; i++) {
if ((*max_properties)-- == 0) return false;
Handle<Object> value(boilerplate->InObjectPropertyAt(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties,
data_size,
pointer_size)) {
return false;
}
}
}
}
*pointer_size += boilerplate->map()->instance_size();
return true;
}
void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
HValue* context = environment()->LookupContext();
HInstruction* literal;
// Check whether to use fast or slow deep-copying for boilerplate.
int data_size = 0;
int pointer_size = 0;
int max_properties = kMaxFastLiteralProperties;
Handle<Object> original_boilerplate(closure->literals()->get(
expr->literal_index()), isolate());
if (original_boilerplate->IsJSObject() &&
IsFastLiteral(Handle<JSObject>::cast(original_boilerplate),
kMaxFastLiteralDepth,
&max_properties,
&data_size,
&pointer_size)) {
Handle<JSObject> original_boilerplate_object =
Handle<JSObject>::cast(original_boilerplate);
Handle<JSObject> boilerplate_object =
DeepCopy(original_boilerplate_object);
literal = BuildFastLiteral(context,
boilerplate_object,
original_boilerplate_object,
data_size,
pointer_size,
DONT_TRACK_ALLOCATION_SITE);
} else {
Handle<FixedArray> closure_literals(closure->literals(), isolate());
literal = AddInstruction(
new(zone()) HObjectLiteral(context,
expr->constant_properties(),
closure_literals,
expr->fast_elements(),
expr->literal_index(),
expr->depth(),
expr->has_function()));
}
// The object is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
Push(literal);
expr->CalculateEmitStore(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsInternalizedString()) {
if (property->emit_store()) {
property->RecordTypeFeedback(oracle());
CHECK_ALIVE(VisitForValue(value));
HValue* value = Pop();
Handle<Map> map = property->GetReceiverType();
Handle<String> name = property->key()->AsPropertyName();
HInstruction* store;
if (map.is_null()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
} else {
#if DEBUG
Handle<JSFunction> setter;
Handle<JSObject> holder;
ASSERT(!LookupSetter(map, name, &setter, &holder));
#endif
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
name,
value,
map));
}
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(key->id(), REMOVABLE_SIMULATE);
}
} else {
CHECK_ALIVE(VisitForEffect(value));
}
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
return Bailout("Object literal with complex property");
default: UNREACHABLE();
}
}
if (expr->has_function()) {
// Return the result of the transformation to fast properties
// instead of the original since this operation changes the map
// of the object. This makes sure that the original object won't
// be used by other optimized code before it is transformed
// (e.g. because of code motion).
HToFastProperties* result = new(zone()) HToFastProperties(Pop());
AddInstruction(result);
return ast_context()->ReturnValue(result);
} else {
return ast_context()->ReturnValue(Pop());
}
}
void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
HValue* context = environment()->LookupContext();
HInstruction* literal;
Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
Handle<Object> raw_boilerplate(literals->get(expr->literal_index()),
isolate());
if (raw_boilerplate->IsUndefined()) {
raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
isolate(), literals, expr->constant_elements());
if (raw_boilerplate.is_null()) {
return Bailout("array boilerplate creation failed");
}
literals->set(expr->literal_index(), *raw_boilerplate);
if (JSObject::cast(*raw_boilerplate)->elements()->map() ==
isolate()->heap()->fixed_cow_array_map()) {
isolate()->counters()->cow_arrays_created_runtime()->Increment();
}
}
Handle<JSObject> original_boilerplate_object =
Handle<JSObject>::cast(raw_boilerplate);
ElementsKind boilerplate_elements_kind =
Handle<JSObject>::cast(original_boilerplate_object)->GetElementsKind();
// TODO(mvstanton): This heuristic is only a temporary solution. In the
// end, we want to quit creating allocation site info after a certain number
// of GCs for a call site.
AllocationSiteMode mode = AllocationSiteInfo::GetMode(
boilerplate_elements_kind);
// Check whether to use fast or slow deep-copying for boilerplate.
int data_size = 0;
int pointer_size = 0;
int max_properties = kMaxFastLiteralProperties;
if (IsFastLiteral(original_boilerplate_object,
kMaxFastLiteralDepth,
&max_properties,
&data_size,
&pointer_size)) {
if (mode == TRACK_ALLOCATION_SITE) {
pointer_size += AllocationSiteInfo::kSize;
}
Handle<JSObject> boilerplate_object = DeepCopy(original_boilerplate_object);
literal = BuildFastLiteral(context,
boilerplate_object,
original_boilerplate_object,
data_size,
pointer_size,
mode);
} else {
literal = AddInstruction(
new(zone()) HArrayLiteral(context,
original_boilerplate_object,
literals,
length,
expr->literal_index(),
expr->depth(),
mode));
}
// The array is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
Push(literal);
HInstruction* elements = NULL;
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
CHECK_ALIVE(VisitForValue(subexpr));
HValue* value = Pop();
if (!Smi::IsValid(i)) return Bailout("Non-smi key in array literal");
elements = AddLoadElements(literal);
HValue* key = AddInstruction(
new(zone()) HConstant(Handle<Object>(Smi::FromInt(i), isolate()),
Representation::Integer32()));
switch (boilerplate_elements_kind) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
// Smi-only arrays need a smi check.
AddInstruction(new(zone()) HCheckSmi(value));
// Fall through.
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
AddInstruction(new(zone()) HStoreKeyed(
elements,
key,
value,
boilerplate_elements_kind));
break;
default:
UNREACHABLE();
break;
}
AddSimulate(expr->GetIdForElement(i));
}
return ast_context()->ReturnValue(Pop());
}
// Sets the lookup result and returns true if the load/store can be inlined.
static bool ComputeLoadStoreField(Handle<Map> type,
Handle<String> name,
LookupResult* lookup,
bool is_store) {
if (type->has_named_interceptor()) {
lookup->InterceptorResult(NULL);
return false;
}
// If we directly find a field, the access can be inlined.
type->LookupDescriptor(NULL, *name, lookup);
if (lookup->IsField()) return true;
// For a load, we are out of luck if there is no such field.
if (!is_store) return false;
// 2nd chance: A store into a non-existent field can still be inlined if we
// have a matching transition and some room left in the object.
type->LookupTransition(NULL, *name, lookup);
return lookup->IsTransitionToField(*type) &&
(type->unused_property_fields() > 0);
}
static int ComputeLoadStoreFieldIndex(Handle<Map> type,
LookupResult* lookup) {
ASSERT(lookup->IsField() || lookup->IsTransitionToField(*type));
if (lookup->IsField()) {
return lookup->GetLocalFieldIndexFromMap(*type);
} else {
Map* transition = lookup->GetTransitionMapFromMap(*type);
int descriptor = transition->LastAdded();
int index = transition->instance_descriptors()->GetFieldIndex(descriptor);
return index - type->inobject_properties();
}
}
static Representation ComputeLoadStoreRepresentation(Handle<Map> type,
LookupResult* lookup) {
if (lookup->IsField()) {
return lookup->representation();
} else {
Map* transition = lookup->GetTransitionMapFromMap(*type);
int descriptor = transition->LastAdded();
PropertyDetails details =
transition->instance_descriptors()->GetDetails(descriptor);
return details.representation();
}
}
void HOptimizedGraphBuilder::AddCheckMap(HValue* object, Handle<Map> map) {
AddInstruction(new(zone()) HCheckNonSmi(object));
AddInstruction(HCheckMaps::New(object, map, zone()));
}
void HOptimizedGraphBuilder::AddCheckMapsWithTransitions(HValue* object,
Handle<Map> map) {
AddInstruction(new(zone()) HCheckNonSmi(object));
AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone()));
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
HValue* object,
Handle<String> name,
HValue* value,
Handle<Map> map,
LookupResult* lookup) {
ASSERT(lookup->IsFound());
// If the property does not exist yet, we have to check that it wasn't made
// readonly or turned into a setter by some meanwhile modifications on the
// prototype chain.
if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
Object* proto = map->prototype();
// First check that the prototype chain isn't affected already.
LookupResult proto_result(isolate());
proto->Lookup(*name, &proto_result);
if (proto_result.IsProperty()) {
// If the inherited property could induce readonly-ness, bail out.
if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
Bailout("improper object on prototype chain for store");
return NULL;
}
// We only need to check up to the preexisting property.
proto = proto_result.holder();
} else {
// Otherwise, find the top prototype.
while (proto->GetPrototype(isolate())->IsJSObject()) {
proto = proto->GetPrototype(isolate());
}
ASSERT(proto->GetPrototype(isolate())->IsNull());
}
ASSERT(proto->IsJSObject());
AddInstruction(new(zone()) HCheckPrototypeMaps(
Handle<JSObject>(JSObject::cast(map->prototype())),
Handle<JSObject>(JSObject::cast(proto)),
zone()));
}
int index = ComputeLoadStoreFieldIndex(map, lookup);
bool is_in_object = index < 0;
Representation representation = ComputeLoadStoreRepresentation(map, lookup);
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
offset += map->instance_size();
} else {
offset += FixedArray::kHeaderSize;
}
HStoreNamedField* instr = new(zone()) HStoreNamedField(
object, name, value, is_in_object, representation, offset);
if (lookup->IsTransitionToField(*map)) {
Handle<Map> transition(lookup->GetTransitionMapFromMap(*map));
instr->set_transition(transition);
// TODO(fschneider): Record the new map type of the object in the IR to
// enable elimination of redundant checks after the transition store.
instr->SetGVNFlag(kChangesMaps);
}
return instr;
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric(
HValue* object,
Handle<String> name,
HValue* value) {
HValue* context = environment()->LookupContext();
return new(zone()) HStoreNamedGeneric(
context,
object,
name,
value,
function_strict_mode_flag());
}
HInstruction* HOptimizedGraphBuilder::BuildCallSetter(
HValue* object,
HValue* value,
Handle<Map> map,
Handle<JSFunction> setter,
Handle<JSObject> holder) {
AddCheckConstantFunction(holder, object, map);
AddInstruction(new(zone()) HPushArgument(object));
AddInstruction(new(zone()) HPushArgument(value));
return new(zone()) HCallConstantFunction(setter, 2);
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic(
HValue* object,
Handle<String> name,
HValue* value,
Handle<Map> map) {
// Handle a store to a known field.
LookupResult lookup(isolate());
if (ComputeLoadStoreField(map, name, &lookup, true)) {
AddCheckMapsWithTransitions(object, map);
return BuildStoreNamedField(object, name, value, map, &lookup);
}
// No luck, do a generic store.
return BuildStoreNamedGeneric(object, name, value);
}
bool HOptimizedGraphBuilder::HandlePolymorphicArrayLengthLoad(
Property* expr,
HValue* object,
SmallMapList* types,
Handle<String> name) {
if (!name->Equals(isolate()->heap()->length_string())) return false;
for (int i = 0; i < types->length(); i++) {
if (types->at(i)->instance_type() != JS_ARRAY_TYPE) return false;
}
AddInstruction(new(zone()) HCheckNonSmi(object));
HInstruction* typecheck =
AddInstruction(HCheckMaps::New(object, types, zone()));
HInstruction* instr =
HLoadNamedField::NewArrayLength(zone(), object, typecheck);
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
return true;
}
void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr,
HValue* object,
SmallMapList* types,
Handle<String> name) {
if (HandlePolymorphicArrayLengthLoad(expr, object, types, name))
return;
AddInstruction(new(zone()) HCheckNonSmi(object));
// Use monomorphic load if property lookup results in the same field index
// for all maps. Requires special map check on the set of all handled maps.
HInstruction* instr = NULL;
if (types->length() > 0 && types->length() <= kMaxLoadPolymorphism) {
LookupResult lookup(isolate());
int previous_field_offset = 0;
bool previous_field_is_in_object = false;
Representation representation = Representation::None();
int count;
for (count = 0; count < types->length(); ++count) {
Handle<Map> map = types->at(count);
if (!ComputeLoadStoreField(map, name, &lookup, false)) break;
int index = ComputeLoadStoreFieldIndex(map, &lookup);
Representation new_representation =
ComputeLoadStoreRepresentation(map, &lookup);
bool is_in_object = index < 0;
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
offset += map->instance_size();
} else {
offset += FixedArray::kHeaderSize;
}
if (count == 0) {
previous_field_offset = offset;
previous_field_is_in_object = is_in_object;
representation = new_representation;
} else if (offset != previous_field_offset ||
is_in_object != previous_field_is_in_object ||
(FLAG_track_fields &&
!representation.IsCompatibleForLoad(new_representation))) {
break;
}
representation = representation.generalize(new_representation);
}
if (count == types->length()) {
AddInstruction(HCheckMaps::New(object, types, zone()));
instr = DoBuildLoadNamedField(
object, previous_field_is_in_object,
representation, previous_field_offset);
}
}
if (instr == NULL) {
HValue* context = environment()->LookupContext();
instr = new(zone()) HLoadNamedFieldPolymorphic(
context, object, types, name, zone());
}
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField(
Assignment* expr,
HValue* object,
HValue* value,
SmallMapList* types,
Handle<String> name) {
// TODO(ager): We should recognize when the prototype chains for different
// maps are identical. In that case we can avoid repeatedly generating the
// same prototype map checks.
int count = 0;
HBasicBlock* join = NULL;
for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
Handle<Map> map = types->at(i);
LookupResult lookup(isolate());
if (ComputeLoadStoreField(map, name, &lookup, true)) {
if (count == 0) {
AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once.
join = graph()->CreateBasicBlock();
}
++count;
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HCompareMap* compare =
new(zone()) HCompareMap(object, map, if_true, if_false);
current_block()->Finish(compare);
set_current_block(if_true);
HInstruction* instr;
CHECK_ALIVE(instr =
BuildStoreNamedField(object, name, value, map, &lookup));
instr->set_position(expr->position());
// Goto will add the HSimulate for the store.
AddInstruction(instr);
if (!ast_context()->IsEffect()) Push(value);
current_block()->Goto(join);
set_current_block(if_false);
}
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
} else {
HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
instr->set_position(expr->position());
AddInstruction(instr);
if (join != NULL) {
if (!ast_context()->IsEffect()) Push(value);
current_block()->Goto(join);
} else {
// The HSimulate for the store should not see the stored value in
// effect contexts (it is not materialized at expr->id() in the
// unoptimized code).
if (instr->HasObservableSideEffects()) {
if (ast_context()->IsEffect()) {
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
} else {
Push(value);
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
Drop(1);
}
}
return ast_context()->ReturnValue(value);
}
}
ASSERT(join != NULL);
join->SetJoinId(expr->id());
set_current_block(join);
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
}
void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
expr->RecordTypeFeedback(oracle(), zone());
CHECK_ALIVE(VisitForValue(prop->obj()));
if (prop->key()->IsPropertyName()) {
// Named store.
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* value = environment()->ExpressionStackAt(0);
HValue* object = environment()->ExpressionStackAt(1);
Literal* key = prop->key()->AsLiteral();
Handle<String> name = Handle<String>::cast(key->handle());
ASSERT(!name.is_null());
HInstruction* instr = NULL;
SmallMapList* types = expr->GetReceiverTypes();
bool monomorphic = expr->IsMonomorphic();
Handle<Map> map;
if (monomorphic) {
map = types->first();
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
AddCheckConstantFunction(holder, object, map);
if (FLAG_inline_accessors && TryInlineSetter(setter, expr, value)) {
return;
}
Drop(2);
AddInstruction(new(zone()) HPushArgument(object));
AddInstruction(new(zone()) HPushArgument(value));
instr = new(zone()) HCallConstantFunction(setter, 2);
} else {
Drop(2);
CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
name,
value,
map));
}
} else if (types != NULL && types->length() > 1) {
Drop(2);
return HandlePolymorphicStoreNamedField(expr, object, value, types, name);
} else {
Drop(2);
instr = BuildStoreNamedGeneric(object, name, value);
}
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
} else {
// Keyed store.
CHECK_ALIVE(VisitForValue(prop->key()));
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* value = environment()->ExpressionStackAt(0);
HValue* key = environment()->ExpressionStackAt(1);
HValue* object = environment()->ExpressionStackAt(2);
bool has_side_effects = false;
HandleKeyedElementAccess(object, key, value, expr, expr->AssignmentId(),
expr->position(),
true, // is_store
&has_side_effects);
Drop(3);
Push(value);
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
return ast_context()->ReturnValue(Pop());
}
}
// Because not every expression has a position and there is not common
// superclass of Assignment and CountOperation, we cannot just pass the
// owning expression instead of position and ast_id separately.
void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
Variable* var,
HValue* value,
int position,
BailoutId ast_id) {
LookupResult lookup(isolate());
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
if (type == kUseCell) {
Handle<GlobalObject> global(info()->global_object());
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
HInstruction* instr =
new(zone()) HStoreGlobalCell(value, cell, lookup.GetPropertyDetails());
instr->set_position(position);
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HStoreGlobalGeneric* instr =
new(zone()) HStoreGlobalGeneric(context,
global_object,
var->name(),
value,
function_strict_mode_flag());
instr->set_position(position);
AddInstruction(instr);
ASSERT(instr->HasObservableSideEffects());
AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
Expression* target = expr->target();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
ASSERT(proxy == NULL || prop == NULL);
// We have a second position recorded in the FullCodeGenerator to have
// type feedback for the binary operation.
