v8/src/deoptimizer.cc

3389 lines
119 KiB
C++
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/accessors.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/deoptimizer.h"
#include "src/disasm.h"
#include "src/full-codegen.h"
#include "src/global-handles.h"
#include "src/macro-assembler.h"
#include "src/prettyprinter.h"
namespace v8 {
namespace internal {
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
base::OS::CommitPageSize(),
#if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
NOT_EXECUTABLE,
#else
EXECUTABLE,
#endif
NULL);
}
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
: allocator_(allocator),
deoptimized_frame_info_(NULL),
current_(NULL) {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
deopt_entry_code_entries_[i] = -1;
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
}
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
allocator_->Free(deopt_entry_code_[i]);
deopt_entry_code_[i] = NULL;
}
}
void DeoptimizerData::Iterate(ObjectVisitor* v) {
if (deoptimized_frame_info_ != NULL) {
deoptimized_frame_info_->Iterate(v);
}
}
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_->IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Context* native_context = function_->context()->native_context();
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->contains(addr)) return code;
element = code->next_code_link();
}
}
return NULL;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
type,
bailout_id,
from,
fp_to_sp_delta,
NULL);
CHECK(isolate->deoptimizer_data()->current_ == NULL);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
// No larger than 2K on all platforms
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
size_t Deoptimizer::GetMaxDeoptTableSize() {
int entries_size =
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
commit_page_size) + 1;
return static_cast<size_t>(commit_page_size * page_count);
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
CHECK_NOT_NULL(result);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = NULL;
return result;
}
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
if (jsframe_index == 0) return 0;
int frame_index = 0;
while (jsframe_index >= 0) {
FrameDescription* frame = output_[frame_index];
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
jsframe_index--;
}
frame_index++;
}
return frame_index - 1;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
CHECK(frame->is_optimized());
CHECK(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
// Get the function and code from the frame.
JSFunction* function = frame->function();
Code* code = frame->LookupCode();
// Locate the deoptimization point in the code. As we are at a call the
// return address must be at a place in the code with deoptimization support.
SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
int deoptimization_index = safepoint_entry.deoptimization_index();
CHECK_NE(deoptimization_index, Safepoint::kNoDeoptimizationIndex);
// Always use the actual stack slots when calculating the fp to sp
// delta adding two for the function and context.
unsigned stack_slots = code->stack_slots();
unsigned fp_to_sp_delta = (stack_slots * kPointerSize) +
StandardFrameConstants::kFixedFrameSizeFromFp;
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
Deoptimizer::DEBUGGER,
deoptimization_index,
frame->pc(),
fp_to_sp_delta,
code);
Address tos = frame->fp() - fp_to_sp_delta;
deoptimizer->FillInputFrame(tos, frame);
// Calculate the output frames.
Deoptimizer::ComputeOutputFrames(deoptimizer);
// Create the GC safe output frame information and register it for GC
// handling.
CHECK_LT(jsframe_index, deoptimizer->jsframe_count());
// Convert JS frame index into frame index.
int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
bool has_arguments_adaptor =
frame_index > 0 &&
deoptimizer->output_[frame_index - 1]->GetFrameType() ==
StackFrame::ARGUMENTS_ADAPTOR;
int construct_offset = has_arguments_adaptor ? 2 : 1;
bool has_construct_stub =
frame_index >= construct_offset &&
deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
StackFrame::CONSTRUCT;
DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
frame_index,
has_arguments_adaptor,
has_construct_stub);
isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
// Done with the GC-unsafe frame descriptions. This re-enables allocation.
deoptimizer->DeleteFrameDescriptions();
// Allocate a heap number for the doubles belonging to this frame.
deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
frame_index, info->parameters_count(), info->expression_count(), info);
// Finished using the deoptimizer instance.
delete deoptimizer;
return info;
}
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate) {
CHECK_EQ(isolate->deoptimizer_data()->deoptimized_frame_info_, info);
delete info;
isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
CHECK(context->IsNativeContext());
visitor->EnterContext(context);
// Visit the list of optimized functions, removing elements that
// no longer refer to optimized code.
JSFunction* prev = NULL;
Object* element = context->OptimizedFunctionsListHead();
while (!element->IsUndefined()) {
JSFunction* function = JSFunction::cast(element);
Object* next = function->next_function_link();
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
(visitor->VisitFunction(function),
function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
// The function no longer refers to optimized code, or the visitor
// changed the code to which it refers to no longer be optimized code.
// Remove the function from this list.
if (prev != NULL) {
prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER);
} else {
context->SetOptimizedFunctionsListHead(next);
}
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// Set the next function link to undefined to indicate it is no longer
// in the optimized functions list.
function->set_next_function_link(context->GetHeap()->undefined_value(),
SKIP_WRITE_BARRIER);
} else {
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// preserve this element.
prev = function;
}
element = next;
}
visitor->LeaveContext(context);
}
void Deoptimizer::VisitAllOptimizedFunctions(
Isolate* isolate,
OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
// Run through the list of all native contexts.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
// Unlink functions referring to code marked for deoptimization, then move
// marked code from the optimized code list to the deoptimized code list,
// and patch code for lazy deopt.
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
DisallowHeapAllocation no_allocation;
// A "closure" that unlinks optimized code that is going to be
// deoptimized from the functions that refer to it.
class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
public:
virtual void EnterContext(Context* context) { } // Don't care.
virtual void LeaveContext(Context* context) { } // Don't care.
virtual void VisitFunction(JSFunction* function) {
Code* code = function->code();
if (!code->marked_for_deoptimization()) return;
// Unlink this function and evict from optimized code map.
