v8/test/unittests/wasm/encoder-unittest.cc

152 lines
5.4 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/v8.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/encoder.h"
namespace v8 {
namespace internal {
namespace wasm {
class EncoderTest : public TestWithZone {
protected:
void AddLocal(WasmFunctionBuilder* f, LocalType type) {
uint16_t index = f->AddLocal(type);
const std::vector<uint8_t>& out_index = UnsignedLEB128From(index);
std::vector<uint8_t> code;
code.push_back(kExprGetLocal);
for (size_t i = 0; i < out_index.size(); i++) {
code.push_back(out_index.at(i));
}
uint32_t local_indices[] = {1};
f->EmitCode(&code[0], static_cast<uint32_t>(code.size()), local_indices, 1);
}
void CheckReadValue(uint8_t* leb_value, uint32_t expected_result,
int expected_length,
ReadUnsignedLEB128ErrorCode expected_error_code) {
int length;
uint32_t result;
ReadUnsignedLEB128ErrorCode error_code =
ReadUnsignedLEB128Operand(leb_value, leb_value + 5, &length, &result);
CHECK_EQ(error_code, expected_error_code);
if (error_code == 0) {
CHECK_EQ(result, expected_result);
CHECK_EQ(length, expected_length);
}
}
void CheckWriteValue(uint32_t input, int length, uint8_t* vals) {
const std::vector<uint8_t> result = UnsignedLEB128From(input);
CHECK_EQ(result.size(), length);
for (int i = 0; i < length; i++) {
CHECK_EQ(result.at(i), vals[i]);
}
}
};
TEST_F(EncoderTest, Function_Builder_Variable_Indexing) {
Zone zone;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
uint16_t f_index = builder->AddFunction();
WasmFunctionBuilder* function = builder->FunctionAt(f_index);
uint16_t local_float32 = function->AddLocal(kAstF32);
uint16_t param_float32 = function->AddParam(kAstF32);
uint16_t local_int32 = function->AddLocal(kAstI32);
uint16_t local_float64 = function->AddLocal(kAstF64);
uint16_t local_int64 = function->AddLocal(kAstI64);
uint16_t param_int32 = function->AddParam(kAstI32);
uint16_t local_int32_2 = function->AddLocal(kAstI32);
byte code[] = {kExprGetLocal, static_cast<uint8_t>(param_float32)};
uint32_t local_indices[] = {1};
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(param_int32);
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(local_int32);
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(local_int32_2);
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(local_int64);
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(local_float32);
function->EmitCode(code, sizeof(code), local_indices, 1);
code[1] = static_cast<uint8_t>(local_float64);
function->EmitCode(code, sizeof(code), local_indices, 1);
WasmFunctionEncoder* f = function->Build(&zone, builder);
ZoneVector<uint8_t> buffer_vector(f->HeaderSize() + f->BodySize(), &zone);
byte* buffer = &buffer_vector[0];
byte* header = buffer;
byte* body = buffer + f->HeaderSize();
f->Serialize(buffer, &header, &body);
for (size_t i = 0; i < 7; i++) {
CHECK_EQ(i, static_cast<size_t>(*(buffer + 2 * i + f->HeaderSize() + 1)));
}
}
TEST_F(EncoderTest, Function_Builder_Indexing_Variable_Width) {
Zone zone;
WasmModuleBuilder* builder = new (&zone) WasmModuleBuilder(&zone);
uint16_t f_index = builder->AddFunction();
WasmFunctionBuilder* function = builder->FunctionAt(f_index);
for (size_t i = 0; i < 128; i++) {
AddLocal(function, kAstF32);
}
AddLocal(function, kAstI32);
WasmFunctionEncoder* f = function->Build(&zone, builder);
ZoneVector<uint8_t> buffer_vector(f->HeaderSize() + f->BodySize(), &zone);
byte* buffer = &buffer_vector[0];
byte* header = buffer;
byte* body = buffer + f->HeaderSize();
f->Serialize(buffer, &header, &body);
body = buffer + f->HeaderSize();
for (size_t i = 0; i < 127; i++) {
CHECK_EQ(kExprGetLocal, static_cast<size_t>(*(body + 2 * i)));
CHECK_EQ(i + 1, static_cast<size_t>(*(body + 2 * i + 1)));
}
CHECK_EQ(kExprGetLocal, static_cast<size_t>(*(body + 2 * 127)));
CHECK_EQ(0x80, static_cast<size_t>(*(body + 2 * 127 + 1)));
CHECK_EQ(0x01, static_cast<size_t>(*(body + 2 * 127 + 2)));
CHECK_EQ(kExprGetLocal, static_cast<size_t>(*(body + 2 * 127 + 3)));
CHECK_EQ(0x00, static_cast<size_t>(*(body + 2 * 127 + 4)));
}
TEST_F(EncoderTest, LEB_Functions) {
byte leb_value[5] = {0, 0, 0, 0, 0};
CheckReadValue(leb_value, 0, 1, kNoError);
CheckWriteValue(0, 1, leb_value);
leb_value[0] = 23;
CheckReadValue(leb_value, 23, 1, kNoError);
CheckWriteValue(23, 1, leb_value);
leb_value[0] = 0x80;
leb_value[1] = 0x01;
CheckReadValue(leb_value, 128, 2, kNoError);
CheckWriteValue(128, 2, leb_value);
leb_value[0] = 0x80;
leb_value[1] = 0x80;
leb_value[2] = 0x80;
leb_value[3] = 0x80;
leb_value[4] = 0x01;
CheckReadValue(leb_value, 0x10000000, 5, kNoError);
CheckWriteValue(0x10000000, 5, leb_value);
leb_value[0] = 0x80;
leb_value[1] = 0x80;
leb_value[2] = 0x80;
leb_value[3] = 0x80;
leb_value[4] = 0x80;
CheckReadValue(leb_value, -1, -1, kInvalidLEB128);
}
} // namespace wasm
} // namespace internal
} // namespace v8