BinaryOperation* operation = expr->binary_operation();
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == LET) {
return Bailout("unsupported let compound assignment");
}
CHECK_ALIVE(VisitForValue(operation));
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (var->mode() == CONST) {
return Bailout("unsupported const compound assignment");
}
Bind(var, Top());
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will be allocated to context slots. We have no
// direct way to detect that the variable is a parameter so we do
// a linear search of the parameter variables.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
Bailout(
"assignment to parameter, function uses arguments object");
}
}
}
HStoreContextSlot::Mode mode;
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
return ast_context()->ReturnValue(Pop());
case CONST_HARMONY:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
default:
mode = HStoreContextSlot::kNoCheck;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr =
new(zone()) HStoreContextSlot(context, var->index(), mode, Top());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("compound assignment to lookup slot");
}
return ast_context()->ReturnValue(Pop());
} else if (prop != NULL) {
prop->RecordTypeFeedback(oracle(), zone());
if (prop->key()->IsPropertyName()) {
// Named property.
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map;
HInstruction* load;
bool monomorphic = prop->IsMonomorphic();
if (monomorphic) {
map = prop->GetReceiverTypes()->first();
// We can't generate code for a monomorphic dict mode load so
// just pretend it is not monomorphic.
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
load = BuildCallGetter(object, map, getter, holder);
} else {
load = BuildLoadNamedMonomorphic(object, name, prop, map);
}
} else {
load = BuildLoadNamedGeneric(object, name, prop);
}
PushAndAdd(load);
if (load->HasObservableSideEffects()) {
AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
}
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(operation->id(), REMOVABLE_SIMULATE);
}
HInstruction* store;
if (!monomorphic || map->is_observed()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, instr));
} else {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
store = BuildCallSetter(object, instr, map, setter, holder);
} else {
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
name,
instr,
map));
}
}
AddInstruction(store);
// Drop the simulated receiver and value. Return the value.
Drop(2);
Push(instr);
if (store->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
} else {
// Keyed property.
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
false, // is_store
&has_side_effects);
Push(load);
if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(operation->id(), REMOVABLE_SIMULATE);
}
expr->RecordTypeFeedback(oracle(), zone());
HandleKeyedElementAccess(obj, key, instr, expr, expr->AssignmentId(),
RelocInfo::kNoPosition,
true, // is_store
&has_side_effects);
// Drop the simulated receiver, key, and value. Return the value.
Drop(3);
Push(instr);
ASSERT(has_side_effects); // Stores always have side effects.
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
return ast_context()->ReturnValue(Pop());
}
} else {
return Bailout("invalid lhs in compound assignment");
}
}
void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
VariableProxy* proxy = expr->target()->AsVariableProxy();
Property* prop = expr->target()->AsProperty();
ASSERT(proxy == NULL || prop == NULL);
if (expr->is_compound()) {
HandleCompoundAssignment(expr);
return;
}
if (prop != NULL) {
HandlePropertyAssignment(expr);
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST) {
if (expr->op() != Token::INIT_CONST) {
CHECK_ALIVE(VisitForValue(expr->value()));
return ast_context()->ReturnValue(Pop());
}
if (var->IsStackAllocated()) {
// We insert a use of the old value to detect unsupported uses of const
// variables (e.g. initialization inside a loop).
HValue* old_value = environment()->Lookup(var);
AddInstruction(new(zone()) HUseConst(old_value));
}
} else if (var->mode() == CONST_HARMONY) {
if (expr->op() != Token::INIT_CONST_HARMONY) {
return Bailout("non-initializer assignment to const");
}
}
if (proxy->IsArguments()) return Bailout("assignment to arguments");
// Handle the assignment.
switch (var->location()) {
case Variable::UNALLOCATED:
CHECK_ALIVE(VisitForValue(expr->value()));
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
return ast_context()->ReturnValue(Pop());
case Variable::PARAMETER:
case Variable::LOCAL: {
// Perform an initialization check for let declared variables
// or parameters.
if (var->mode() == LET && expr->op() == Token::ASSIGN) {
HValue* env_value = environment()->Lookup(var);
if (env_value == graph()->GetConstantHole()) {
return Bailout("assignment to let variable before initialization");
}
}
// We do not allow the arguments object to occur in a context where it
// may escape, but assignments to stack-allocated locals are
// permitted.
CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
HValue* value = Pop();
Bind(var, value);
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function using
// the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct way
// to detect that the variable is a parameter.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
return Bailout("assignment to parameter in arguments object");
}
}
}
CHECK_ALIVE(VisitForValue(expr->value()));
HStoreContextSlot::Mode mode;
if (expr->op() == Token::ASSIGN) {
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
return ast_context()->ReturnValue(Pop());
case CONST_HARMONY:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
default:
mode = HStoreContextSlot::kNoCheck;
}
} else if (expr->op() == Token::INIT_VAR ||
expr->op() == Token::INIT_LET ||
expr->op() == Token::INIT_CONST_HARMONY) {
mode = HStoreContextSlot::kNoCheck;
} else {
ASSERT(expr->op() == Token::INIT_CONST);
mode = HStoreContextSlot::kCheckIgnoreAssignment;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr = new(zone()) HStoreContextSlot(
context, var->index(), mode, Top());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
}
case Variable::LOOKUP:
return Bailout("assignment to LOOKUP variable");
}
} else {
return Bailout("invalid left-hand side in assignment");
}
}
void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
// Generators are not optimized, so we should never get here.
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
// We don't optimize functions with invalid left-hand sides in
// assignments, count operations, or for-in. Consequently throw can
// currently only occur in an effect context.
ASSERT(ast_context()->IsEffect());
CHECK_ALIVE(VisitForValue(expr->exception()));
HValue* context = environment()->LookupContext();
HValue* value = environment()->Pop();
HThrow* instr = new(zone()) HThrow(context, value);
instr->set_position(expr->position());
AddInstruction(instr);
AddSimulate(expr->id());
current_block()->FinishExit(new(zone()) HAbnormalExit);
set_current_block(NULL);
}
HLoadNamedField* HOptimizedGraphBuilder::BuildLoadNamedField(
HValue* object,
Handle<Map> map,
LookupResult* lookup) {
int index = lookup->GetLocalFieldIndexFromMap(*map);
// Negative property indices are in-object properties, indexed from the end of
// the fixed part of the object. Non-negative property indices are in the
// properties array.
int inobject = index < 0;
Representation representation = lookup->representation();
int offset = inobject
? index * kPointerSize + map->instance_size()
: index * kPointerSize + FixedArray::kHeaderSize;
return DoBuildLoadNamedField(object, inobject, representation, offset);
}
HLoadNamedField* HGraphBuilder::DoBuildLoadNamedField(
HValue* object,
bool inobject,
Representation representation,
int offset) {
return new(zone()) HLoadNamedField(object, inobject, representation, offset);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric(
HValue* object,
Handle<String> name,
Property* expr) {
if (expr->IsUninitialized()) {
AddSoftDeoptimize();
}
HValue* context = environment()->LookupContext();
return new(zone()) HLoadNamedGeneric(context, object, name);
}
HInstruction* HOptimizedGraphBuilder::BuildCallGetter(
HValue* object,
Handle<Map> map,
Handle<JSFunction> getter,
Handle<JSObject> holder) {
AddCheckConstantFunction(holder, object, map);
AddInstruction(new(zone()) HPushArgument(object));
return new(zone()) HCallConstantFunction(getter, 1);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedMonomorphic(
HValue* object,
Handle<String> name,
Property* expr,
Handle<Map> map) {
// Handle a load from a known field.
ASSERT(!map->is_dictionary_map());
// Handle access to various length properties
if (name->Equals(isolate()->heap()->length_string())) {
if (map->instance_type() == JS_ARRAY_TYPE) {
AddCheckMapsWithTransitions(object, map);
return HLoadNamedField::NewArrayLength(zone(), object, object);
}
}
LookupResult lookup(isolate());
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsField()) {
AddCheckMap(object, map);
return BuildLoadNamedField(object, map, &lookup);
}
// Handle a load of a constant known function.
if (lookup.IsConstantFunction()) {
AddCheckMap(object, map);
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map));
return new(zone()) HConstant(function, Representation::Tagged());
}
// Handle a load from a known field somewhere in the prototype chain.
LookupInPrototypes(map, name, &lookup);
if (lookup.IsField()) {
Handle<JSObject> prototype(JSObject::cast(map->prototype()));
Handle<JSObject> holder(lookup.holder());
Handle<Map> holder_map(holder->map());
AddCheckMap(object, map);
AddInstruction(
new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
HValue* holder_value = AddInstruction(
new(zone()) HConstant(holder, Representation::Tagged()));
return BuildLoadNamedField(holder_value, holder_map, &lookup);
}
// Handle a load of a constant function somewhere in the prototype chain.
if (lookup.IsConstantFunction()) {
Handle<JSObject> prototype(JSObject::cast(map->prototype()));
Handle<JSObject> holder(lookup.holder());
Handle<Map> holder_map(holder->map());
AddCheckMap(object, map);
AddInstruction(new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*holder_map));
return new(zone()) HConstant(function, Representation::Tagged());
}
// No luck, do a generic load.
return BuildLoadNamedGeneric(object, name, expr);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
HValue* key) {
HValue* context = environment()->LookupContext();
return new(zone()) HLoadKeyedGeneric(context, object, key);
}
HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
HValue* dependency,
Handle<Map> map,
bool is_store,
KeyedAccessStoreMode store_mode) {
HCheckMaps* mapcheck = HCheckMaps::New(object, map, zone(), dependency);
AddInstruction(mapcheck);
if (dependency) {
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
}
return BuildUncheckedMonomorphicElementAccess(
object, key, val,
mapcheck, map->instance_type() == JS_ARRAY_TYPE,
map->elements_kind(), is_store, store_mode);
}
HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps) {
// For polymorphic loads of similar elements kinds (i.e. all tagged or all
// double), always use the "worst case" code without a transition. This is
// much faster than transitioning the elements to the worst case, trading a
// HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
bool has_double_maps = false;
bool has_smi_or_object_maps = false;
bool has_js_array_access = false;
bool has_non_js_array_access = false;
Handle<Map> most_general_consolidated_map;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
// Don't allow mixing of JSArrays with JSObjects.
if (map->instance_type() == JS_ARRAY_TYPE) {
if (has_non_js_array_access) return NULL;
has_js_array_access = true;
} else if (has_js_array_access) {
return NULL;
} else {
has_non_js_array_access = true;
}
// Don't allow mixed, incompatible elements kinds.
if (map->has_fast_double_elements()) {
if (has_smi_or_object_maps) return NULL;
has_double_maps = true;
} else if (map->has_fast_smi_or_object_elements()) {
if (has_double_maps) return NULL;
has_smi_or_object_maps = true;
} else {
return NULL;
}
// Remember the most general elements kind, the code for its load will
// properly handle all of the more specific cases.
if ((i == 0) || IsMoreGeneralElementsKindTransition(
most_general_consolidated_map->elements_kind(),
map->elements_kind())) {
most_general_consolidated_map = map;
}
}
if (!has_double_maps && !has_smi_or_object_maps) return NULL;
HCheckMaps* check_maps = HCheckMaps::New(object, maps, zone());
AddInstruction(check_maps);
HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
object, key, val, check_maps,
most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
most_general_consolidated_map->elements_kind(),
false, STANDARD_STORE);
return instr;
}
HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
Expression* prop,
BailoutId ast_id,
int position,
bool is_store,
KeyedAccessStoreMode store_mode,
bool* has_side_effects) {
*has_side_effects = false;
AddInstruction(new(zone()) HCheckNonSmi(object));
SmallMapList* maps = prop->GetReceiverTypes();
bool todo_external_array = false;
if (!is_store) {
HInstruction* consolidated_load =
TryBuildConsolidatedElementLoad(object, key, val, maps);
if (consolidated_load != NULL) {
*has_side_effects |= consolidated_load->HasObservableSideEffects();
if (position != RelocInfo::kNoPosition) {
consolidated_load->set_position(position);
}
return consolidated_load;
}
}
static const int kNumElementTypes = kElementsKindCount;
bool type_todo[kNumElementTypes];
for (int i = 0; i < kNumElementTypes; ++i) {
type_todo[i] = false;
}
// Elements_kind transition support.
MapHandleList transition_target(maps->length());
// Collect possible transition targets.
MapHandleList possible_transitioned_maps(maps->length());
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
ElementsKind elements_kind = map->elements_kind();
if (IsFastElementsKind(elements_kind) &&
elements_kind != GetInitialFastElementsKind()) {
possible_transitioned_maps.Add(map);
}
}
// Get transition target for each map (NULL == no transition).
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
Handle<Map> transitioned_map =
map->FindTransitionedMap(&possible_transitioned_maps);
transition_target.Add(transitioned_map);
}
int num_untransitionable_maps = 0;
Handle<Map> untransitionable_map;
HTransitionElementsKind* transition = NULL;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
ASSERT(map->IsMap());
if (!transition_target.at(i).is_null()) {
ASSERT(Map::IsValidElementsTransition(
map->elements_kind(),
transition_target.at(i)->elements_kind()));
HValue* context = environment()->LookupContext();
transition = new(zone()) HTransitionElementsKind(
context, object, map, transition_target.at(i));
AddInstruction(transition);
} else {
type_todo[map->elements_kind()] = true;
if (IsExternalArrayElementsKind(map->elements_kind())) {
todo_external_array = true;
}
num_untransitionable_maps++;
untransitionable_map = map;
}
}
// If only one map is left after transitioning, handle this case
// monomorphically.
if (num_untransitionable_maps == 1) {
HInstruction* instr = NULL;
if (untransitionable_map->has_slow_elements_kind()) {
instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
: BuildLoadKeyedGeneric(object, key));
} else {
instr = BuildMonomorphicElementAccess(
object, key, val, transition, untransitionable_map, is_store,
store_mode);
}
*has_side_effects |= instr->HasObservableSideEffects();
if (position != RelocInfo::kNoPosition) instr->set_position(position);
return is_store ? NULL : instr;
}
HInstruction* checkspec =
AddInstruction(HCheckInstanceType::NewIsSpecObject(object, zone()));
HBasicBlock* join = graph()->CreateBasicBlock();
HInstruction* elements_kind_instr =
AddInstruction(new(zone()) HElementsKind(object));
HInstruction* elements = AddLoadElements(object, checkspec);
HLoadExternalArrayPointer* external_elements = NULL;
HInstruction* checked_key = NULL;
// Generated code assumes that FAST_* and DICTIONARY_ELEMENTS ElementsKinds
// are handled before external arrays.
STATIC_ASSERT(FAST_SMI_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(DICTIONARY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
for (ElementsKind elements_kind = FIRST_ELEMENTS_KIND;
elements_kind <= LAST_ELEMENTS_KIND;
elements_kind = ElementsKind(elements_kind + 1)) {
// After having handled FAST_* and DICTIONARY_ELEMENTS, we need to add some
// code that's executed for all external array cases.
STATIC_ASSERT(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND ==
LAST_ELEMENTS_KIND);
if (elements_kind == FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND
&& todo_external_array) {
HInstruction* length =
AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
checked_key = AddBoundsCheck(key, length);
external_elements = new(zone()) HLoadExternalArrayPointer(elements);
AddInstruction(external_elements);
}
if (type_todo[elements_kind]) {
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HCompareConstantEqAndBranch* elements_kind_branch =
new(zone()) HCompareConstantEqAndBranch(
elements_kind_instr, elements_kind, Token::EQ_STRICT);
elements_kind_branch->SetSuccessorAt(0, if_true);
elements_kind_branch->SetSuccessorAt(1, if_false);
current_block()->Finish(elements_kind_branch);
set_current_block(if_true);
HInstruction* access;
if (IsFastElementsKind(elements_kind)) {
if (is_store && !IsFastDoubleElementsKind(elements_kind)) {
AddInstruction(HCheckMaps::New(
elements, isolate()->factory()->fixed_array_map(),
zone(), elements_kind_branch));
}
// TODO(jkummerow): The need for these two blocks could be avoided
// in one of two ways:
// (1) Introduce ElementsKinds for JSArrays that are distinct from
// those for fast objects.