SharedFunctionInfo* shared = function->shared();
function->set_code(shared->code());
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer unlinked: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
}
};
// Unlink all functions that refer to marked code.
SelectedCodeUnlinker unlinker;
VisitAllOptimizedFunctionsForContext(context, &unlinker);
Isolate* isolate = context->GetHeap()->isolate();
#ifdef DEBUG
Code* topmost_optimized_code = NULL;
bool safe_to_deopt_topmost_optimized_code = false;
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top());
!it.done(); it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int deopt_index = safepoint.deoptimization_index();
// Turbofan deopt is checked when we are patching addresses on stack.
bool turbofanned = code->is_turbofanned() &&
function->shared()->asm_function() &&
!FLAG_turbo_asm_deoptimization;
bool safe_to_deopt =
deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned);
if (topmost_optimized_code == NULL) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_to_deopt;
}
}
}
#endif
// Move marked code from the optimized code list to the deoptimized
// code list, collecting them into a ZoneList.
Zone zone;
ZoneList<Code*> codes(10, &zone);
// Walk over all optimized code objects in this native context.
Code* prev = NULL;
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Object* next = code->next_code_link();
if (code->marked_for_deoptimization()) {
// Put the code into the list for later patching.
codes.Add(code, &zone);
if (prev != NULL) {
// Skip this code in the optimized code list.
prev->set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
context->SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code->set_next_code_link(context->DeoptimizedCodeListHead());
context->SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
// TODO(titzer): we need a handle scope only because of the macro assembler,
// which is only used in EnsureCodeForDeoptimizationEntry.
HandleScope scope(isolate);
// Now patch all the codes for deoptimization.
for (int i = 0; i < codes.length(); i++) {
#ifdef DEBUG
if (codes[i] == topmost_optimized_code) {
DCHECK(safe_to_deopt_topmost_optimized_code);
}
#endif
// It is finally time to die, code object.
// Remove the code from optimized code map.
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(codes[i]->deoptimization_data());
SharedFunctionInfo* shared =
SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
// Do platform-specific patching to force any activations to lazy deopt.
PatchCodeForDeoptimization(isolate, codes[i]);
// We might be in the middle of incremental marking with compaction.
// Ignore all slots that might have been recorded in the body of the
// deoptimized code object.
Code* code = codes[i];
isolate->heap()->mark_compact_collector()->RemoveObjectSlots(
code->instruction_start(), code->address() + code->Size());
}
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::MarkAllCodeForContext(Context* context) {
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
code->set_marked_for_deoptimization(true);
element = code->next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
Code* code = function->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code->set_marked_for_deoptimization(true);
DeoptimizeMarkedCodeForContext(function->context()->native_context());
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
StackFrame::Type frame_type) {
switch (deopt_type) {
case EAGER:
case SOFT:
case LAZY:
case DEBUGGER:
return (frame_type == StackFrame::STUB)
? FLAG_trace_stub_failures
: FLAG_trace_deopt;
}
FATAL("Unsupported deopt type");
return false;
}
const char* Deoptimizer::MessageFor(BailoutType type) {
switch (type) {
case EAGER: return "eager";
case SOFT: return "soft";
case LAZY: return "lazy";
case DEBUGGER: return "debugger";
}
FATAL("Unsupported deopt type");
return NULL;
}
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
BailoutType type, unsigned bailout_id, Address from,
int fp_to_sp_delta, Code* optimized_code)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
has_alignment_padding_(0),
input_(nullptr),
output_count_(0),
jsframe_count_(0),
output_(nullptr),
trace_scope_(nullptr) {
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
// indicating an internal frame.
if (function->IsSmi()) {
function = nullptr;
}
DCHECK(from != nullptr);
if (function != nullptr && function->IsOptimized()) {
function->shared()->increment_deopt_count();
if (bailout_type_ == Deoptimizer::SOFT) {
isolate->counters()->soft_deopts_executed()->Increment();
// Soft deopts shouldn't count against the overall re-optimization count
// that can eventually lead to disabling optimization for a function.
int opt_count = function->shared()->opt_count();
if (opt_count > 0) opt_count--;
function->shared()->set_opt_count(opt_count);
}
}
compiled_code_ = FindOptimizedCode(function, optimized_code);
#if DEBUG
DCHECK(compiled_code_ != NULL);
if (type == EAGER || type == SOFT || type == LAZY) {
DCHECK(compiled_code_->kind() != Code::FUNCTION);
}
#endif
StackFrame::Type frame_type = function == NULL
? StackFrame::STUB
: StackFrame::JAVA_SCRIPT;
trace_scope_ = TraceEnabledFor(type, frame_type) ?
new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
#ifdef DEBUG
CHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_));
}
unsigned size = ComputeInputFrameSize();
input_ = new(size) FrameDescription(size, function);
input_->SetFrameType(frame_type);
}
Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
Code* optimized_code) {
switch (bailout_type_) {
case Deoptimizer::SOFT:
case Deoptimizer::EAGER:
case Deoptimizer::LAZY: {
Code* compiled_code = FindDeoptimizingCode(from_);
return (compiled_code == NULL)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
case Deoptimizer::DEBUGGER:
DCHECK(optimized_code->contains(from_));
return optimized_code;
}
FATAL("Could not find code for optimized function");
return NULL;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsJSFunction()) {
function_->ShortPrint(trace_scope_->file());
} else {
PrintF(trace_scope_->file(),
"%s", Code::Kind2String(compiled_code_->kind()));
}
}
Deoptimizer::~Deoptimizer() {
DCHECK(input_ == NULL && output_ == NULL);
DCHECK(disallow_heap_allocation_ == NULL);
delete trace_scope_;
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = NULL;
output_ = NULL;
#ifdef DEBUG
CHECK(!AllowHeapAllocation::IsAllowed());
CHECK(disallow_heap_allocation_ != NULL);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = NULL;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
int id,
BailoutType type,
GetEntryMode mode) {
CHECK_GE(id, 0);
if (id >= kMaxNumberOfEntries) return NULL;
if (mode == ENSURE_ENTRY_CODE) {
EnsureCodeForDeoptimizationEntry(isolate, type, id);
} else {
CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
}
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LT(type, kBailoutTypesWithCodeEntry);
MemoryChunk* base = data->deopt_entry_code_[type];
return base->area_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type) {
DeoptimizerData* data = isolate->deoptimizer_data();
MemoryChunk* base = data->deopt_entry_code_[type];
Address start = base->area_start();
if (addr < start ||
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
DCHECK_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
BailoutId id,
SharedFunctionInfo* shared) {
// TODO(kasperl): For now, we do a simple linear search for the PC
// offset associated with the given node id. This should probably be
// changed to a binary search.
int length = data->DeoptPoints();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == id) {
return data->PcAndState(i)->value();
}
}
OFStream os(stderr);
os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
<< "[method: " << shared->DebugName()->ToCString().get() << "]\n"
<< "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl;
shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared,
0xfefefeff);
FATAL("unable to find pc offset during deoptimization");
return -1;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
length++;
element = code->next_code_link();
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
return length;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
if (trace_scope_ != NULL) {
timer.Start();
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" (opt #%d) @%d, FP to SP delta: %d]\n",
input_data->OptimizationId()->value(),
bailout_id_,
fp_to_sp_delta_);
if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
(compiled_code_->is_hydrogen_stub())) {
compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_);
}
}
BailoutId node_id = input_data->AstId(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
TranslationIterator state_iterator(translations, translation_index);
translated_state_.Init(
input_->GetFramePointerAddress(), function_, &state_iterator,
input_data->LiteralArray(), input_->GetRegisterValues(),
trace_scope_ == nullptr ? nullptr : trace_scope_->file());
// Do the input frame to output frame(s) translation.
size_t count = translated_state_.frames().size();
DCHECK(output_ == NULL);
output_ = new FrameDescription*[count];
for (size_t i = 0; i < count; ++i) {
output_[i] = NULL;
}
output_count_ = static_cast<int>(count);
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = reinterpret_cast<Address>(
input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize);
// Translate each output frame.
for (size_t i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
int frame_index = static_cast<int>(i);
switch (translated_state_.frames()[i].kind()) {
case TranslatedFrame::kFunction:
DoComputeJSFrame(nullptr, frame_index);
jsframe_count_++;
break;
case TranslatedFrame::kArgumentsAdaptor:
DoComputeArgumentsAdaptorFrame(nullptr, frame_index);
break;
case TranslatedFrame::kConstructStub:
DoComputeConstructStubFrame(nullptr, frame_index);
break;
case TranslatedFrame::kGetter:
DoComputeAccessorStubFrame(nullptr, frame_index, false);
break;
case TranslatedFrame::kSetter:
DoComputeAccessorStubFrame(nullptr, frame_index, true);
break;
case TranslatedFrame::kCompiledStub:
DoComputeCompiledStubFrame(nullptr, frame_index);
break;
case TranslatedFrame::kInvalid:
FATAL("invalid frame");
break;
}
}
// Print some helpful diagnostic information.
if (trace_scope_ != NULL) {
double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
" took %0.3f ms]\n",
bailout_id_,
node_id.ToInt(),
output_[index]->GetPc(),
FullCodeGenerator::State2String(
static_cast<FullCodeGenerator::State>(
output_[index]->GetState()->value())),
has_alignment_padding_ ? "with padding" : "no padding",
ms);
}
}
void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
BailoutId node_id = translated_frame->node_id();
unsigned height =
translated_frame->height() - 1; // Do not count the context.
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(), " translating frame ");
function->PrintName(trace_scope_->file());
PrintF(trace_scope_->file(),
" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by JavaScriptFrameConstants.
unsigned fixed_frame_size = ComputeFixedSize(function);
unsigned input_frame_size = input_->GetFrameSize();
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address for the bottommost output frame can be computed from
// the input frame pointer and the output frame's height. For all
// subsequent output frames, it can be computed from the previous one's
// top address and the current frame's size.
Register fp_reg = JavaScriptFrame::fp_register();
intptr_t top_address;
if (is_bottommost) {
// Determine whether the input frame contains alignment padding.
has_alignment_padding_ =
(!compiled_code_->is_turbofanned() && HasAlignmentPadding(function))
? 1
: 0;
// 2 = context and function in the frame.
// If the optimized frame had alignment padding, adjust the frame pointer
// to point to the new position of the old frame pointer after padding
// is removed. Subtract 2 * kPointerSize for the context and function slots.
top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp -
height_in_bytes + has_alignment_padding_ * kPointerSize;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count =
function->shared()->internal_formal_parameter_count() + 1;
unsigned output_offset = output_frame_size;
unsigned input_offset = input_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
input_offset -= (parameter_count * kPointerSize);
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Synthesize their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPCOnStackSize;
input_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kFPOnStackSize;
input_offset -= kFPOnStackSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
DCHECK(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize) == fp_value);
output_frame->SetFp(fp_value);
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
DCHECK(!is_bottommost || !has_alignment_padding_ ||
(fp_value & kPointerSize) != 0);
if (FLAG_enable_embedded_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
Register context_reg = JavaScriptFrame::context_register();
output_offset -= kPointerSize;
input_offset -= kPointerSize;
// Read the context from the translations.