// (2) Put the common instructions into a third "join" block. This
// requires additional AST IDs that we can deopt to from inside
// that join block. They must be added to the Property class (when
// it's a keyed property) and registered in the full codegen.
HBasicBlock* if_jsarray = graph()->CreateBasicBlock();
HBasicBlock* if_fastobject = graph()->CreateBasicBlock();
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(object, JS_ARRAY_TYPE);
typecheck->SetSuccessorAt(0, if_jsarray);
typecheck->SetSuccessorAt(1, if_fastobject);
current_block()->Finish(typecheck);
set_current_block(if_jsarray);
HInstruction* length;
length = AddInstruction(
HLoadNamedField::NewArrayLength(zone(), object, typecheck,
HType::Smi()));
checked_key = AddBoundsCheck(key, length, ALLOW_SMI_KEY);
access = AddInstruction(BuildFastElementAccess(
elements, checked_key, val, elements_kind_branch,
elements_kind, is_store, STANDARD_STORE));
if (!is_store) {
Push(access);
}
*has_side_effects |= access->HasObservableSideEffects();
// The caller will use has_side_effects and add correct Simulate.
access->SetFlag(HValue::kHasNoObservableSideEffects);
if (position != -1) {
access->set_position(position);
}
if_jsarray->GotoNoSimulate(join);
set_current_block(if_fastobject);
length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
checked_key = AddBoundsCheck(key, length, ALLOW_SMI_KEY);
access = AddInstruction(BuildFastElementAccess(
elements, checked_key, val, elements_kind_branch,
elements_kind, is_store, STANDARD_STORE));
} else if (elements_kind == DICTIONARY_ELEMENTS) {
if (is_store) {
access = AddInstruction(BuildStoreKeyedGeneric(object, key, val));
} else {
access = AddInstruction(BuildLoadKeyedGeneric(object, key));
}
} else { // External array elements.
access = AddInstruction(BuildExternalArrayElementAccess(
external_elements, checked_key, val,
elements_kind_branch, elements_kind, is_store));
}
*has_side_effects |= access->HasObservableSideEffects();
// The caller will use has_side_effects and add correct Simulate.
access->SetFlag(HValue::kHasNoObservableSideEffects);
if (position != RelocInfo::kNoPosition) access->set_position(position);
if (!is_store) {
Push(access);
}
current_block()->GotoNoSimulate(join);
set_current_block(if_false);
}
}
// Deopt if none of the cases matched.
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
set_current_block(join);
return is_store ? NULL : Pop();
}
HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
HValue* obj,
HValue* key,
HValue* val,
Expression* expr,
BailoutId ast_id,
int position,
bool is_store,
bool* has_side_effects) {
ASSERT(!expr->IsPropertyName());
HInstruction* instr = NULL;
if (expr->IsMonomorphic()) {
Handle<Map> map = expr->GetMonomorphicReceiverType();
if (map->has_slow_elements_kind()) {
instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
: BuildLoadKeyedGeneric(obj, key);
AddInstruction(instr);
} else {
AddInstruction(new(zone()) HCheckNonSmi(obj));
instr = BuildMonomorphicElementAccess(
obj, key, val, NULL, map, is_store, expr->GetStoreMode());
}
} else if (expr->GetReceiverTypes() != NULL &&
!expr->GetReceiverTypes()->is_empty()) {
return HandlePolymorphicElementAccess(
obj, key, val, expr, ast_id, position, is_store,
expr->GetStoreMode(), has_side_effects);
} else {
if (is_store) {
instr = BuildStoreKeyedGeneric(obj, key, val);
} else {
instr = BuildLoadKeyedGeneric(obj, key);
}
AddInstruction(instr);
}
if (position != RelocInfo::kNoPosition) instr->set_position(position);
*has_side_effects = instr->HasObservableSideEffects();
return instr;
}
HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric(
HValue* object,
HValue* key,
HValue* value) {
HValue* context = environment()->LookupContext();
return new(zone()) HStoreKeyedGeneric(
context,
object,
key,
value,
function_strict_mode_flag());
}
void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
// Outermost function already has arguments on the stack.
if (function_state()->outer() == NULL) return;
if (function_state()->arguments_pushed()) return;
// Push arguments when entering inlined function.
HEnterInlined* entry = function_state()->entry();
entry->set_arguments_pushed();
ZoneList<HValue*>* arguments_values = entry->arguments_values();
HInstruction* insert_after = entry;
for (int i = 0; i < arguments_values->length(); i++) {
HValue* argument = arguments_values->at(i);
HInstruction* push_argument = new(zone()) HPushArgument(argument);
push_argument->InsertAfter(insert_after);
insert_after = push_argument;
}
HArgumentsElements* arguments_elements =
new(zone()) HArgumentsElements(true);
arguments_elements->ClearFlag(HValue::kUseGVN);
arguments_elements->InsertAfter(insert_after);
function_state()->set_arguments_elements(arguments_elements);
}
bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy == NULL) return false;
if (!proxy->var()->IsStackAllocated()) return false;
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
return false;
}
HInstruction* result = NULL;
if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
result = new(zone()) HArgumentsLength(elements);
} else {
// Number of arguments without receiver.
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
result = new(zone()) HConstant(
Handle<Object>(Smi::FromInt(argument_count), isolate()),
Representation::Integer32());
}
} else {
Push(graph()->GetArgumentsObject());
VisitForValue(expr->key());
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* key = Pop();
Drop(1); // Arguments object.
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length = AddInstruction(
new(zone()) HArgumentsLength(elements));
HInstruction* checked_key = AddBoundsCheck(key, length);
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
} else {
EnsureArgumentsArePushedForAccess();
// Number of arguments without receiver.
HInstruction* elements = function_state()->arguments_elements();
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
HInstruction* length = AddInstruction(new(zone()) HConstant(
Handle<Object>(Smi::FromInt(argument_count), isolate()),
Representation::Integer32()));
HInstruction* checked_key = AddBoundsCheck(key, length);
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
}
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
expr->RecordTypeFeedback(oracle(), zone());
if (TryArgumentsAccess(expr)) return;
CHECK_ALIVE(VisitForValue(expr->obj()));
HInstruction* instr = NULL;
if (expr->IsStringLength()) {
HValue* string = Pop();
AddInstruction(new(zone()) HCheckNonSmi(string));
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
instr = HStringLength::New(zone(), string);
} else if (expr->IsStringAccess()) {
CHECK_ALIVE(VisitForValue(expr->key()));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code =
BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
instr = HStringCharFromCode::New(zone(), context, char_code);
} else if (expr->IsFunctionPrototype()) {
HValue* function = Pop();
AddInstruction(new(zone()) HCheckNonSmi(function));
instr = new(zone()) HLoadFunctionPrototype(function);
} else if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
SmallMapList* types = expr->GetReceiverTypes();
HValue* object = Top();
Handle<Map> map;
bool monomorphic = false;
if (expr->IsMonomorphic()) {
map = types->first();
monomorphic = !map->is_dictionary_map();
} else if (object->HasMonomorphicJSObjectType()) {
map = object->GetMonomorphicJSObjectMap();
monomorphic = !map->is_dictionary_map();
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
AddCheckConstantFunction(holder, Top(), map);
if (FLAG_inline_accessors && TryInlineGetter(getter, expr)) return;
AddInstruction(new(zone()) HPushArgument(Pop()));
instr = new(zone()) HCallConstantFunction(getter, 1);
} else {
instr = BuildLoadNamedMonomorphic(Pop(), name, expr, map);
}
} else if (types != NULL && types->length() > 1) {
return HandlePolymorphicLoadNamedField(expr, Pop(), types, name);
} else {
instr = BuildLoadNamedGeneric(Pop(), name, expr);
}
} else {
CHECK_ALIVE(VisitForValue(expr->key()));
HValue* key = Pop();
HValue* obj = Pop();
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, expr, expr->id(), expr->position(),
false, // is_store
&has_side_effects);
if (has_side_effects) {
if (ast_context()->IsEffect()) {
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
} else {
Push(load);
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
Drop(1);
}
}
return ast_context()->ReturnValue(load);
}
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
Handle<Map> receiver_map) {
if (!holder.is_null()) {
Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
AddInstruction(
new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
}
}
void HOptimizedGraphBuilder::AddCheckConstantFunction(
Handle<JSObject> holder,
HValue* receiver,
Handle<Map> receiver_map) {
// Constant functions have the nice property that the map will change if they
// are overwritten. Therefore it is enough to check the map of the holder and
// its prototypes.
AddCheckMapsWithTransitions(receiver, receiver_map);
AddCheckPrototypeMaps(holder, receiver_map);
}
class FunctionSorter {
public:
FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
FunctionSorter(int index, int ticks, int ast_length, int src_length)
: index_(index),
ticks_(ticks),
ast_length_(ast_length),
src_length_(src_length) { }
int index() const { return index_; }
int ticks() const { return ticks_; }
int ast_length() const { return ast_length_; }
int src_length() const { return src_length_; }
private:
int index_;
int ticks_;
int ast_length_;
int src_length_;
};
inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
int diff = lhs.ticks() - rhs.ticks();
if (diff != 0) return diff > 0;
diff = lhs.ast_length() - rhs.ast_length();
if (diff != 0) return diff < 0;
return lhs.src_length() < rhs.src_length();
}
void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
Call* expr,
HValue* receiver,
SmallMapList* types,
Handle<String> name) {
// TODO(ager): We should recognize when the prototype chains for different
// maps are identical. In that case we can avoid repeatedly generating the
// same prototype map checks.
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
HBasicBlock* join = NULL;
FunctionSorter order[kMaxCallPolymorphism];
int ordered_functions = 0;
Handle<Map> initial_string_map(
isolate()->native_context()->string_function()->initial_map());
Handle<Map> string_marker_map(
JSObject::cast(initial_string_map->prototype())->map());
Handle<Map> initial_number_map(
isolate()->native_context()->number_function()->initial_map());
Handle<Map> number_marker_map(
JSObject::cast(initial_number_map->prototype())->map());
Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
bool handle_smi = false;
for (int i = 0;
i < types->length() && ordered_functions < kMaxCallPolymorphism;
++i) {
Handle<Map> map = types->at(i);
if (expr->ComputeTarget(map, name)) {
if (map.is_identical_to(number_marker_map)) handle_smi = true;
order[ordered_functions++] =
FunctionSorter(i,
expr->target()->shared()->profiler_ticks(),
InliningAstSize(expr->target()),
expr->target()->shared()->SourceSize());
}
}
std::sort(order, order + ordered_functions);
HBasicBlock* number_block = NULL;
for (int fn = 0; fn < ordered_functions; ++fn) {
int i = order[fn].index();
Handle<Map> map = types->at(i);
if (fn == 0) {
// Only needed once.
join = graph()->CreateBasicBlock();
if (handle_smi) {
HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
number_block = graph()->CreateBasicBlock();
HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(receiver);
smicheck->SetSuccessorAt(0, empty_smi_block);
smicheck->SetSuccessorAt(1, not_smi_block);
current_block()->Finish(smicheck);
empty_smi_block->Goto(number_block);
set_current_block(not_smi_block);
} else {
AddInstruction(new(zone()) HCheckNonSmi(receiver));
}
}
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HUnaryControlInstruction* compare;
if (handle_smi && map.is_identical_to(number_marker_map)) {
compare = new(zone()) HCompareMap(
receiver, heap_number_map, if_true, if_false);
map = initial_number_map;
expr->set_number_check(
Handle<JSObject>(JSObject::cast(map->prototype())));
} else if (map.is_identical_to(string_marker_map)) {
compare = new(zone()) HIsStringAndBranch(receiver);
compare->SetSuccessorAt(0, if_true);
compare->SetSuccessorAt(1, if_false);
map = initial_string_map;
expr->set_string_check(
Handle<JSObject>(JSObject::cast(map->prototype())));
} else {
compare = new(zone()) HCompareMap(receiver, map, if_true, if_false);
expr->set_map_check();
}
current_block()->Finish(compare);
if (expr->check_type() == NUMBER_CHECK) {
if_true->Goto(number_block);
if_true = number_block;
number_block->SetJoinId(expr->id());
}
set_current_block(if_true);
expr->ComputeTarget(map, name);
AddCheckPrototypeMaps(expr->holder(), map);
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
Handle<JSFunction> caller = info()->closure();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
PrintF("Trying to inline the polymorphic call to %s from %s\n",
*name->ToCString(),
*caller_name);
}
if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
// Trying to inline will signal that we should bailout from the
// entire compilation by setting stack overflow on the visitor.
if (HasStackOverflow()) return;
} else {
HCallConstantFunction* call =
new(zone()) HCallConstantFunction(expr->target(), argument_count);
call->set_position(expr->position());
PreProcessCall(call);
AddInstruction(call);
if (!ast_context()->IsEffect()) Push(call);
}
if (current_block() != NULL) current_block()->Goto(join);
set_current_block(if_false);
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
} else {
HValue* context = environment()->LookupContext();
HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count);
call->set_position(expr->position());
PreProcessCall(call);
if (join != NULL) {
AddInstruction(call);
if (!ast_context()->IsEffect()) Push(call);
current_block()->Goto(join);
} else {
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// We assume that control flow is always live after an expression. So
// even without predecessors to the join block, we set it as the exit
// block and continue by adding instructions there.
ASSERT(join != NULL);
if (join->HasPredecessor()) {
set_current_block(join);
join->SetJoinId(expr->id());
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
} else {
set_current_block(NULL);
}
}
void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
Handle<JSFunction> caller,
const char* reason) {
if (FLAG_trace_inlining) {
SmartArrayPointer<char> target_name =
target->shared()->DebugName()->ToCString();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
if (reason == NULL) {
PrintF("Inlined %s called from %s.\n", *target_name, *caller_name);
} else {
PrintF("Did not inline %s called from %s (%s).\n",
*target_name, *caller_name, reason);
}
}
}
static const int kNotInlinable = 1000000000;
int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
if (!FLAG_use_inlining) return kNotInlinable;
// Precondition: call is monomorphic and we have found a target with the
// appropriate arity.
Handle<JSFunction> caller = info()->closure();
Handle<SharedFunctionInfo> target_shared(target->shared());
// Do a quick check on source code length to avoid parsing large
// inlining candidates.
if (target_shared->SourceSize() >
Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
TraceInline(target, caller, "target text too big");
return kNotInlinable;
}
// Target must be inlineable.
if (!target->IsInlineable()) {
TraceInline(target, caller, "target not inlineable");
return kNotInlinable;
}
if (target_shared->dont_inline() || target_shared->dont_optimize()) {
TraceInline(target, caller, "target contains unsupported syntax [early]");
return kNotInlinable;
}
int nodes_added = target_shared->ast_node_count();
return nodes_added;
}
bool HOptimizedGraphBuilder::TryInline(CallKind call_kind,
Handle<JSFunction> target,
int arguments_count,
HValue* implicit_return_value,
BailoutId ast_id,
BailoutId return_id,
InliningKind inlining_kind) {
int nodes_added = InliningAstSize(target);
if (nodes_added == kNotInlinable) return false;
Handle<JSFunction> caller = info()->closure();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [early]");
return false;
}
#if !defined(V8_TARGET_ARCH_IA32)
// Target must be able to use caller's context.
CompilationInfo* outer_info = info();
if (target->context() != outer_info->closure()->context() ||
outer_info->scope()->contains_with() ||
outer_info->scope()->num_heap_slots() > 0) {
TraceInline(target, caller, "target requires context change");
return false;
}
#endif
// Don't inline deeper than kMaxInliningLevels calls.
HEnvironment* env = environment();
int current_level = 1;
while (env->outer() != NULL) {
if (current_level == Compiler::kMaxInliningLevels) {
TraceInline(target, caller, "inline depth limit reached");
return false;
}
if (env->outer()->frame_type() == JS_FUNCTION) {
current_level++;
}
env = env->outer();
}
// Don't inline recursive functions.
for (FunctionState* state = function_state();
state != NULL;
state = state->outer()) {
if (*state->compilation_info()->closure() == *target) {
TraceInline(target, caller, "target is recursive");
return false;
}
}
// We don't want to add more than a certain number of nodes from inlining.
if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
kUnlimitedMaxInlinedNodesCumulative)) {
TraceInline(target, caller, "cumulative AST node limit reached");
return false;
}
// Parse and allocate variables.
CompilationInfo target_info(target, zone());
Handle<SharedFunctionInfo> target_shared(target->shared());
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
if (target_info.isolate()->has_pending_exception()) {
// Parse or scope error, never optimize this function.