Object* context = value_iterator->GetRawValue();
// The context should not be a placeholder for a materialized object.
CHECK(context != isolate_->heap()->arguments_marker());
if (context == isolate_->heap()->undefined_value()) {
// If the context was optimized away, just use the context from
// the activation. This should only apply to Crankshaft code.
CHECK(!compiled_code_->is_turbofanned());
context =
is_bottommost
? reinterpret_cast<Object*>(input_->GetFrameSlot(input_offset))
: function->context();
}
value = reinterpret_cast<intptr_t>(context);
output_frame->SetContext(value);
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
WriteValueToOutput(context, input_index, frame_index, output_offset,
"context ");
value_iterator++;
input_index++;
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
// The function for the bottommost output frame should also agree with the
// input frame.
DCHECK(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
// Translate the rest of the frame.
for (unsigned i = 0; i < height; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
CHECK_EQ(0u, output_offset);
// Compute this frame's PC, state, and continuation.
Code* non_optimized_code = function->shared()->code();
FixedArray* raw_data = non_optimized_code->deoptimization_data();
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
Address start = non_optimized_code->instruction_start();
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
FullCodeGenerator::State state =
FullCodeGenerator::StateField::decode(pc_and_state);
output_frame->SetState(Smi::FromInt(state));
// Set the continuation for the topmost frame.
if (is_topmost && bailout_type_ != DEBUGGER) {
Builtins* builtins = isolate_->builtins();
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
if (bailout_type_ == LAZY) {
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
} else if (bailout_type_ == SOFT) {
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
} else {
CHECK_EQ(bailout_type_, EAGER);
}
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
// Arguments adaptor can not be topmost or bottommost.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// A marker value is used in place of the context.
output_offset -= kPointerSize;
intptr_t context = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
output_frame->SetFrameSlot(output_offset, context);
DebugPrintOutputSlot(context, frame_index, output_offset,
"context (adaptor sentinel)\n");
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
DCHECK(0 == output_offset);
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = reinterpret_cast<intptr_t>(
adaptor_trampoline->instruction_start() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
int frame_index) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating construct stub => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::CONSTRUCT);
// Construct stub can not be topmost or bottommost.
DCHECK(frame_index > 0 && frame_index < output_count_ - 1);
DCHECK(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, override the slot address for a captured object.
WriteTranslatedValueToOutput(
&value_iterator, &input_index, frame_index, output_offset, nullptr,
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"function (construct sentinel)\n");
// The output frame reflects a JSConstructStubGeneric frame.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(construct_stub);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
// The original constructor.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value());
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "new.target\n");
// The newly allocated object was passed as receiver in the artificial
// constructor stub environment created by HEnvironment::CopyForInlining().
output_offset -= kPointerSize;
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"allocated receiver\n");
CHECK_EQ(0u, output_offset);
intptr_t pc = reinterpret_cast<intptr_t>(
construct_stub->instruction_start() +
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
output_frame->SetPc(pc);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator,
int frame_index,
bool is_setter_stub_frame) {
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
JSFunction* accessor = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
// The receiver (and the implicit return value, if any) are expected in
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
// frame. This means that we have to use a height of 0.
unsigned height = 0;
unsigned height_in_bytes = height * kPointerSize;
const char* kind = is_setter_stub_frame ? "setter" : "getter";
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s stub => height=%u\n", kind, height_in_bytes);
}
// We need 1 stack entry for the return address and enough entries for the
// StackFrame::INTERNAL (FP, context, frame type, code object and constant
// pool (if enabled)- see MacroAssembler::EnterFrame).
// For a setter stub frame we need one additional entry for the implicit
// return value, see StoreStubCompiler::CompileStoreViaSetter.
unsigned fixed_frame_entries =
(StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
(is_setter_stub_frame ? 1 : 0);
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, accessor);
output_frame->SetFrameType(StackFrame::INTERNAL);
// A frame for an accessor stub can not be the topmost or bottommost one.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "function ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%s sentinel)\n", kind);
}
// Get Code object from accessor stub.
output_offset -= kPointerSize;
Builtins::Name name = is_setter_stub_frame ?
Builtins::kStoreIC_Setter_ForDeopt :
Builtins::kLoadIC_Getter_ForDeopt;
Code* accessor_stub = isolate_->builtins()->builtin(name);
value = reinterpret_cast<intptr_t>(accessor_stub);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
// Skip receiver.
value_iterator++;
input_index++;
if (is_setter_stub_frame) {
// The implicit return value was part of the artificial setter stub
// environment.
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
CHECK_EQ(0u, output_offset);
Smi* offset = is_setter_stub_frame ?
isolate_->heap()->setter_stub_deopt_pc_offset() :
isolate_->heap()->getter_stub_deopt_pc_offset();
intptr_t pc = reinterpret_cast<intptr_t>(
accessor_stub->instruction_start() + offset->value());
output_frame->SetPc(pc);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator,
int frame_index) {
//
// FROM TO
// | .... | | .... |
// +-------------------------+ +-------------------------+
// | JSFunction continuation | | JSFunction continuation |
// +-------------------------+ +-------------------------+
// | | saved frame (FP) | | saved frame (FP) |
// | +=========================+<-fpreg +=========================+<-fpreg
// | |constant pool (if ool_cp)| |constant pool (if ool_cp)|
// | +-------------------------+ +-------------------------|
// | | JSFunction context | | JSFunction context |
// v +-------------------------+ +-------------------------|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
// +-------------------------+ +-------------------------+
// | | | caller args.arguments_ |
// | ... | +-------------------------+
// | | | caller args.length_ |
// |-------------------------|<-spreg +-------------------------+
// | caller args pointer |
// +-------------------------+
// | caller stack param 1 |
// parameters in registers +-------------------------+
// and spilled to stack | .... |
// +-------------------------+
// | caller stack param n |
// +-------------------------+<-spreg
// reg = number of parameters
// reg = failure handler address
// reg = saved frame
// reg = JSFunction context
//
TranslatedFrame* translated_frame =
&(translated_state_.frames()[frame_index]);
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
CHECK(compiled_code_->is_hydrogen_stub());
int major_key = CodeStub::GetMajorKey(compiled_code_);
CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
// The output frame must have room for all pushed register parameters
// and the standard stack frame slots. Include space for an argument
// object to the callee and optionally the space to pass the argument
// object to the stub failure handler.
int param_count = descriptor.GetRegisterParameterCount();
CHECK_EQ(translated_frame->height(), param_count);
CHECK_GE(param_count, 0);
int height_in_bytes = kPointerSize * param_count + sizeof(Arguments) +
kPointerSize;
int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
int input_frame_size = input_->GetFrameSize();
int output_frame_size = height_in_bytes + fixed_frame_size;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s => StubFailureTrampolineStub, height=%d\n",
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key), false),
height_in_bytes);
}
// The stub failure trampoline is a single frame.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, NULL);
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
CHECK_EQ(frame_index, 0);
output_[frame_index] = output_frame;
// The top address for the output frame can be computed from the input
// frame pointer and the output frame's height. Subtract space for the
// context and function slots.
Register fp_reg = StubFailureTrampolineFrame::fp_register();
intptr_t top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
output_frame->SetTop(top_address);
// Read caller's PC (JSFunction continuation) from the input frame.
unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
intptr_t value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetCallerPc(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's pc\n");
// Read caller's FP from the input frame, and set this frame's FP.
input_frame_offset -= kFPOnStackSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kFPOnStackSize;
output_frame->SetCallerFp(output_frame_offset, value);
intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
output_frame->SetRegister(fp_reg.code(), frame_ptr);
output_frame->SetFp(frame_ptr);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the input frame.
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kPointerSize;
output_frame->SetCallerConstantPool(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's constant_pool\n");
}
// The context can be gotten from the input frame.
Register context_reg = StubFailureTrampolineFrame::context_register();
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetRegister(context_reg.code(), value);
output_frame_offset -= kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
CHECK(reinterpret_cast<Object*>(value)->IsContext());
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "context\n");
// A marker value is used in place of the function.
output_frame_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"function (stub failure sentinel)\n");
intptr_t caller_arg_count = 0;
bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
// Build the Arguments object for the caller's parameters and a pointer to it.
output_frame_offset -= kPointerSize;
int args_arguments_offset = output_frame_offset;
intptr_t the_hole = reinterpret_cast<intptr_t>(
isolate_->heap()->the_hole_value());
if (arg_count_known) {
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
} else {
value = the_hole;
}
output_frame->SetFrameSlot(args_arguments_offset, value);
DebugPrintOutputSlot(
value, frame_index, args_arguments_offset,
arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n");
output_frame_offset -= kPointerSize;
int length_frame_offset = output_frame_offset;
value = arg_count_known ? caller_arg_count : the_hole;
output_frame->SetFrameSlot(length_frame_offset, value);
DebugPrintOutputSlot(
value, frame_index, length_frame_offset,
arg_count_known ? "args.length\n" : "args.length (the hole)\n");
output_frame_offset -= kPointerSize;
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
(output_frame_size - output_frame_offset) + kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n");
// Copy the register parameters to the failure frame.
int arguments_length_offset = -1;
for (int i = 0; i < param_count; ++i) {
output_frame_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, 0,
output_frame_offset);
if (!arg_count_known &&
descriptor.GetRegisterParameter(i)
.is(descriptor.stack_parameter_count())) {
arguments_length_offset = output_frame_offset;
}
}
CHECK_EQ(0u, output_frame_offset);
if (!arg_count_known) {
CHECK_GE(arguments_length_offset, 0);
// We know it's a smi because 1) the code stub guarantees the stack
// parameter count is in smi range, and 2) the DoTranslateCommand in the
// parameter loop above translated that to a tagged value.
Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
output_frame->GetFrameSlot(arguments_length_offset));
caller_arg_count = smi_caller_arg_count->value();
output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset,
"args.length\n");
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
output_frame->SetFrameSlot(args_arguments_offset, value);
DebugPrintOutputSlot(value, frame_index, args_arguments_offset,
"args.arguments");
}
// Copy the double registers from the input into the output frame.
CopyDoubleRegisters(output_frame);
// Fill registers containing handler and number of parameters.
SetPlatformCompiledStubRegisters(output_frame, &descriptor);
// Compute this frame's PC, state, and continuation.