SetStackOverflow();
target_shared->DisableOptimization("parse/scope error");
}
TraceInline(target, caller, "parse failure");
return false;
}
if (target_info.scope()->num_heap_slots() > 0) {
TraceInline(target, caller, "target has context-allocated variables");
return false;
}
FunctionLiteral* function = target_info.function();
// The following conditions must be checked again after re-parsing, because
// earlier the information might not have been complete due to lazy parsing.
nodes_added = function->ast_node_count();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [late]");
return false;
}
AstProperties::Flags* flags(function->flags());
if (flags->Contains(kDontInline) || flags->Contains(kDontOptimize)) {
TraceInline(target, caller, "target contains unsupported syntax [late]");
return false;
}
// If the function uses the arguments object check that inlining of functions
// with arguments object is enabled and the arguments-variable is
// stack allocated.
if (function->scope()->arguments() != NULL) {
if (!FLAG_inline_arguments) {
TraceInline(target, caller, "target uses arguments object");
return false;
}
if (!function->scope()->arguments()->IsStackAllocated()) {
TraceInline(target,
caller,
"target uses non-stackallocated arguments object");
return false;
}
}
// All declarations must be inlineable.
ZoneList<Declaration*>* decls = target_info.scope()->declarations();
int decl_count = decls->length();
for (int i = 0; i < decl_count; ++i) {
if (!decls->at(i)->IsInlineable()) {
TraceInline(target, caller, "target has non-trivial declaration");
return false;
}
}
// Generate the deoptimization data for the unoptimized version of
// the target function if we don't already have it.
if (!target_shared->has_deoptimization_support()) {
// Note that we compile here using the same AST that we will use for
// generating the optimized inline code.
target_info.EnableDeoptimizationSupport();
if (!FullCodeGenerator::MakeCode(&target_info)) {
TraceInline(target, caller, "could not generate deoptimization info");
return false;
}
if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
// The scope info might not have been set if a lazily compiled
// function is inlined before being called for the first time.
Handle<ScopeInfo> target_scope_info =
ScopeInfo::Create(target_info.scope(), zone());
target_shared->set_scope_info(*target_scope_info);
}
target_shared->EnableDeoptimizationSupport(*target_info.code());
Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
&target_info,
target_shared);
}
// ----------------------------------------------------------------
// After this point, we've made a decision to inline this function (so
// TryInline should always return true).
// Save the pending call context and type feedback oracle. Set up new ones
// for the inlined function.
ASSERT(target_shared->has_deoptimization_support());
Handle<Code> unoptimized_code(target_shared->code());
TypeFeedbackOracle target_oracle(
unoptimized_code,
Handle<Context>(target->context()->native_context()),
isolate(),
zone());
// The function state is new-allocated because we need to delete it
// in two different places.
FunctionState* target_state = new FunctionState(
this, &target_info, &target_oracle, inlining_kind);
HConstant* undefined = graph()->GetConstantUndefined();
bool undefined_receiver = HEnvironment::UseUndefinedReceiver(
target, function, call_kind, inlining_kind);
HEnvironment* inner_env =
environment()->CopyForInlining(target,
arguments_count,
function,
undefined,
function_state()->inlining_kind(),
undefined_receiver);
#ifdef V8_TARGET_ARCH_IA32
// IA32 only, overwrite the caller's context in the deoptimization
// environment with the correct one.
//
// TODO(kmillikin): implement the same inlining on other platforms so we
// can remove the unsightly ifdefs in this function.
HConstant* context =
new(zone()) HConstant(Handle<Context>(target->context()),
Representation::Tagged());
AddInstruction(context);
inner_env->BindContext(context);
#endif
AddSimulate(return_id);
current_block()->UpdateEnvironment(inner_env);
ZoneList<HValue*>* arguments_values = NULL;
// If the function uses arguments copy current arguments values
// to use them for materialization.
if (function->scope()->arguments() != NULL) {
HEnvironment* arguments_env = inner_env->arguments_environment();
int arguments_count = arguments_env->parameter_count();
arguments_values = new(zone()) ZoneList<HValue*>(arguments_count, zone());
for (int i = 0; i < arguments_count; i++) {
arguments_values->Add(arguments_env->Lookup(i), zone());
}
}
HEnterInlined* enter_inlined =
new(zone()) HEnterInlined(target,
arguments_count,
function,
function_state()->inlining_kind(),
function->scope()->arguments(),
arguments_values,
undefined_receiver);
function_state()->set_entry(enter_inlined);
AddInstruction(enter_inlined);
// If the function uses arguments object create and bind one.
if (function->scope()->arguments() != NULL) {
ASSERT(function->scope()->arguments()->IsStackAllocated());
inner_env->Bind(function->scope()->arguments(),
graph()->GetArgumentsObject());
}
VisitDeclarations(target_info.scope()->declarations());
VisitStatements(function->body());
if (HasStackOverflow()) {
// Bail out if the inline function did, as we cannot residualize a call
// instead.
TraceInline(target, caller, "inline graph construction failed");
target_shared->DisableOptimization("inlining bailed out");
inline_bailout_ = true;
delete target_state;
return true;
}
// Update inlined nodes count.
inlined_count_ += nodes_added;
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
graph()->update_type_change_checksum(type_info->own_type_change_checksum());
TraceInline(target, caller, NULL);
if (current_block() != NULL) {
FunctionState* state = function_state();
if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Falling off the end of an inlined construct call. In a test context the
// return value will always evaluate to true, in a value context the
// return value is the newly allocated receiver.
if (call_context()->IsTest()) {
current_block()->Goto(inlined_test_context()->if_true(), state);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(implicit_return_value, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Falling off the end of an inlined setter call. The returned value is
// never used, the value of an assignment is always the value of the RHS
// of the assignment.
if (call_context()->IsTest()) {
inlined_test_context()->ReturnValue(implicit_return_value);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(implicit_return_value, state);
}
} else {
// Falling off the end of a normal inlined function. This basically means
// returning undefined.
if (call_context()->IsTest()) {
current_block()->Goto(inlined_test_context()->if_false(), state);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(undefined, state);
}
}
}
// Fix up the function exits.
if (inlined_test_context() != NULL) {
HBasicBlock* if_true = inlined_test_context()->if_true();
HBasicBlock* if_false = inlined_test_context()->if_false();
// Pop the return test context from the expression context stack.
ASSERT(ast_context() == inlined_test_context());
ClearInlinedTestContext();
delete target_state;
// Forward to the real test context.
if (if_true->HasPredecessor()) {
if_true->SetJoinId(ast_id);
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
if_true->Goto(true_target, function_state());
}
if (if_false->HasPredecessor()) {
if_false->SetJoinId(ast_id);
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
if_false->Goto(false_target, function_state());
}
set_current_block(NULL);
return true;
} else if (function_return()->HasPredecessor()) {
function_return()->SetJoinId(ast_id);
set_current_block(function_return());
} else {
set_current_block(NULL);
}
delete target_state;
return true;
}
bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
// The function call we are inlining is a method call if the call
// is a property call.
CallKind call_kind = (expr->expression()->AsProperty() == NULL)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
return TryInline(call_kind,
expr->target(),
expr->arguments()->length(),
NULL,
expr->id(),
expr->ReturnId(),
drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
HValue* implicit_return_value) {
return TryInline(CALL_AS_FUNCTION,
expr->target(),
expr->arguments()->length(),
implicit_return_value,
expr->id(),
expr->ReturnId(),
CONSTRUCT_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
Property* prop) {
return TryInline(CALL_AS_METHOD,
getter,
0,
NULL,
prop->id(),
prop->LoadId(),
GETTER_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
Assignment* assignment,
HValue* implicit_return_value) {
return TryInline(CALL_AS_METHOD,
setter,
1,
implicit_return_value,
assignment->id(),
assignment->AssignmentId(),
SETTER_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
Call* expr,
int arguments_count) {
return TryInline(CALL_AS_METHOD,
function,
arguments_count,
NULL,
expr->id(),
expr->ReturnId(),
NORMAL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr,
bool drop_extra) {
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
switch (id) {
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
if (expr->arguments()->length() == 1) {
HValue* argument = Pop();
HValue* context = environment()->LookupContext();
Drop(1); // Receiver.
HInstruction* op =
HUnaryMathOperation::New(zone(), context, argument, id);
op->set_position(expr->position());
if (drop_extra) Drop(1); // Optionally drop the function.
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathImul:
if (expr->arguments()->length() == 2) {
HValue* right = Pop();
HValue* left = Pop();
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HInstruction* op = HMul::NewImul(zone(), context, left, right);
if (drop_extra) Drop(1); // Optionally drop the function.
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
default:
// Not supported for inlining yet.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
Call* expr,
HValue* receiver,
Handle<Map> receiver_map,
CheckType check_type) {
ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
// Try to inline calls like Math.* as operations in the calling function.
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
switch (id) {
case kStringCharCodeAt:
case kStringCharAt:
if (argument_count == 2 && check_type == STRING_CHECK) {
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
ASSERT(!expr->holder().is_null());
AddInstruction(new(zone()) HCheckPrototypeMaps(
oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK),
expr->holder(),
zone()));
HInstruction* char_code =
BuildStringCharCodeAt(context, string, index);
if (id == kStringCharCodeAt) {
ast_context()->ReturnInstruction(char_code, expr->id());
return true;
}
AddInstruction(char_code);
HInstruction* result =
HStringCharFromCode::New(zone(), context, char_code);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kStringFromCharCode:
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* argument = Pop();
HValue* context = environment()->LookupContext();
Drop(1); // Receiver.
HInstruction* result =
HStringCharFromCode::New(zone(), context, argument);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* argument = Pop();
HValue* context = environment()->LookupContext();
Drop(1); // Receiver.
HInstruction* op =
HUnaryMathOperation::New(zone(), context, argument, id);
op->set_position(expr->position());
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathPow:
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* right = Pop();
HValue* left = Pop();
Pop(); // Pop receiver.
HValue* context = environment()->LookupContext();
HInstruction* result = NULL;
// Use sqrt() if exponent is 0.5 or -0.5.
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
double exponent = HConstant::cast(right)->DoubleValue();
if (exponent == 0.5) {
result =
HUnaryMathOperation::New(zone(), context, left, kMathPowHalf);
} else if (exponent == -0.5) {
HConstant* double_one =
new(zone()) HConstant(Handle<Object>(Smi::FromInt(1),
isolate()),
Representation::Double());
AddInstruction(double_one);
HInstruction* sqrt =
HUnaryMathOperation::New(zone(), context, left, kMathPowHalf);
AddInstruction(sqrt);
// MathPowHalf doesn't have side effects so there's no need for
// an environment simulation here.
ASSERT(!sqrt->HasObservableSideEffects());
result = HDiv::New(zone(), context, double_one, sqrt);
} else if (exponent == 2.0) {
result = HMul::New(zone(), context, left, left);
}
} else if (right->EqualsInteger32Constant(2)) {
result = HMul::New(zone(), context, left, left);
}
if (result == NULL) {
result = HPower::New(zone(), left, right);
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathRandom:
if (argument_count == 1 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HRandom* result = new(zone()) HRandom(global_object);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathMax:
case kMathMin:
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* right = Pop();
HValue* left = Pop();
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
: HMathMinMax::kMathMax;
HInstruction* result =
HMathMinMax::New(zone(), context, left, right, op);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathImul:
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* right = Pop();
HValue* left = Pop();
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HInstruction* result = HMul::NewImul(zone(), context, left, right);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
default:
// Not yet supported for inlining.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
Expression* callee = expr->expression();
Property* prop = callee->AsProperty();
ASSERT(prop != NULL);
if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
return false;
}
Handle<Map> function_map = expr->GetReceiverTypes()->first();
if (function_map->instance_type() != JS_FUNCTION_TYPE ||
!expr->target()->shared()->HasBuiltinFunctionId() ||
expr->target()->shared()->builtin_function_id() != kFunctionApply) {
return false;
}
if (info()->scope()->arguments() == NULL) return false;
ZoneList<Expression*>* args = expr->arguments();
if (args->length() != 2) return false;
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
HValue* arg_two_value = environment()->Lookup(arg_two->var());
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
// Found pattern f.apply(receiver, arguments).
VisitForValue(prop->obj());
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* function = Top();
AddCheckConstantFunction(expr->holder(), function, function_map);
Drop(1);
VisitForValue(args->at(0));
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* receiver = Pop();
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length =
AddInstruction(new(zone()) HArgumentsLength(elements));
HValue* wrapped_receiver =
AddInstruction(new(zone()) HWrapReceiver(receiver, function));
HInstruction* result =
new(zone()) HApplyArguments(function,
wrapped_receiver,
length,
elements);
result->set_position(expr->position());
ast_context()->ReturnInstruction(result, expr->id());
return true;
} else {
// We are inside inlined function and we know exactly what is inside
// arguments object. But we need to be able to materialize at deopt.
// TODO(mstarzinger): For now we just ensure arguments are pushed
// right after HEnterInlined, but we could be smarter about this.
EnsureArgumentsArePushedForAccess();
ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
function_state()->entry()->arguments_values()->length());
HEnterInlined* entry = function_state()->entry();
ZoneList<HValue*>* arguments_values = entry->arguments_values();
int arguments_count = arguments_values->length();
PushAndAdd(new(zone()) HWrapReceiver(receiver, function));
for (int i = 1; i < arguments_count; i++) {
Push(arguments_values->at(i));
}
Handle<JSFunction> known_function;
if (function->IsConstant()) {
HConstant* constant_function = HConstant::cast(function);
known_function = Handle<JSFunction>::cast(constant_function->handle());
int args_count = arguments_count - 1; // Excluding receiver.
if (TryInlineApply(known_function, expr, args_count)) return true;
}
Drop(arguments_count - 1);
PushAndAdd(new(zone()) HPushArgument(Pop()));
for (int i = 1; i < arguments_count; i++) {
PushAndAdd(new(zone()) HPushArgument(arguments_values->at(i)));
}
HValue* context = environment()->LookupContext();
HInvokeFunction* call = new(zone()) HInvokeFunction(
context,
function,
known_function,
arguments_count);
Drop(arguments_count);
call->set_position(expr->position());
ast_context()->ReturnInstruction(call, expr->id());
return true;
}
}
// Checks if all maps in |types| are from the same family, i.e., are elements
// transitions of each other. Returns either NULL if they are not from the same
// family, or a Map* indicating the map with the first elements kind of the
// family that is in the list.
static Map* CheckSameElementsFamily(SmallMapList* types) {
if (types->length() <= 1) return NULL;
// Check if all maps belong to the same transition family.
Map* kinds[kFastElementsKindCount];
Map* first_map = *types->first();
ElementsKind first_kind = first_map->elements_kind();
if (!IsFastElementsKind(first_kind)) return NULL;
int first_index = GetSequenceIndexFromFastElementsKind(first_kind);
int last_index = first_index;
for (int i = 0; i < kFastElementsKindCount; i++) kinds[i] = NULL;
kinds[first_index] = first_map;
for (int i = 1; i < types->length(); ++i) {
Map* map = *types->at(i);
ElementsKind elements_kind = map->elements_kind();
if (!IsFastElementsKind(elements_kind)) return NULL;
int index = GetSequenceIndexFromFastElementsKind(elements_kind);
if (index < first_index) {
first_index = index;
} else if (index > last_index) {
last_index = index;
} else if (kinds[index] != map) {
return NULL;
}
kinds[index] = map;
}
Map* current = kinds[first_index];
for (int i = first_index + 1; i <= last_index; i++) {
Map* next = kinds[i];
if (next != NULL) {
ElementsKind current_kind = next->elements_kind();
if (next != current->LookupElementsTransitionMap(current_kind)) {
return NULL;
}
current = next;
}
}
return kinds[first_index];
}
void HOptimizedGraphBuilder::VisitCall(Call* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Expression* callee = expr->expression();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
HInstruction* call = NULL;
Property* prop = callee->AsProperty();
if (prop != NULL) {
if (!prop->key()->IsPropertyName()) {
// Keyed function call.
CHECK_ALIVE(VisitArgument(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
// Push receiver and key like the non-optimized code generator expects it.