Code* trampoline = NULL;
StubFunctionMode function_mode = descriptor.function_mode();
StubFailureTrampolineStub(isolate_,
function_mode).FindCodeInCache(&trampoline);
DCHECK(trampoline != NULL);
output_frame->SetPc(reinterpret_cast<intptr_t>(
trampoline->instruction_start()));
if (FLAG_enable_embedded_constant_pool) {
Register constant_pool_reg =
StubFailureTrampolineFrame::constant_pool_pointer_register();
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
Code* notify_failure =
isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(notify_failure->entry()));
}
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
DCHECK_NE(DEBUGGER, bailout_type_);
// Walk to the last JavaScript output frame to find out if it has
// adapted arguments.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
}
translated_state_.Prepare(it->frame()->has_adapted_arguments(), stack_fp_);
for (auto& materialization : values_to_materialize_) {
Handle<Object> value = materialization.value_->GetValue();
if (trace_scope_ != nullptr) {
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
reinterpret_cast<intptr_t>(*value));
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
reinterpret_cast<intptr_t>(*value);
}
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
isolate_->materialized_object_store()->Remove(stack_fp_);
}
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
int frame_index, int parameter_count, int expression_count,
DeoptimizedFrameInfo* info) {
CHECK_EQ(DEBUGGER, bailout_type_);
translated_state_.Prepare(false, nullptr);
TranslatedFrame* frame = &(translated_state_.frames()[frame_index]);
CHECK(frame->kind() == TranslatedFrame::kFunction);
int frame_arg_count = frame->shared_info()->internal_formal_parameter_count();
// The height is #expressions + 1 for context.
CHECK_EQ(expression_count + 1, frame->height());
TranslatedFrame* argument_frame = frame;
if (frame_index > 0) {
TranslatedFrame* previous_frame =
&(translated_state_.frames()[frame_index - 1]);
if (previous_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
argument_frame = previous_frame;
CHECK_EQ(parameter_count, argument_frame->height() - 1);
} else {
CHECK_EQ(frame_arg_count, parameter_count);
}
} else {
CHECK_EQ(frame_arg_count, parameter_count);
}
TranslatedFrame::iterator arg_iter = argument_frame->begin();
arg_iter++; // Skip the function.
arg_iter++; // Skip the receiver.
for (int i = 0; i < parameter_count; i++, arg_iter++) {
if (!arg_iter->IsMaterializedObject()) {
info->SetParameter(i, *(arg_iter->GetValue()));
}
}
TranslatedFrame::iterator iter = frame->begin();
// Skip the function, receiver, context and arguments.
for (int i = 0; i < frame_arg_count + 3; i++, iter++) {
}
for (int i = 0; i < expression_count; i++, iter++) {
if (!iter->IsMaterializedObject()) {
info->SetExpression(i, *(iter->GetValue()));
}
}
}
void Deoptimizer::WriteTranslatedValueToOutput(
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
unsigned output_offset, const char* debug_hint_string,
Address output_address_for_materialization) {
Object* value = (*iterator)->GetRawValue();
WriteValueToOutput(value, *input_index, frame_index, output_offset,
debug_hint_string);
if (value == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
if (output_address_for_materialization == nullptr) {
output_address_for_materialization = output_address;
}
values_to_materialize_.push_back(
{output_address_for_materialization, *iterator});
}
(*iterator)++;
(*input_index)++;
}
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
int frame_index, unsigned output_offset,
const char* debug_hint_string) {
output_[frame_index]->SetFrameSlot(output_offset,
reinterpret_cast<intptr_t>(value));
if (trace_scope_ != nullptr) {
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
output_offset, debug_hint_string);
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
}
}
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
unsigned output_offset,
const char* debug_hint_string) {
if (trace_scope_ != nullptr) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
reinterpret_cast<intptr_t>(output_address), output_offset, value,
debug_hint_string == nullptr ? "" : debug_hint_string);
}
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
unsigned fixed_size = ComputeFixedSize(function_);
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned result = fixed_size + fp_to_sp_delta_ -
StandardFrameConstants::kFixedFrameSizeFromFp;
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size = ComputeOutgoingArgumentSize();
CHECK(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
}
return result;
}
unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, and all the incoming arguments.
return ComputeIncomingArgumentSize(function) +
StandardFrameConstants::kFixedFrameSize;
}
unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
// The incoming arguments is the values for formal parameters and
// the receiver. Every slot contains a pointer.
if (function->IsSmi()) {
CHECK_EQ(Smi::cast(function), Smi::FromInt(StackFrame::STUB));
return 0;
}
unsigned arguments =
function->shared()->internal_formal_parameter_count() + 1;
return arguments * kPointerSize;
}
unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
return height * kPointerSize;
}
Object* Deoptimizer::ComputeLiteral(int index) const {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
FixedArray* literals = data->LiteralArray();
return literals->get(index);
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type,
int max_entry_id) {
// We cannot run this if the serializer is enabled because this will
// cause us to emit relocation information for the external
// references. This is fine because the deoptimizer's code section
// isn't meant to be serialized at all.