HValue* key = Pop();
HValue* receiver = Pop();
Push(key);
Push(receiver);
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HValue* context = environment()->LookupContext();
call = new(zone()) HCallKeyed(context, key, argument_count);
call->set_position(expr->position());
Drop(argument_count + 1); // 1 is the key.
return ast_context()->ReturnInstruction(call, expr->id());
}
// Named function call.
expr->RecordTypeFeedback(oracle(), CALL_AS_METHOD);
if (TryCallApply(expr)) return;
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitExpressions(expr->arguments()));
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
SmallMapList* types = expr->GetReceiverTypes();
bool monomorphic = expr->IsMonomorphic();
Handle<Map> receiver_map;
if (monomorphic) {
receiver_map = (types == NULL || types->is_empty())
? Handle<Map>::null()
: types->first();
} else {
Map* family_map = CheckSameElementsFamily(types);
if (family_map != NULL) {
receiver_map = Handle<Map>(family_map);
monomorphic = expr->ComputeTarget(receiver_map, name);
}
}
HValue* receiver =
environment()->ExpressionStackAt(expr->arguments()->length());
if (monomorphic) {
if (TryInlineBuiltinMethodCall(expr,
receiver,
receiver_map,
expr->check_type())) {
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
expr->check_type() != RECEIVER_MAP_CHECK) {
// When the target has a custom call IC generator, use the IC,
// because it is likely to generate better code. Also use the IC
// when a primitive receiver check is required.
HValue* context = environment()->LookupContext();
call = PreProcessCall(
new(zone()) HCallNamed(context, name, argument_count));
} else {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
if (TryInlineCall(expr)) return;
call = PreProcessCall(
new(zone()) HCallConstantFunction(expr->target(),
argument_count));
}
} else if (types != NULL && types->length() > 1) {
ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
HandlePolymorphicCallNamed(expr, receiver, types, name);
return;
} else {
HValue* context = environment()->LookupContext();
call = PreProcessCall(
new(zone()) HCallNamed(context, name, argument_count));
}
} else {
expr->RecordTypeFeedback(oracle(), CALL_AS_FUNCTION);
VariableProxy* proxy = expr->expression()->AsVariableProxy();
bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
return Bailout("possible direct call to eval");
}
if (global_call) {
Variable* var = proxy->var();
bool known_global_function = false;
// If there is a global property cell for the name at compile time and
// access check is not enabled we assume that the function will not change
// and generate optimized code for calling the function.
LookupResult lookup(isolate());
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
if (type == kUseCell &&
!info()->global_object()->IsAccessCheckNeeded()) {
Handle<GlobalObject> global(info()->global_object());
known_global_function = expr->ComputeGlobalTarget(global, &lookup);
}
if (known_global_function) {
// Push the global object instead of the global receiver because
// code generated by the full code generator expects it.
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
PushAndAdd(global_object);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Pop();
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
// Replace the global object with the global receiver.
HGlobalReceiver* global_receiver =
new(zone()) HGlobalReceiver(global_object);
// Index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
AddInstruction(global_receiver);
ASSERT(environment()->ExpressionStackAt(receiver_index)->
IsGlobalObject());
environment()->SetExpressionStackAt(receiver_index, global_receiver);
if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop.
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineCall(expr)) return;
if (expr->target().is_identical_to(info()->closure())) {
graph()->MarkRecursive();
}
call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(),
argument_count));
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* receiver = new(zone()) HGlobalObject(context);
AddInstruction(receiver);
PushAndAdd(new(zone()) HPushArgument(receiver));
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
call = new(zone()) HCallGlobal(context, var->name(), argument_count);
Drop(argument_count);
}
} else if (expr->IsMonomorphic()) {
// The function is on the stack in the unoptimized code during
// evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
HValue* context = environment()->LookupContext();
HGlobalObject* global = new(zone()) HGlobalObject(context);
AddInstruction(global);
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global);
PushAndAdd(receiver);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function.
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineCall(expr, true)) { // Drop function from environment.
return;
} else {
call = PreProcessCall(
new(zone()) HInvokeFunction(context,
function,
expr->target(),
argument_count));
Drop(1); // The function.
}
} else {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global_object);
AddInstruction(receiver);
PushAndAdd(new(zone()) HPushArgument(receiver));
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
call = new(zone()) HCallFunction(context, function, argument_count);
Drop(argument_count + 1);
}
}
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
}
// Checks whether allocation using the given constructor can be inlined.
static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
return constructor->has_initial_map() &&
constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
constructor->initial_map()->instance_size() < HAllocateObject::kMaxSize;
}
void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
expr->RecordTypeFeedback(oracle());
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
HValue* context = environment()->LookupContext();
if (FLAG_inline_construct &&
expr->IsMonomorphic() &&
IsAllocationInlineable(expr->target())) {
// The constructor function is on the stack in the unoptimized code
// during evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
CHECK_ALIVE(VisitExpressions(expr->arguments()));
Handle<JSFunction> constructor = expr->target();
HValue* check = AddInstruction(
new(zone()) HCheckFunction(function, constructor));
// Force completion of inobject slack tracking before generating
// allocation code to finalize instance size.
if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
constructor->shared()->CompleteInobjectSlackTracking();
}
// Replace the constructor function with a newly allocated receiver.
HInstruction* receiver = new(zone()) HAllocateObject(context, constructor);
// Index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
AddInstruction(receiver);
ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
environment()->SetExpressionStackAt(receiver_index, receiver);
if (TryInlineConstruct(expr, receiver)) return;
// TODO(mstarzinger): For now we remove the previous HAllocateObject and
// add HPushArgument for the arguments in case inlining failed. What we
// actually should do is emit HInvokeFunction on the constructor instead
// of using HCallNew as a fallback.
receiver->DeleteAndReplaceWith(NULL);
check->DeleteAndReplaceWith(NULL);
environment()->SetExpressionStackAt(receiver_index, function);
HInstruction* call = PreProcessCall(
new(zone()) HCallNew(context, function, argument_count));
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
} else {
// The constructor function is both an operand to the instruction and an
// argument to the construct call.
bool use_call_new_array = FLAG_optimize_constructed_arrays &&
!(expr->target().is_null()) &&
*(expr->target()) == isolate()->global_context()->array_function();
CHECK_ALIVE(VisitArgument(expr->expression()));
HValue* constructor = HPushArgument::cast(Top())->argument();
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HCallNew* call;
if (use_call_new_array) {
// TODO(mvstanton): It would be better to use the already created global
// property cell that is shared by full code gen. That way, any transition
// information that happened after crankshaft won't be lost. The right
// way to do that is to begin passing the cell to the type feedback oracle
// instead of just the value in the cell. Do this in a follow-up checkin.
Handle<Object> feedback = oracle()->GetInfo(expr->CallNewFeedbackId());
ASSERT(feedback->IsSmi());
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(feedback);
// TODO(mvstanton): Here we should probably insert code to check if the
// type cell elements kind is different from when we compiled, and deopt
// in that case. Do this in a follow-up checin.
call = new(zone()) HCallNewArray(context, constructor, argument_count,
cell);
} else {
call = new(zone()) HCallNew(context, constructor, argument_count);
}
Drop(argument_count);
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// Support for generating inlined runtime functions.
// Lookup table for generators for runtime calls that are generated inline.
// Elements of the table are member pointers to functions of
// HOptimizedGraphBuilder.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&HOptimizedGraphBuilder::Generate##Name,
const HOptimizedGraphBuilder::InlineFunctionGenerator
HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (expr->is_jsruntime()) {
return Bailout("call to a JavaScript runtime function");
}
const Runtime::Function* function = expr->function();
ASSERT(function != NULL);
if (function->intrinsic_type == Runtime::INLINE) {
ASSERT(expr->name()->length() > 0);
ASSERT(expr->name()->Get(0) == '_');
// Call to an inline function.
int lookup_index = static_cast<int>(function->function_id) -
static_cast<int>(Runtime::kFirstInlineFunction);
ASSERT(lookup_index >= 0);
ASSERT(static_cast<size_t>(lookup_index) <
ARRAY_SIZE(kInlineFunctionGenerators));
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
// Call the inline code generator using the pointer-to-member.
(this->*generator)(expr);
} else {
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HValue* context = environment()->LookupContext();
Handle<String> name = expr->name();
int argument_count = expr->arguments()->length();
HCallRuntime* call =
new(zone()) HCallRuntime(context, name, function, argument_count);
Drop(argument_count);
return ast_context()->ReturnInstruction(call, expr->id());
}
}
void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::DELETE: return VisitDelete(expr);
case Token::VOID: return VisitVoid(expr);
case Token::TYPEOF: return VisitTypeof(expr);
case Token::SUB: return VisitSub(expr);
case Token::BIT_NOT: return VisitBitNot(expr);
case Token::NOT: return VisitNot(expr);
default: UNREACHABLE();
}
}
void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
Property* prop = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (prop != NULL) {
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* key = Pop();
HValue* obj = Pop();
HValue* context = environment()->LookupContext();
HDeleteProperty* instr = new(zone()) HDeleteProperty(context, obj, key);
return ast_context()->ReturnInstruction(instr, expr->id());
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->IsUnallocated()) {
Bailout("delete with global variable");
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global variables is false. 'this' is not
// really a variable, though we implement it as one. The
// subexpression does not have side effects.
HValue* value = var->is_this()
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
Bailout("delete with non-global variable");
}
} else {
// Result of deleting non-property, non-variable reference is true.
// Evaluate the subexpression for side effects.
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantTrue());
}
}
void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
CHECK_ALIVE(VisitForTypeOf(expr->expression()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* instr = new(zone()) HTypeof(context, value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitSub(UnaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* instr =
HMul::New(zone(), context, value, graph()->GetConstantMinus1());
TypeInfo info = oracle()->UnaryType(expr);
Representation rep = ToRepresentation(info);
if (info.IsUninitialized()) {
AddSoftDeoptimize();
info = TypeInfo::Unknown();
}
if (instr->IsBinaryOperation()) {
HBinaryOperation::cast(instr)->set_observed_input_representation(1, rep);
HBinaryOperation::cast(instr)->set_observed_input_representation(2, rep);
}
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitBitNot(UnaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* value = Pop();
TypeInfo info = oracle()->UnaryType(expr);
if (info.IsUninitialized()) {
AddSoftDeoptimize();
}
HInstruction* instr = new(zone()) HBitNot(value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
VisitForControl(expr->expression(),
context->if_false(),
context->if_true());
return;
}
if (ast_context()->IsEffect()) {
VisitForEffect(expr->expression());
return;
}
ASSERT(ast_context()->IsValue());
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->expression(),
materialize_false,
materialize_true));
if (materialize_false->HasPredecessor()) {
materialize_false->SetJoinId(expr->MaterializeFalseId());
set_current_block(materialize_false);
Push(graph()->GetConstantFalse());
} else {
materialize_false = NULL;
}
if (materialize_true->HasPredecessor()) {
materialize_true->SetJoinId(expr->MaterializeTrueId());
set_current_block(materialize_true);
Push(graph()->GetConstantTrue());
} else {
materialize_true = NULL;
}
HBasicBlock* join =
CreateJoin(materialize_false, materialize_true, expr->id());
set_current_block(join);
if (join != NULL) return ast_context()->ReturnValue(Pop());
}
HInstruction* HOptimizedGraphBuilder::BuildIncrement(
bool returns_original_input,
CountOperation* expr) {
// The input to the count operation is on top of the expression stack.
TypeInfo info = oracle()->IncrementType(expr);
Representation rep = ToRepresentation(info);
if (rep.IsTagged()) {
rep = Representation::Integer32();
}
if (returns_original_input) {
// We need an explicit HValue representing ToNumber(input). The
// actual HChange instruction we need is (sometimes) added in a later
// phase, so it is not available now to be used as an input to HAdd and
// as the return value.
HInstruction* number_input = new(zone()) HForceRepresentation(Pop(), rep);
AddInstruction(number_input);
Push(number_input);
}
// The addition has no side effects, so we do not need
// to simulate the expression stack after this instruction.
// Any later failures deopt to the load of the input or earlier.
HConstant* delta = (expr->op() == Token::INC)
? graph()->GetConstant1()
: graph()->GetConstantMinus1();
HValue* context = environment()->LookupContext();
HInstruction* instr = HAdd::New(zone(), context, Top(), delta);
// We can't insert a simulate here, because it would break deoptimization,
// so the HAdd must not have side effects, so we must freeze its
// representation.
instr->AssumeRepresentation(rep);
instr->ClearAllSideEffects();
AddInstruction(instr);
return instr;
}
void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Expression* target = expr->expression();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
if (proxy == NULL && prop == NULL) {
return Bailout("invalid lhs in count operation");
}
// Match the full code generator stack by simulating an extra stack
// element for postfix operations in a non-effect context. The return
// value is ToNumber(input).
bool returns_original_input =
expr->is_postfix() && !ast_context()->IsEffect();
HValue* input = NULL; // ToNumber(original_input).
HValue* after = NULL; // The result after incrementing or decrementing.
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST) {
return Bailout("unsupported count operation with const");
}
// Argument of the count operation is a variable, not a property.
ASSERT(prop == NULL);
CHECK_ALIVE(VisitForValue(target));
after = BuildIncrement(returns_original_input, expr);
input = returns_original_input ? Top() : Pop();
Push(after);
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
after,
expr->position(),
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
Bind(var, after);
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct
// way to detect that the variable is a parameter so we use a
// linear search of the parameter list.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
return Bailout("assignment to parameter in arguments object");
}
}
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
HStoreContextSlot* instr =
new(zone()) HStoreContextSlot(context, var->index(), mode, after);
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("lookup variable in count operation");
}
} else {
// Argument of the count operation is a property.
ASSERT(prop != NULL);
prop->RecordTypeFeedback(oracle(), zone());
if (prop->key()->IsPropertyName()) {
// Named property.
if (returns_original_input) Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map;
HInstruction* load;
bool monomorphic = prop->IsMonomorphic();
if (monomorphic) {
map = prop->GetReceiverTypes()->first();
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
load = BuildCallGetter(object, map, getter, holder);
} else {
load = BuildLoadNamedMonomorphic(object, name, prop, map);
}
} else {
load = BuildLoadNamedGeneric(object, name, prop);
}
PushAndAdd(load);
if (load->HasObservableSideEffects()) {
AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
}
after = BuildIncrement(returns_original_input, expr);
input = Pop();
HInstruction* store;
if (!monomorphic || map->is_observed()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, after));
} else {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
store = BuildCallSetter(object, after, map, setter, holder);
} else {
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
name,
after,
map));
}
}
AddInstruction(store);
// Overwrite the receiver in the bailout environment with the result
// of the operation, and the placeholder with the original value if
// necessary.
environment()->SetExpressionStackAt(0, after);
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
if (store->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
} else {
// Keyed property.
if (returns_original_input) Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
false, // is_store
&has_side_effects);
Push(load);
if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
after = BuildIncrement(returns_original_input, expr);
input = Pop();
expr->RecordTypeFeedback(oracle(), zone());
HandleKeyedElementAccess(obj, key, after, expr, expr->AssignmentId(),
RelocInfo::kNoPosition,
true, // is_store
&has_side_effects);
// Drop the key from the bailout environment. Overwrite the receiver
// with the result of the operation, and the placeholder with the
// original value if necessary.
Drop(1);
environment()->SetExpressionStackAt(0, after);
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
ASSERT(has_side_effects); // Stores always have side effects.
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
}
Drop(returns_original_input ? 2 : 1);
return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
}
HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
HValue* context,
HValue* string,
HValue* index) {
if (string->IsConstant() && index->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
HConstant* c_index = HConstant::cast(index);
if (c_string->HasStringValue() && c_index->HasNumberValue()) {
int32_t i = c_index->NumberValueAsInteger32();
Handle<String> s = c_string->StringValue();
if (i < 0 || i >= s->length()) {
return new(zone()) HConstant(OS::nan_value(), Representation::Double());
}
return new(zone()) HConstant(s->Get(i), Representation::Integer32());
}
}
AddInstruction(new(zone()) HCheckNonSmi(string));
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
HInstruction* length = HStringLength::New(zone(), string);
AddInstruction(length);
HInstruction* checked_index = AddBoundsCheck(index, length);
return new(zone()) HStringCharCodeAt(context, string, checked_index);
}
// Checks if the given shift amounts have form: (sa) and (32 - sa).
static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
HValue* const32_minus_sa) {
if (!const32_minus_sa->IsSub()) return false;
HSub* sub = HSub::cast(const32_minus_sa);
if (sa != sub->right()) return false;
HValue* const32 = sub->left();
if (!const32->IsConstant() ||
HConstant::cast(const32)->Integer32Value() != 32) {
return false;
}
return (sub->right() == sa);
}
// Checks if the left and the right are shift instructions with the oposite
// directions that can be replaced by one rotate right instruction or not.
// Returns the operand and the shift amount for the rotate instruction in the
// former case.
bool HOptimizedGraphBuilder::MatchRotateRight(HValue* left,
HValue* right,
HValue** operand,
HValue** shift_amount) {
HShl* shl;
HShr* shr;
if (left->IsShl() && right->IsShr()) {
shl = HShl::cast(left);
shr = HShr::cast(right);
} else if (left->IsShr() && right->IsShl()) {
shl = HShl::cast(right);
shr = HShr::cast(left);
} else {
return false;
}
if (shl->left() != shr->left()) return false;
if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
!ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
return false;
}
*operand= shr->left();
*shift_amount = shr->right();
return true;
}
bool CanBeZero(HValue *right) {
if (right->IsConstant()) {
HConstant* right_const = HConstant::cast(right);
if (right_const->HasInteger32Value() &&
(right_const->Integer32Value() & 0x1f) != 0) {
return false;
}
}
return true;
}
HInstruction* HOptimizedGraphBuilder::BuildBinaryOperation(
BinaryOperation* expr,
HValue* left,
HValue* right) {
HValue* context = environment()->LookupContext();
TypeInfo left_info, right_info, result_info, combined_info;
oracle()->BinaryType(expr, &left_info, &right_info, &result_info);
Representation left_rep = ToRepresentation(left_info);
Representation right_rep = ToRepresentation(right_info);
Representation result_rep = ToRepresentation(result_info);
if (left_info.IsUninitialized()) {
// Can't have initialized one but not the other.
ASSERT(right_info.IsUninitialized());
AddSoftDeoptimize();
left_info = right_info = TypeInfo::Unknown();
}
HInstruction* instr = NULL;
switch (expr->op()) {
case Token::ADD:
if (left_info.IsString() && right_info.IsString()) {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsString(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsString(right, zone()));
instr = HStringAdd::New(zone(), context, left, right);
} else {
instr = HAdd::New(zone(), context, left, right);
}
break;
case Token::SUB:
instr = HSub::New(zone(), context, left, right);
break;
case Token::MUL:
instr = HMul::New(zone(), context, left, right);
break;
case Token::MOD:
instr = HMod::New(zone(), context, left, right);
break;
case Token::DIV:
instr = HDiv::New(zone(), context, left, right);
break;
case Token::BIT_XOR:
case Token::BIT_AND:
instr = HBitwise::New(zone(), expr->op(), context, left, right);
break;
case Token::BIT_OR: {
HValue* operand, *shift_amount;
if (left_info.IsInteger32() && right_info.IsInteger32() &&
MatchRotateRight(left, right, &operand, &shift_amount)) {
instr = new(zone()) HRor(context, operand, shift_amount);
} else {
instr = HBitwise::New(zone(), expr->op(), context, left, right);
}
break;
}
case Token::SAR:
instr = HSar::New(zone(), context, left, right);
break;
case Token::SHR:
instr = HShr::New(zone(), context, left, right);
if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
CanBeZero(right)) {
graph()->RecordUint32Instruction(instr);
}
break;
case Token::SHL:
instr = HShl::New(zone(), context, left, right);
break;
default:
UNREACHABLE();
}
if (instr->IsBinaryOperation()) {
HBinaryOperation* binop = HBinaryOperation::cast(instr);
binop->set_observed_input_representation(1, left_rep);
binop->set_observed_input_representation(2, right_rep);
binop->initialize_output_representation(result_rep);
}
return instr;
}
// Check for the form (%_ClassOf(foo) === 'BarClass').
static bool IsClassOfTest(CompareOperation* expr) {
if (expr->op() != Token::EQ_STRICT) return false;
CallRuntime* call = expr->left()->AsCallRuntime();
if (call == NULL) return false;
Literal* literal = expr->right()->AsLiteral();
if (literal == NULL) return false;
if (!literal->handle()->IsString()) return false;
if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
return false;
}
ASSERT(call->arguments()->length() == 1);
return true;
}
void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::COMMA:
return VisitComma(expr);
case Token::OR:
case Token::AND:
return VisitLogicalExpression(expr);
default:
return VisitArithmeticExpression(expr);
}
}
void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->left()));
// Visit the right subexpression in the same AST context as the entire
// expression.
Visit(expr->right());
}
void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
bool is_logical_and = expr->op() == Token::AND;
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
// Translate left subexpression.
HBasicBlock* eval_right = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(),
eval_right,
context->if_false()));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(),
context->if_true(),
eval_right));
}
// Translate right subexpression by visiting it in the same AST
// context as the entire expression.
if (eval_right->HasPredecessor()) {
eval_right->SetJoinId(expr->RightId());
set_current_block(eval_right);
Visit(expr->right());
}
} else if (ast_context()->IsValue()) {
CHECK_ALIVE(VisitForValue(expr->left()));
ASSERT(current_block() != NULL);
HValue* left_value = Top();
if (left_value->IsConstant()) {
HConstant* left_constant = HConstant::cast(left_value);
if ((is_logical_and && left_constant->BooleanValue()) ||
(!is_logical_and && !left_constant->BooleanValue())) {
Drop(1); // left_value.
CHECK_BAILOUT(VisitForValue(expr->right()));
}
return ast_context()->ReturnValue(Pop());
}
// We need an extra block to maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* eval_right = graph()->CreateBasicBlock();
TypeFeedbackId test_id = expr->left()->test_id();
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
HBranch* test = is_logical_and
? new(zone()) HBranch(left_value, eval_right, empty_block, expected)
: new(zone()) HBranch(left_value, empty_block, eval_right, expected);
current_block()->Finish(test);
set_current_block(eval_right);
Drop(1); // Value of the left subexpression.
CHECK_BAILOUT(VisitForValue(expr->right()));
HBasicBlock* join_block =
CreateJoin(empty_block, current_block(), expr->id());
set_current_block(join_block);
return ast_context()->ReturnValue(Pop());
} else {
ASSERT(ast_context()->IsEffect());
// In an effect context, we don't need the value of the left subexpression,
// only its control flow and side effects. We need an extra block to
// maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* right_block = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
}
// TODO(kmillikin): Find a way to fix this. It's ugly that there are
// actually two empty blocks (one here and one inserted by
// TestContext::BuildBranch, and that they both have an HSimulate though the
// second one is not a merge node, and that we really have no good AST ID to
// put on that first HSimulate.
if (empty_block->HasPredecessor()) {
empty_block->SetJoinId(expr->id());
} else {
empty_block = NULL;
}
if (right_block->HasPredecessor()) {
right_block->SetJoinId(expr->RightId());
set_current_block(right_block);
CHECK_BAILOUT(VisitForEffect(expr->right()));
right_block = current_block();
} else {
right_block = NULL;
}
HBasicBlock* join_block =
CreateJoin(empty_block, right_block, expr->id());
set_current_block(join_block);
// We did not materialize any value in the predecessor environments,
// so there is no need to handle it here.
}
}
void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(expr, left, right);
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
Representation HOptimizedGraphBuilder::ToRepresentation(TypeInfo info) {
if (info.IsUninitialized()) return Representation::None();
if (info.IsSmi()) return Representation::Integer32();
if (info.IsInteger32()) return Representation::Integer32();
if (info.IsDouble()) return Representation::Double();
if (info.IsNumber()) return Representation::Double();
return Representation::Tagged();
}
void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
HTypeof* typeof_expr,
Handle<String> check) {
// Note: The HTypeof itself is removed during canonicalization, if possible.
HValue* value = typeof_expr->value();
2011-09-19 14:50:33 +00:00
HTypeofIsAndBranch* instr = new(zone()) HTypeofIsAndBranch(value, check);
instr->set_position(expr->position());
return ast_context()->ReturnControl(instr, expr->id());
}
static bool MatchLiteralCompareNil(HValue* left,
Token::Value op,
HValue* right,
Handle<Object> nil,
HValue** expr) {
if (left->IsConstant() &&
HConstant::cast(left)->handle().is_identical_to(nil) &&
Token::IsEqualityOp(op)) {
*expr = right;
2011-09-19 14:50:33 +00:00
return true;
}
return false;
}
2011-09-19 14:50:33 +00:00
static bool MatchLiteralCompareTypeof(HValue* left,
Token::Value op,
HValue* right,
HTypeof** typeof_expr,
Handle<String>* check) {
if (left->IsTypeof() &&
Token::IsEqualityOp(op) &&
right->IsConstant() &&
HConstant::cast(right)->handle()->IsString()) {
*typeof_expr = HTypeof::cast(left);
*check = Handle<String>::cast(HConstant::cast(right)->handle());
return true;
}
return false;
}
static bool IsLiteralCompareTypeof(HValue* left,
Token::Value op,
HValue* right,
HTypeof** typeof_expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left, op, right, typeof_expr, check) ||
MatchLiteralCompareTypeof(right, op, left, typeof_expr, check);
}
static bool IsLiteralCompareNil(HValue* left,
Token::Value op,
HValue* right,
Handle<Object> nil,
HValue** expr) {
return MatchLiteralCompareNil(left, op, right, nil, expr) ||
MatchLiteralCompareNil(right, op, left, nil, expr);
}
static bool IsLiteralCompareBool(HValue* left,
Token::Value op,
HValue* right) {
return op == Token::EQ_STRICT &&
((left->IsConstant() && HConstant::cast(left)->handle()->IsBoolean()) ||
(right->IsConstant() && HConstant::cast(right)->handle()->IsBoolean()));
}
void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (IsClassOfTest(expr)) {
CallRuntime* call = expr->left()->AsCallRuntime();
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
Literal* literal = expr->right()->AsLiteral();
Handle<String> rhs = Handle<String>::cast(literal->handle());
HClassOfTestAndBranch* instr =
new(zone()) HClassOfTestAndBranch(value, rhs);
instr->set_position(expr->position());
return ast_context()->ReturnControl(instr, expr->id());
}
TypeInfo left_type, right_type, overall_type_info;
oracle()->CompareType(expr, &left_type, &right_type, &overall_type_info);
Representation combined_rep = ToRepresentation(overall_type_info);
Representation left_rep = ToRepresentation(left_type);
Representation right_rep = ToRepresentation(right_type);
// Check if this expression was ever executed according to type feedback.
// Note that for the special typeof/null/undefined cases we get unknown here.
if (overall_type_info.IsUninitialized()) {
AddSoftDeoptimize();
overall_type_info = left_type = right_type = TypeInfo::Unknown();
}
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
HValue* context = environment()->LookupContext();
HValue* right = Pop();
HValue* left = Pop();
Token::Value op = expr->op();
HTypeof* typeof_expr = NULL;
Handle<String> check;
if (IsLiteralCompareTypeof(left, op, right, &typeof_expr, &check)) {
return HandleLiteralCompareTypeof(expr, typeof_expr, check);
}
HValue* sub_expr = NULL;
Factory* f = isolate()->factory();
if (IsLiteralCompareNil(left, op, right, f->undefined_value(), &sub_expr)) {
return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
}
if (IsLiteralCompareNil(left, op, right, f->null_value(), &sub_expr)) {
return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
}
if (IsLiteralCompareBool(left, op, right)) {
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
if (op == Token::INSTANCEOF) {
// Check to see if the rhs of the instanceof is a global function not
// residing in new space. If it is we assume that the function will stay the
// same.
Handle<JSFunction> target = Handle<JSFunction>::null();
VariableProxy* proxy = expr->right()->AsVariableProxy();
bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
if (global_function &&
info()->has_global_object() &&
!info()->global_object()->IsAccessCheckNeeded()) {
Handle<String> name = proxy->name();
Handle<GlobalObject> global(info()->global_object());
LookupResult lookup(isolate());
global->Lookup(*name, &lookup);
if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!isolate()->heap()->InNewSpace(*candidate)) {
target = candidate;
}
}
}
// If the target is not null we have found a known global function that is
// assumed to stay the same for this instanceof.
if (target.is_null()) {
HInstanceOf* result = new(zone()) HInstanceOf(context, left, right);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else {
AddInstruction(new(zone()) HCheckFunction(right, target));
HInstanceOfKnownGlobal* result =
new(zone()) HInstanceOfKnownGlobal(context, left, target);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
}
} else if (op == Token::IN) {
HIn* result = new(zone()) HIn(context, left, right);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else if (overall_type_info.IsNonPrimitive()) {
switch (op) {
case Token::EQ:
case Token::EQ_STRICT: {
// Can we get away with map check and not instance type check?
Handle<Map> map = oracle()->GetCompareMap(expr);
if (!map.is_null()) {
AddCheckMapsWithTransitions(left, map);
AddCheckMapsWithTransitions(right, map);
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
} else {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsSpecObject(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsSpecObject(right, zone()));
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
}
default:
return Bailout("Unsupported non-primitive compare");
}
} else if (overall_type_info.IsInternalizedString() &&
Token::IsEqualityOp(op)) {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsInternalizedString(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsInternalizedString(right, zone()));
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
} else {
if (combined_rep.IsTagged() || combined_rep.IsNone()) {
HCompareGeneric* result =
new(zone()) HCompareGeneric(context, left, right, op);
result->set_observed_input_representation(1, left_rep);
result->set_observed_input_representation(2, right_rep);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else {
HCompareIDAndBranch* result =
new(zone()) HCompareIDAndBranch(left, right, op);
result->set_observed_input_representation(left_rep, right_rep);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
}
}
void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
HValue* value,
NilValue nil) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
2011-09-19 14:50:33 +00:00
EqualityKind kind =
expr->op() == Token::EQ_STRICT ? kStrictEquality : kNonStrictEquality;
HIfContinuation continuation;
TypeFeedbackId id = expr->CompareOperationFeedbackId();
CompareNilICStub::Types types;
if (kind == kStrictEquality) {
if (nil == kNullValue) {
types = CompareNilICStub::kCompareAgainstNull;
} else {
types = CompareNilICStub::kCompareAgainstUndefined;
}
} else {
types = static_cast<CompareNilICStub::Types>(
oracle()->CompareNilTypes(id));
if (types == 0) types = CompareNilICStub::kFullCompare;
}
Handle<Map> map_handle(oracle()->CompareNilMonomorphicReceiverType(id));
BuildCompareNil(value, kind, types, map_handle,
expr->position(), &continuation);
return ast_context()->ReturnContinuation(&continuation, expr->id());
}
HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
// If we share optimized code between different closures, the
// this-function is not a constant, except inside an inlined body.
if (function_state()->outer() != NULL) {
return new(zone()) HConstant(
function_state()->compilation_info()->closure(),
Representation::Tagged());
} else {
return new(zone()) HThisFunction;
}
}
HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
HValue* context,
Handle<JSObject> boilerplate_object,
Handle<JSObject> original_boilerplate_object,
int data_size,
int pointer_size,
AllocationSiteMode mode) {
Zone* zone = this->zone();
int total_size = data_size + pointer_size;
NoObservableSideEffectsScope no_effects(this);
HAllocate::Flags flags = HAllocate::CAN_ALLOCATE_IN_NEW_SPACE;
// TODO(hpayer): add support for old data space
if (FLAG_pretenure_literals &&
isolate()->heap()->ShouldGloballyPretenure() &&
data_size == 0) {
flags = static_cast<HAllocate::Flags>(
flags | HAllocate::CAN_ALLOCATE_IN_OLD_POINTER_SPACE);
}
HValue* size_in_bytes =
AddInstruction(new(zone) HConstant(total_size,
Representation::Integer32()));
HInstruction* result =
AddInstruction(new(zone) HAllocate(context,
size_in_bytes,
HType::JSObject(),
flags));
int offset = 0;
BuildEmitDeepCopy(boilerplate_object, original_boilerplate_object, result,
&offset, mode);
return result;
}
void HOptimizedGraphBuilder::BuildEmitDeepCopy(
Handle<JSObject> boilerplate_object,
Handle<JSObject> original_boilerplate_object,
HInstruction* target,
int* offset,
AllocationSiteMode mode) {
Zone* zone = this->zone();
Factory* factory = isolate()->factory();
HInstruction* original_boilerplate = AddInstruction(new(zone) HConstant(
original_boilerplate_object, Representation::Tagged()));
bool create_allocation_site_info = mode == TRACK_ALLOCATION_SITE &&
boilerplate_object->map()->CanTrackAllocationSite();
// Only elements backing stores for non-COW arrays need to be copied.
Handle<FixedArrayBase> elements(boilerplate_object->elements());
Handle<FixedArrayBase> original_elements(
original_boilerplate_object->elements());
ElementsKind kind = boilerplate_object->map()->elements_kind();
// Increase the offset so that subsequent objects end up right after
// this object and its backing store.
int object_offset = *offset;
int object_size = boilerplate_object->map()->instance_size();
int elements_size = (elements->length() > 0 &&
elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
elements->Size() : 0;
int elements_offset = *offset + object_size;
int inobject_properties = boilerplate_object->map()->inobject_properties();
if (create_allocation_site_info) {
elements_offset += AllocationSiteInfo::kSize;
*offset += AllocationSiteInfo::kSize;
}
*offset += object_size + elements_size;
HValue* object_elements = BuildCopyObjectHeader(boilerplate_object, target,
object_offset, elements_offset, elements_size);
// Copy in-object properties.