CHECK(type == EAGER || type == SOFT || type == LAZY);
DeoptimizerData* data = isolate->deoptimizer_data();
int entry_count = data->deopt_entry_code_entries_[type];
if (max_entry_id < entry_count) return;
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
while (max_entry_id >= entry_count) entry_count *= 2;
CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
MacroAssembler masm(isolate, NULL, 16 * KB);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, entry_count, type);
CodeDesc desc;
masm.GetCode(&desc);
DCHECK(!RelocInfo::RequiresRelocation(desc));
MemoryChunk* chunk = data->deopt_entry_code_[type];
CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
desc.instr_size);
if (!chunk->CommitArea(desc.instr_size)) {
V8::FatalProcessOutOfMemory(
"Deoptimizer::EnsureCodeForDeoptimizationEntry");
}
CopyBytes(chunk->area_start(), desc.buffer,
static_cast<size_t>(desc.instr_size));
CpuFeatures::FlushICache(chunk->area_start(), desc.instr_size);
data->deopt_entry_code_entries_[type] = entry_count;
}
FrameDescription::FrameDescription(uint32_t frame_size,
JSFunction* function)
: frame_size_(frame_size),
function_(function),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
int FrameDescription::ComputeFixedSize() {
return StandardFrameConstants::kFixedFrameSize +
(ComputeParametersCount() + 1) * kPointerSize;
}
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
if (slot_index >= 0) {
// Local or spill slots. Skip the fixed part of the frame
// including all arguments.
unsigned base = GetFrameSize() - ComputeFixedSize();
return base - ((slot_index + 1) * kPointerSize);
} else {
// Incoming parameter.
int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
unsigned base = GetFrameSize() - arg_size;
return base - ((slot_index + 1) * kPointerSize);
}
}
int FrameDescription::ComputeParametersCount() {
switch (type_) {
case StackFrame::JAVA_SCRIPT:
return function_->shared()->internal_formal_parameter_count();
case StackFrame::ARGUMENTS_ADAPTOR: {
// Last slot contains number of incomming arguments as a smi.
// Can't use GetExpression(0) because it would cause infinite recursion.
return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
}
case StackFrame::STUB:
return -1; // Minus receiver.
default:
FATAL("Unexpected stack frame type");
return 0;
}
}
Object* FrameDescription::GetParameter(int index) {
CHECK_GE(index, 0);
CHECK_LT(index, ComputeParametersCount());
// The slot indexes for incoming arguments are negative.
unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
unsigned FrameDescription::GetExpressionCount() {
CHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned size = GetFrameSize() - ComputeFixedSize();
return size / kPointerSize;
}
Object* FrameDescription::GetExpression(int index) {
DCHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned offset = GetOffsetFromSlotIndex(index);
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
void TranslationBuffer::Add(int32_t value, Zone* zone) {
// This wouldn't handle kMinInt correctly if it ever encountered it.
DCHECK(value != kMinInt);
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
bits = next;
} while (bits != 0);
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
DCHECK(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
int length = contents_.length();
Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
return result;
}
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginGetterStubFrame(int literal_id) {
buffer_->Add(GETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginSetterStubFrame(int literal_id) {
buffer_->Add(SETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginJSFrame(BailoutId node_id,
int literal_id,
unsigned height) {
buffer_->Add(JS_FRAME, zone());
buffer_->Add(node_id.ToInt(), zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginCompiledStubFrame(int height) {
buffer_->Add(COMPILED_STUB_FRAME, zone());
buffer_->Add(height, zone());
}
void Translation::BeginArgumentsObject(int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_length, zone());
}
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT, zone());
buffer_->Add(length, zone());
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT, zone());
buffer_->Add(object_index, zone());
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreBoolRegister(Register reg) {
buffer_->Add(BOOL_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER, zone());
buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreBoolStackSlot(int index) {
buffer_->Add(BOOL_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL, zone());
buffer_->Add(literal_id, zone());
}
void Translation::StoreArgumentsObject(bool args_known,
int args_index,
int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_known, zone());
buffer_->Add(args_index, zone());
buffer_->Add(args_length, zone());
}
void Translation::StoreJSFrameFunction() {
buffer_->Add(JS_FRAME_FUNCTION, zone());
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case JS_FRAME_FUNCTION:
return 0;
case GETTER_STUB_FRAME:
case SETTER_STUB_FRAME:
case DUPLICATED_OBJECT:
case ARGUMENTS_OBJECT:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case BOOL_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case BOOL_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
case COMPILED_STUB_FRAME:
return 1;
case BEGIN:
case ARGUMENTS_ADAPTOR_FRAME:
case CONSTRUCT_STUB_FRAME:
return 2;
case JS_FRAME:
return 3;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
switch (opcode) {
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
}
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
return "";
}
#endif
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
int index = StackIdToIndex(fp);
if (index == -1) {
index = frame_fps_.length();
frame_fps_.Add(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
bool MaterializedObjectStore::Remove(Address fp) {
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
int index = StackIdToIndex(fp);
if (index == -1) {
return false;
}
CHECK_GE(index, 0);
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
frame_fps_.Remove(index);
FixedArray* array = isolate()->heap()->materialized_objects();
CHECK_LT(index, array->length());
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
for (int i = index; i < frame_fps_.length(); i++) {
array->set(i, array->get(i + 1));
}
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
return true;
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
for (int i = 0; i < frame_fps_.length(); i++) {
if (frame_fps_[i] == fp) {
return i;
}
}
return -1;
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
for (int i = array->length(); i < length; i++) {
new_array->set(i, isolate()->heap()->undefined_value());
}
isolate()->heap()->public_set_materialized_objects(*new_array);
return new_array;
}
DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub) {
FrameDescription* output_frame = deoptimizer->output_[frame_index];
function_ = output_frame->GetFunction();
context_ = reinterpret_cast<Object*>(output_frame->GetContext());
has_construct_stub_ = has_construct_stub;
expression_count_ = output_frame->GetExpressionCount();
expression_stack_ = new Object* [expression_count_];
// Get the source position using the unoptimized code.