HValue* object_properties =
AddInstruction(new(zone) HInnerAllocatedObject(target, object_offset));
for (int i = 0; i < inobject_properties; i++) {
Handle<Object> value =
Handle<Object>(boilerplate_object->InObjectPropertyAt(i),
isolate());
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
Handle<JSObject> original_value_object = Handle<JSObject>::cast(
Handle<Object>(original_boilerplate_object->InObjectPropertyAt(i),
isolate()));
HInstruction* value_instruction =
AddInstruction(new(zone) HInnerAllocatedObject(target, *offset));
// TODO(verwaest): choose correct storage.
AddInstruction(new(zone) HStoreNamedField(
object_properties, factory->unknown_field_string(), value_instruction,
true, Representation::Tagged(),
boilerplate_object->GetInObjectPropertyOffset(i)));
BuildEmitDeepCopy(value_object, original_value_object, target,
offset, DONT_TRACK_ALLOCATION_SITE);
} else {
// TODO(verwaest): choose correct storage.
HInstruction* value_instruction = AddInstruction(new(zone) HConstant(
value, Representation::Tagged()));
AddInstruction(new(zone) HStoreNamedField(
object_properties, factory->unknown_field_string(), value_instruction,
true, Representation::Tagged(),
boilerplate_object->GetInObjectPropertyOffset(i)));
}
}
// Build Allocation Site Info if desired
if (create_allocation_site_info) {
BuildCreateAllocationSiteInfo(target, JSArray::kSize, original_boilerplate);
}
if (object_elements != NULL) {
HInstruction* boilerplate_elements = AddInstruction(new(zone) HConstant(
elements, Representation::Tagged()));
int elements_length = elements->length();
HValue* object_elements_length =
AddInstruction(new(zone) HConstant(
elements_length, Representation::Integer32()));
BuildInitializeElements(object_elements, kind, object_elements_length);
// Copy elements backing store content.
if (elements->IsFixedDoubleArray()) {
for (int i = 0; i < elements_length; i++) {
HValue* key_constant =
AddInstruction(new(zone) HConstant(i, Representation::Integer32()));
HInstruction* value_instruction =
AddInstruction(new(zone) HLoadKeyed(
boilerplate_elements, key_constant, NULL, kind));
AddInstruction(new(zone) HStoreKeyed(
object_elements, key_constant, value_instruction, kind));
}
} else if (elements->IsFixedArray()) {
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
Handle<FixedArray> original_fast_elements =
Handle<FixedArray>::cast(original_elements);
for (int i = 0; i < elements_length; i++) {
Handle<Object> value(fast_elements->get(i), isolate());
HValue* key_constant =
AddInstruction(new(zone) HConstant(i, Representation::Integer32()));
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
Handle<JSObject> original_value_object = Handle<JSObject>::cast(
Handle<Object>(original_fast_elements->get(i), isolate()));
HInstruction* value_instruction =
AddInstruction(new(zone) HInnerAllocatedObject(target, *offset));
AddInstruction(new(zone) HStoreKeyed(
object_elements, key_constant, value_instruction, kind));
BuildEmitDeepCopy(value_object, original_value_object, target,
offset, DONT_TRACK_ALLOCATION_SITE);
} else {
HInstruction* value_instruction =
AddInstruction(new(zone) HLoadKeyed(
boilerplate_elements, key_constant, NULL, kind));
AddInstruction(new(zone) HStoreKeyed(
object_elements, key_constant, value_instruction, kind));
}
}
} else {
UNREACHABLE();
}
}
}
HValue* HOptimizedGraphBuilder::BuildCopyObjectHeader(
Handle<JSObject> boilerplate_object,
HInstruction* target,
int object_offset,
int elements_offset,
int elements_size) {
ASSERT(boilerplate_object->properties()->length() == 0);
Zone* zone = this->zone();
Factory* factory = isolate()->factory();
HValue* result = NULL;
HValue* object_header =
AddInstruction(new(zone) HInnerAllocatedObject(target, object_offset));
Handle<Map> boilerplate_object_map(boilerplate_object->map());
BuildStoreMap(object_header, boilerplate_object_map);
HInstruction* elements;
if (elements_size == 0) {
Handle<Object> elements_field =
Handle<Object>(boilerplate_object->elements(), isolate());
elements = AddInstruction(new(zone) HConstant(
elements_field, Representation::Tagged()));
} else {
elements = AddInstruction(new(zone) HInnerAllocatedObject(
target, elements_offset));
result = elements;
}
HInstruction* elements_store = AddInstruction(new(zone) HStoreNamedField(
object_header,
factory->elements_field_string(),
elements,
true, Representation::Tagged(), JSObject::kElementsOffset));
elements_store->SetGVNFlag(kChangesElementsPointer);
Handle<Object> properties_field =
Handle<Object>(boilerplate_object->properties(), isolate());
ASSERT(*properties_field == isolate()->heap()->empty_fixed_array());
HInstruction* properties = AddInstruction(new(zone) HConstant(
properties_field, Representation::None()));
AddInstruction(new(zone) HStoreNamedField(object_header,
factory->empty_string(),
properties, true,
Representation::Tagged(),
JSObject::kPropertiesOffset));
if (boilerplate_object->IsJSArray()) {
Handle<JSArray> boilerplate_array =
Handle<JSArray>::cast(boilerplate_object);
Handle<Object> length_field =
Handle<Object>(boilerplate_array->length(), isolate());
HInstruction* length = AddInstruction(new(zone) HConstant(
length_field, Representation::None()));
ASSERT(boilerplate_array->length()->IsSmi());
Representation representation =
IsFastElementsKind(boilerplate_array->GetElementsKind())
? Representation::Smi() : Representation::Tagged();
HInstruction* length_store = AddInstruction(new(zone) HStoreNamedField(
object_header,
factory->length_field_string(),
length,
true, representation, JSArray::kLengthOffset));
length_store->SetGVNFlag(kChangesArrayLengths);
}
return result;
}
void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HInstruction* instr = BuildThisFunction();
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
ASSERT(globals_.is_empty());
AstVisitor::VisitDeclarations(declarations);
if (!globals_.is_empty()) {
Handle<FixedArray> array =
isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
int flags = DeclareGlobalsEvalFlag::encode(info()->is_eval()) |
DeclareGlobalsNativeFlag::encode(info()->is_native()) |
DeclareGlobalsLanguageMode::encode(info()->language_mode());
HInstruction* result = new(zone()) HDeclareGlobals(
environment()->LookupContext(), array, flags);
AddInstruction(result);
globals_.Clear();
}
}
void HOptimizedGraphBuilder::VisitVariableDeclaration(
VariableDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_.Add(variable->name(), zone());
globals_.Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(), zone());
return;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
environment()->Bind(variable, value);
}
break;
case Variable::CONTEXT:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
HValue* context = environment()->LookupContext();
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(proxy->id(), REMOVABLE_SIMULATE);
}
}
break;
case Variable::LOOKUP:
return Bailout("unsupported lookup slot in declaration");
}
}
void HOptimizedGraphBuilder::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_.Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(declaration->fun(), info()->script());
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_.Add(function, zone());
return;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
environment()->Bind(variable, value);
break;
}
case Variable::CONTEXT: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(proxy->id(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("unsupported lookup slot in declaration");
}
}
void HOptimizedGraphBuilder::VisitModuleDeclaration(
ModuleDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitImportDeclaration(
ImportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitExportDeclaration(
ExportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
Get rid of static module allocation, do it in code. Modules now have their own local scope, represented by their own context. Module instance objects have an accessor for every export that forwards access to the respective slot from the module's context. (Exports that are modules themselves, however, are simple data properties.) All modules have a _hosting_ scope/context, which (currently) is the (innermost) enclosing global scope. To deal with recursion, nested modules are hosted by the same scope as global ones. For every (global or nested) module literal, the hosting context has an internal slot that points directly to the respective module context. This enables quick access to (statically resolved) module members by 2-dimensional access through the hosting context. For example, module A { let x; module B { let y; } } module C { let z; } allocates contexts as follows: [header| .A | .B | .C | A | C ] (global) | | | | | +-- [header| z ] (module) | | | +------- [header| y ] (module) | +------------ [header| x | B ] (module) Here, .A, .B, .C are the internal slots pointing to the hosted module contexts, whereas A, B, C hold the actual instance objects (note that every module context also points to the respective instance object through its extension slot in the header). To deal with arbitrary recursion and aliases between modules, they are created and initialized in several stages. Each stage applies to all modules in the hosting global scope, including nested ones. 1. Allocate: for each module _literal_, allocate the module contexts and respective instance object and wire them up. This happens in the PushModuleContext runtime function, as generated by AllocateModules (invoked by VisitDeclarations in the hosting scope). 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), assign the respective instance object to respective local variables. This happens in VisitModuleDeclaration, and uses the instance objects created in the previous stage. For each module _literal_, this phase also constructs a module descriptor for the next stage. This happens in VisitModuleLiteral. 3. Populate: invoke the DeclareModules runtime function to populate each _instance_ object with accessors for it exports. This is generated by DeclareModules (invoked by VisitDeclarations in the hosting scope again), and uses the descriptors generated in the previous stage. 4. Initialize: execute the module bodies (and other code) in sequence. This happens by the separate statements generated for module bodies. To reenter the module scopes properly, the parser inserted ModuleStatements. R=mstarzinger@chromium.org,svenpanne@chromium.org BUG= Review URL: https://codereview.chromium.org/11093074 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13033 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-11-22 10:25:22 +00:00
UNREACHABLE();
}
// Generators for inline runtime functions.
// Support for types.
void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsSmiAndBranch* result = new(zone()) HIsSmiAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_FUNCTION_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasCachedArrayIndexAndBranch* result =
new(zone()) HHasCachedArrayIndexAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_ARRAY_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_REGEXP_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsObjectAndBranch* result = new(zone()) HIsObjectAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
return Bailout("inlined runtime function: IsNonNegativeSmi");
}
void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsUndetectableAndBranch* result =
new(zone()) HIsUndetectableAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
CallRuntime* call) {
return Bailout(
"inlined runtime function: IsStringWrapperSafeForDefaultValueOf");
}
// Support for construct call checks.
void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
ASSERT(call->arguments()->length() == 0);
if (function_state()->outer() != NULL) {
// We are generating graph for inlined function.
HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
return ast_context()->ReturnControl(new(zone()) HIsConstructCallAndBranch,
call->id());
}
}
// Support for arguments.length and arguments[?].
void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
// Our implementation of arguments (based on this stack frame or an
// adapter below it) does not work for inlined functions. This runtime
// function is blacklisted by AstNode::IsInlineable.
ASSERT(function_state()->outer() == NULL);
ASSERT(call->arguments()->length() == 0);
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HArgumentsLength* result = new(zone()) HArgumentsLength(elements);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
// Our implementation of arguments (based on this stack frame or an
// adapter below it) does not work for inlined functions. This runtime
// function is blacklisted by AstNode::IsInlineable.
ASSERT(function_state()->outer() == NULL);
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* index = Pop();
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements));
HInstruction* checked_index = AddBoundsCheck(index, length);
HAccessArgumentsAt* result =
new(zone()) HAccessArgumentsAt(elements, length, checked_index);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for accessing the class and value fields of an object.
void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
// The special form detected by IsClassOfTest is detected before we get here
// and does not cause a bailout.
return Bailout("inlined runtime function: ClassOf");
}
void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HValueOf* result = new(zone()) HValueOf(value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->handle()));
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* date = Pop();
HDateField* result = new(zone()) HDateField(date, index);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
CallRuntime* call) {
ASSERT(call->arguments()->length() == 3);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
HValue* value = Pop();
HValue* index = Pop();
HValue* string = Pop();
HSeqStringSetChar* result = new(zone()) HSeqStringSetChar(
String::ONE_BYTE_ENCODING, string, index, value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
CallRuntime* call) {
ASSERT(call->arguments()->length() == 3);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
HValue* value = Pop();
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code = BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
HSeqStringSetChar* result = new(zone()) HSeqStringSetChar(
String::TWO_BYTE_ENCODING, string, index, value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* value = Pop();
HValue* object = Pop();
// Check if object is a not a smi.
HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(object);
HBasicBlock* if_smi = graph()->CreateBasicBlock();
HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
HBasicBlock* join = graph()->CreateBasicBlock();
smicheck->SetSuccessorAt(0, if_smi);
smicheck->SetSuccessorAt(1, if_heap_object);
current_block()->Finish(smicheck);
if_smi->Goto(join);
// Check if object is a JSValue.
set_current_block(if_heap_object);
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(object, JS_VALUE_TYPE);
HBasicBlock* if_js_value = graph()->CreateBasicBlock();
HBasicBlock* not_js_value = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_js_value);
typecheck->SetSuccessorAt(1, not_js_value);
current_block()->Finish(typecheck);
not_js_value->Goto(join);
// Create in-object property store to kValueOffset.
set_current_block(if_js_value);
Handle<String> name = isolate()->factory()->undefined_string();
AddInstruction(new(zone()) HStoreNamedField(object,
name,
value,
true, // in-object store.
Representation::Tagged(),
JSValue::kValueOffset));
if_js_value->Goto(join);
join->SetJoinId(call->id());
set_current_block(join);
return ast_context()->ReturnValue(value);
}
// Fast support for charCodeAt(n).
void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* result = BuildStringCharCodeAt(context, string, index);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* char_code = Pop();
HValue* context = environment()->LookupContext();
HInstruction* result = HStringCharFromCode::New(zone(), context, char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code = BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
HInstruction* result = HStringCharFromCode::New(zone(), context, char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for object equality testing.
void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) {
// %_Log is ignored in optimized code.
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
// Fast support for Math.random().
void HOptimizedGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HRandom* result = new(zone()) HRandom(global_object);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for StringAdd.
void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2);
Drop(2);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for SubString.
void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
ASSERT_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3);
Drop(3);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for StringCompare.
void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::StringCompare, 2);
Drop(2);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for direct calls from JavaScript to native RegExp code.
void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
ASSERT_EQ(4, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4);
Drop(4);
return ast_context()->ReturnInstruction(result, call->id());
}
// Construct a RegExp exec result with two in-object properties.
void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
ASSERT_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3);
Drop(3);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for fast native caches.
void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
return Bailout("inlined runtime function: GetFromCache");
}
// Fast support for number to string.
void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::NumberToString, 1);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast call for custom callbacks.
void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
// 1 ~ The function to call is not itself an argument to the call.
int arg_count = call->arguments()->length() - 1;
ASSERT(arg_count >= 1); // There's always at least a receiver.
for (int i = 0; i < arg_count; ++i) {
CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
}
CHECK_ALIVE(VisitForValue(call->arguments()->last()));
HValue* function = Pop();
HValue* context = environment()->LookupContext();
// Branch for function proxies, or other non-functions.
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(function, JS_FUNCTION_TYPE);
HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
HBasicBlock* join = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_jsfunction);
typecheck->SetSuccessorAt(1, if_nonfunction);
current_block()->Finish(typecheck);
set_current_block(if_jsfunction);
HInstruction* invoke_result = AddInstruction(
new(zone()) HInvokeFunction(context, function, arg_count));
Drop(arg_count);
Push(invoke_result);
if_jsfunction->Goto(join);
set_current_block(if_nonfunction);
HInstruction* call_result = AddInstruction(
new(zone()) HCallFunction(context, function, arg_count));
Drop(arg_count);
Push(call_result);
if_nonfunction->Goto(join);
set_current_block(join);
join->SetJoinId(call->id());
return ast_context()->ReturnValue(Pop());
}
// Fast call to math functions.
void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* result = HPower::New(zone(), left, right);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathSin(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::SIN);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathCos(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::COS);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathTan(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::TAN);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::LOG);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* result =
HUnaryMathOperation::New(zone(), context, value, kMathSqrt);
return ast_context()->ReturnInstruction(result, call->id());
}
// Check whether two RegExps are equivalent
void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
return Bailout("inlined runtime function: IsRegExpEquivalent");
}
void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
return Bailout("inlined runtime function: FastAsciiArrayJoin");
}
// Support for generators.
void HOptimizedGraphBuilder::GenerateGeneratorSend(CallRuntime* call) {
return Bailout("inlined runtime function: GeneratorSend");
}
void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
return Bailout("inlined runtime function: GeneratorThrow");
}
#undef CHECK_BAILOUT
#undef CHECK_ALIVE
HEnvironment::HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure,
Zone* zone)
: closure_(closure),
values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(1),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
}
HEnvironment::HEnvironment(Zone* zone, int parameter_count)
: values_(0, zone),
frame_type_(STUB),
parameter_count_(parameter_count),
specials_count_(1),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Initialize(parameter_count, 0, 0);
}
HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
: values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(0),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(other->ast_id()),
zone_(zone) {
Initialize(other);
}
HEnvironment::HEnvironment(HEnvironment* outer,
Handle<JSFunction> closure,
FrameType frame_type,
int arguments,
Zone* zone)
: closure_(closure),
values_(arguments, zone),
frame_type_(frame_type),
parameter_count_(arguments),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
}
void HEnvironment::Initialize(int parameter_count,
int local_count,
int stack_height) {
parameter_count_ = parameter_count;
local_count_ = local_count;
// Avoid reallocating the temporaries' backing store on the first Push.
int total = parameter_count + specials_count_ + local_count + stack_height;
values_.Initialize(total + 4, zone());
for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
}
void HEnvironment::Initialize(const HEnvironment* other) {
closure_ = other->closure();
values_.AddAll(other->values_, zone());
assigned_variables_.Union(other->assigned_variables_, zone());
frame_type_ = other->frame_type_;
parameter_count_ = other->parameter_count_;
local_count_ = other->local_count_;
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
entry_ = other->entry_;
pop_count_ = other->pop_count_;
push_count_ = other->push_count_;
specials_count_ = other->specials_count_;
ast_id_ = other->ast_id_;
}
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
ASSERT(!block->IsLoopHeader());
ASSERT(values_.length() == other->values_.length());
int length = values_.length();
for (int i = 0; i < length; ++i) {
HValue* value = values_[i];
if (value != NULL && value->IsPhi() && value->block() == block) {
// There is already a phi for the i'th value.
HPhi* phi = HPhi::cast(value);
// Assert index is correct and that we haven't missed an incoming edge.
ASSERT(phi->merged_index() == i);
ASSERT(phi->OperandCount() == block->predecessors()->length());
phi->AddInput(other->values_[i]);
} else if (values_[i] != other->values_[i]) {
// There is a fresh value on the incoming edge, a phi is needed.
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
HPhi* phi = new(zone()) HPhi(i, zone());
HValue* old_value = values_[i];
for (int j = 0; j < block->predecessors()->length(); j++) {
phi->AddInput(old_value);
}
phi->AddInput(other->values_[i]);
this->values_[i] = phi;
block->AddPhi(phi);
}
}
}
void HEnvironment::Bind(int index, HValue* value) {
ASSERT(value != NULL);
assigned_variables_.Add(index, zone());
values_[index] = value;
}
bool HEnvironment::HasExpressionAt(int index) const {
return index >= parameter_count_ + specials_count_ + local_count_;
}
bool HEnvironment::ExpressionStackIsEmpty() const {
ASSERT(length() >= first_expression_index());
return length() == first_expression_index();
}
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
int count = index_from_top + 1;
int index = values_.length() - count;
ASSERT(HasExpressionAt(index));
// The push count must include at least the element in question or else
// the new value will not be included in this environment's history.
if (push_count_ < count) {
// This is the same effect as popping then re-pushing 'count' elements.
pop_count_ += (count - push_count_);
push_count_ = count;
}
values_[index] = value;
}
void HEnvironment::Drop(int count) {
for (int i = 0; i < count; ++i) {
Pop();
}
}
HEnvironment* HEnvironment::Copy() const {
return new(zone()) HEnvironment(this, zone());
}
HEnvironment* HEnvironment::CopyWithoutHistory() const {
HEnvironment* result = Copy();
result->ClearHistory();
return result;
}
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
HEnvironment* new_env = Copy();
for (int i = 0; i < values_.length(); ++i) {
HPhi* phi = new(zone()) HPhi(i, zone());
phi->AddInput(values_[i]);
new_env->values_[i] = phi;
loop_header->AddPhi(phi);
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
Handle<JSFunction> target,
FrameType frame_type,
int arguments) const {
HEnvironment* new_env =
new(zone()) HEnvironment(outer, target, frame_type,
arguments + 1, zone());
for (int i = 0; i <= arguments; ++i) { // Include receiver.
new_env->Push(ExpressionStackAt(arguments - i));
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CopyForInlining(
Handle<JSFunction> target,
int arguments,
FunctionLiteral* function,
HConstant* undefined,
InliningKind inlining_kind,
bool undefined_receiver) const {
ASSERT(frame_type() == JS_FUNCTION);
// Outer environment is a copy of this one without the arguments.
int arity = function->scope()->num_parameters();
HEnvironment* outer = Copy();
outer->Drop(arguments + 1); // Including receiver.
outer->ClearHistory();
if (inlining_kind == CONSTRUCT_CALL_RETURN) {
// Create artificial constructor stub environment. The receiver should
// actually be the constructor function, but we pass the newly allocated
// object instead, DoComputeConstructStubFrame() relies on that.
outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
} else if (inlining_kind == GETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for restoring the
// correct context.
outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
} else if (inlining_kind == SETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for temporarily saving
// the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
}
if (arity != arguments) {
// Create artificial arguments adaptation environment.
outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
}
HEnvironment* inner =
new(zone()) HEnvironment(outer, function->scope(), target, zone());
// Get the argument values from the original environment.
for (int i = 0; i <= arity; ++i) { // Include receiver.
HValue* push = (i <= arguments) ?
ExpressionStackAt(arguments - i) : undefined;
inner->SetValueAt(i, push);
}
// If the function we are inlining is a strict mode function or a
// builtin function, pass undefined as the receiver for function
// calls (instead of the global receiver).
if (undefined_receiver) {
inner->SetValueAt(0, undefined);
}
inner->SetValueAt(arity + 1, LookupContext());
for (int i = arity + 2; i < inner->length(); ++i) {
inner->SetValueAt(i, undefined);
}
inner->set_ast_id(BailoutId::FunctionEntry());
return inner;
}
void HEnvironment::PrintTo(StringStream* stream) {
for (int i = 0; i < length(); i++) {
if (i == 0) stream->Add("parameters\n");
if (i == parameter_count()) stream->Add("specials\n");
if (i == parameter_count() + specials_count()) stream->Add("locals\n");
if (i == parameter_count() + specials_count() + local_count()) {
stream->Add("expressions\n");
}
HValue* val = values_.at(i);
stream->Add("%d: ", i);
if (val != NULL) {
val->PrintNameTo(stream);
} else {
stream->Add("NULL");
}
stream->Add("\n");
}
PrintF("\n");
}
void HEnvironment::PrintToStd() {
HeapStringAllocator string_allocator;
StringStream trace(&string_allocator);
PrintTo(&trace);
PrintF("%s", *trace.ToCString());
}
void HTracer::TraceCompilation(CompilationInfo* info) {
Tag tag(this, "compilation");
if (info->IsOptimizing()) {
Handle<String> name = info->function()->debug_name();
PrintStringProperty("name", *name->ToCString());
PrintStringProperty("method", *name->ToCString());
} else {
CodeStub::Major major_key = info->code_stub()->MajorKey();
PrintStringProperty("name", CodeStub::MajorName(major_key, false));
PrintStringProperty("method", "stub");
}
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
}
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
ASSERT(!FLAG_parallel_recompilation);
ALLOW_HANDLE_DEREF(chunk->isolate(), "debug output");
Trace(name, chunk->graph(), chunk);
}
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
ASSERT(!FLAG_parallel_recompilation);
ALLOW_HANDLE_DEREF(graph->isolate(), "debug output");
Trace(name, graph, NULL);
}
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
Tag tag(this, "cfg");
PrintStringProperty("name", name);
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* current = blocks->at(i);
Tag block_tag(this, "block");
PrintBlockProperty("name", current->block_id());
PrintIntProperty("from_bci", -1);
PrintIntProperty("to_bci", -1);
if (!current->predecessors()->is_empty()) {
PrintIndent();
trace_.Add("predecessors");
for (int j = 0; j < current->predecessors()->length(); ++j) {
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
}
trace_.Add("\n");
} else {
PrintEmptyProperty("predecessors");
}
if (current->end()->SuccessorCount() == 0) {
PrintEmptyProperty("successors");
} else {
PrintIndent();
trace_.Add("successors");
for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
trace_.Add(" \"B%d\"", it.Current()->block_id());
}
trace_.Add("\n");
}
PrintEmptyProperty("xhandlers");
const char* flags = current->IsLoopSuccessorDominator()
? "dom-loop-succ"
: "";
PrintStringProperty("flags", flags);
if (current->dominator() != NULL) {
PrintBlockProperty("dominator", current->dominator()->block_id());
}
PrintIntProperty("loop_depth", current->LoopNestingDepth());
if (chunk != NULL) {
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
PrintIntProperty(
"first_lir_id",
LifetimePosition::FromInstructionIndex(first_index).Value());
PrintIntProperty(
"last_lir_id",
LifetimePosition::FromInstructionIndex(last_index).Value());
}
{
Tag states_tag(this, "states");
Tag locals_tag(this, "locals");
int total = current->phis()->length();
PrintIntProperty("size", current->phis()->length());
PrintStringProperty("method", "None");
for (int j = 0; j < total; ++j) {
HPhi* phi = current->phis()->at(j);
PrintIndent();
trace_.Add("%d ", phi->merged_index());
phi->PrintNameTo(&trace_);
trace_.Add(" ");
phi->PrintTo(&trace_);
trace_.Add("\n");
}
}
{
Tag HIR_tag(this, "HIR");
HInstruction* instruction = current->first();
while (instruction != NULL) {
int bci = 0;
int uses = instruction->UseCount();
PrintIndent();
trace_.Add("%d %d ", bci, uses);
instruction->PrintNameTo(&trace_);
trace_.Add(" ");
instruction->PrintTo(&trace_);
trace_.Add(" <|@\n");
instruction = instruction->next();
}
}
if (chunk != NULL) {
Tag LIR_tag(this, "LIR");
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
if (first_index != -1 && last_index != -1) {
const ZoneList<LInstruction*>* instructions = chunk->instructions();
for (int i = first_index; i <= last_index; ++i) {
LInstruction* linstr = instructions->at(i);
if (linstr != NULL) {
PrintIndent();
trace_.Add("%d ",
LifetimePosition::FromInstructionIndex(i).Value());
linstr->PrintTo(&trace_);
trace_.Add(" <|@\n");
}
}
}
}
}
}
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
Tag tag(this, "intervals");
PrintStringProperty("name", name);
const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
for (int i = 0; i < fixed_d->length(); ++i) {
TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
}
const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
for (int i = 0; i < fixed->length(); ++i) {
TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
}
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
for (int i = 0; i < live_ranges->length(); ++i) {
TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
}
}
void HTracer::TraceLiveRange(LiveRange* range, const char* type,
Zone* zone) {
if (range != NULL && !range->IsEmpty()) {
PrintIndent();
trace_.Add("%d %s", range->id(), type);
if (range->HasRegisterAssigned()) {
LOperand* op = range->CreateAssignedOperand(zone);
int assigned_reg = op->index();
if (op->IsDoubleRegister()) {
trace_.Add(" \"%s\"",
DoubleRegister::AllocationIndexToString(assigned_reg));
} else {
ASSERT(op->IsRegister());
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
}
} else if (range->IsSpilled()) {
LOperand* op = range->TopLevel()->GetSpillOperand();
if (op->IsDoubleStackSlot()) {
trace_.Add(" \"double_stack:%d\"", op->index());
} else {
ASSERT(op->IsStackSlot());
trace_.Add(" \"stack:%d\"", op->index());
}
}
int parent_index = -1;
if (range->IsChild()) {
parent_index = range->parent()->id();
} else {
parent_index = range->id();
}
LOperand* op = range->FirstHint();
int hint_index = -1;
if (op != NULL && op->IsUnallocated()) {
hint_index = LUnallocated::cast(op)->virtual_register();
}
trace_.Add(" %d %d", parent_index, hint_index);
UseInterval* cur_interval = range->first_interval();
while (cur_interval != NULL && range->Covers(cur_interval->start())) {
trace_.Add(" [%d, %d[",
cur_interval->start().Value(),
cur_interval->end().Value());
cur_interval = cur_interval->next();
}
UsePosition* current_pos = range->first_pos();
while (current_pos != NULL) {
if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
trace_.Add(" %d M", current_pos->pos().Value());
}
current_pos = current_pos->next();
}
trace_.Add(" \"\"\n");
}
}
void HTracer::FlushToFile() {
AppendChars(filename_.start(), *trace_.ToCString(), trace_.length(), false);
trace_.Reset();
}
void HStatistics::Initialize(CompilationInfo* info) {
if (info->shared_info().is_null()) return;
source_size_ += info->shared_info()->SourceSize();
}
void HStatistics::Print() {
PrintF("Timing results:\n");
int64_t sum = 0;
for (int i = 0; i < timing_.length(); ++i) {
sum += timing_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%30s", names_[i]);
double ms = static_cast<double>(timing_[i]) / 1000;
double percent = static_cast<double>(timing_[i]) * 100 / sum;
PrintF(" - %8.3f ms / %4.1f %% ", ms, percent);
unsigned size = sizes_[i];
double size_percent = static_cast<double>(size) * 100 / total_size_;
PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
}
PrintF("----------------------------------------"
"---------------------------------------\n");
int64_t total = create_graph_ + optimize_graph_ + generate_code_;
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Create graph",
static_cast<double>(create_graph_) / 1000,
static_cast<double>(create_graph_) * 100 / total);
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Optimize graph",
static_cast<double>(optimize_graph_) / 1000,
static_cast<double>(optimize_graph_) * 100 / total);
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Generate and install code",
static_cast<double>(generate_code_) / 1000,
static_cast<double>(generate_code_) * 100 / total);
PrintF("----------------------------------------"
"---------------------------------------\n");
PrintF("%30s - %8.3f ms (%.1f times slower than full code gen)\n",
"Total",
static_cast<double>(total) / 1000,
static_cast<double>(total) / full_code_gen_);
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
double normalized_time = source_size_in_kb > 0
? (static_cast<double>(total) / 1000) / source_size_in_kb
: 0;
double normalized_size_in_kb = source_size_in_kb > 0
? total_size_ / 1024 / source_size_in_kb
: 0;
PrintF("%30s - %8.3f ms %7.3f kB allocated\n",
"Average per kB source",
normalized_time, normalized_size_in_kb);
}
void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) {
if (name == HPhase::kFullCodeGen) {
full_code_gen_ += ticks;
} else {
total_size_ += size;
for (int i = 0; i < names_.length(); ++i) {
if (strcmp(names_[i], name) == 0) {
timing_[i] += ticks;
sizes_[i] += size;
return;
}
}
names_.Add(name);
timing_.Add(ticks);
sizes_.Add(size);
}
}
const char* const HPhase::kFullCodeGen = "Full code generator";
HPhase::HPhase(const char* name, Isolate* isolate) {
Init(isolate, name, NULL, NULL, NULL);
}
HPhase::HPhase(const char* name, HGraph* graph) {
Init(graph->isolate(), name, graph, NULL, NULL);
}
HPhase::HPhase(const char* name, LChunk* chunk) {
Init(chunk->isolate(), name, NULL, chunk, NULL);
}
HPhase::HPhase(const char* name, LAllocator* allocator) {
Init(allocator->isolate(), name, NULL, NULL, allocator);
}
void HPhase::Init(Isolate* isolate,
const char* name,
HGraph* graph,
LChunk* chunk,
LAllocator* allocator) {
isolate_ = isolate;
name_ = name;
graph_ = graph;
chunk_ = chunk;
allocator_ = allocator;
if (allocator != NULL && chunk_ == NULL) {
chunk_ = allocator->chunk();
}
if (FLAG_hydrogen_stats) {
start_ticks_ = OS::Ticks();
start_allocation_size_ = Zone::allocation_size_;
}
}
HPhase::~HPhase() {
if (FLAG_hydrogen_stats) {
int64_t ticks = OS::Ticks() - start_ticks_;
unsigned size = Zone::allocation_size_ - start_allocation_size_;
isolate_->GetHStatistics()->SaveTiming(name_, ticks, size);
}
// Produce trace output if flag is set so that the first letter of the
// phase name matches the command line parameter FLAG_trace_phase.
if (FLAG_trace_hydrogen &&
OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL) {
if (graph_ != NULL) {
isolate_->GetHTracer()->TraceHydrogen(name_, graph_);
}
if (chunk_ != NULL) {
isolate_->GetHTracer()->TraceLithium(name_, chunk_);
}
if (allocator_ != NULL) {
isolate_->GetHTracer()->TraceLiveRanges(name_, allocator_);
}
}
#ifdef DEBUG
if (graph_ != NULL) graph_->Verify(false); // No full verify.
if (allocator_ != NULL) allocator_->Verify();
#endif
}
} } // namespace v8::internal