Address pc = reinterpret_cast<Address>(output_frame->GetPc());
Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
source_position_ = code->SourcePosition(pc);
for (int i = 0; i < expression_count_; i++) {
SetExpression(i, output_frame->GetExpression(i));
}
if (has_arguments_adaptor) {
output_frame = deoptimizer->output_[frame_index - 1];
CHECK_EQ(output_frame->GetFrameType(), StackFrame::ARGUMENTS_ADAPTOR);
}
parameters_count_ = output_frame->ComputeParametersCount();
parameters_ = new Object* [parameters_count_];
for (int i = 0; i < parameters_count_; i++) {
SetParameter(i, output_frame->GetParameter(i));
}
}
DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
delete[] expression_stack_;
delete[] parameters_;
}
void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
v->VisitPointer(bit_cast<Object**>(&function_));
v->VisitPointer(&context_);
v->VisitPointers(parameters_, parameters_ + parameters_count_);
v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}
const char* Deoptimizer::GetDeoptReason(DeoptReason deopt_reason) {
DCHECK(deopt_reason < kLastDeoptReason);
#define DEOPT_MESSAGES_TEXTS(C, T) T,
static const char* deopt_messages_[] = {
DEOPT_MESSAGES_LIST(DEOPT_MESSAGES_TEXTS)};
#undef DEOPT_MESSAGES_TEXTS
return deopt_messages_[deopt_reason];
}
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
SourcePosition last_position = SourcePosition::Unknown();
Deoptimizer::DeoptReason last_reason = Deoptimizer::kNoReason;
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
RelocInfo::ModeMask(RelocInfo::POSITION);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() >= pc) return DeoptInfo(last_position, NULL, last_reason);
if (info->rmode() == RelocInfo::POSITION) {
int raw_position = static_cast<int>(info->data());
last_position = raw_position ? SourcePosition::FromRaw(raw_position)
: SourcePosition::Unknown();
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
last_reason = static_cast<Deoptimizer::DeoptReason>(info->data());
}
}
return DeoptInfo(SourcePosition::Unknown(), NULL, Deoptimizer::kNoReason);
}
// static
TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kArgumentsObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
double value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object* literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object* TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
double TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject ||
kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object* TranslatedValue::GetRawValue() const {
// If we have a value, return it.
Handle<Object> result_handle;
if (value_.ToHandle(&result_handle)) {
return *result_handle;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kDouble: {
int int_value = FastD2IChecked(double_value());
bool is_smi = !IsMinusZero(double_value()) &&
double_value() == int_value && Smi::IsValid(int_value);
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(int_value));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return isolate()->heap()->false_value();
} else {
CHECK_EQ(1U, uint32_value());
return isolate()->heap()->true_value();
}
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return isolate()->heap()->arguments_marker();
}
Handle<Object> TranslatedValue::GetValue() {
Handle<Object> result;
// If we already have a value, then get it.
if (value_.ToHandle(&result)) return result;
// Otherwise we have to materialize.
switch (kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kDouble: {
MaterializeSimple();
return value_.ToHandleChecked();
}
case TranslatedValue::kArgumentsObject:
case TranslatedValue::kCapturedObject:
case TranslatedValue::kDuplicatedObject:
return container_->MaterializeObjectAt(object_index());
case TranslatedValue::kInvalid:
FATAL("unexpected case");
return Handle<Object>::null();
}
FATAL("internal error: value missing");
return Handle<Object>::null();
}
void TranslatedValue::MaterializeSimple() {
// If we already have materialized, return.
if (!value_.is_null()) return;
Object* raw_value = GetRawValue();
if (raw_value != isolate()->heap()->arguments_marker()) {
// We can get the value without allocation, just return it here.
value_ = Handle<Object>(raw_value, isolate());
return;
}
switch (kind()) {
case kInt32: {
value_ = Handle<Object>(isolate()->factory()->NewNumber(int32_value()));
return;
}
case kUInt32:
value_ = Handle<Object>(isolate()->factory()->NewNumber(uint32_value()));
return;
case kDouble:
value_ = Handle<Object>(isolate()->factory()->NewNumber(double_value()));
return;
case kCapturedObject:
case kDuplicatedObject:
case kArgumentsObject:
case kInvalid:
case kTagged:
case kBoolBit:
FATAL("internal error: unexpected materialization.");
break;
}
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
case kArgumentsObject:
return true;
default:
return false;
}
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject || kind() == kArgumentsObject) {
return object_length();
} else {
return 0;
}
}
int TranslatedState::SlotOffsetFp(int slot_index) {
if (slot_index >= 0) {
const int offset = StandardFrameConstants::kExpressionsOffset;
return offset - (slot_index * kPointerSize);
} else {
const int offset = StandardFrameConstants::kCallerSPOffset;
return offset - ((slot_index + 1) * kPointerSize);
}
}
Address TranslatedState::SlotAddress(Address fp, int slot_index) {
return fp + SlotOffsetFp(slot_index);
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory::uint32_at(address + kIntSize);
#else
return Memory::uint32_at(address);
#endif
}
void TranslatedValue::Handlify() {
if (kind() == kTagged) {
value_ = Handle<Object>(raw_literal(), isolate());
raw_literal_ = nullptr;
}
}
TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id,
SharedFunctionInfo* shared_info,
int height) {
TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info,
height);
frame.node_id_ = node_id;
return frame;
}
TranslatedFrame TranslatedFrame::AccessorFrame(
Kind kind, SharedFunctionInfo* shared_info) {
DCHECK(kind == kSetter || kind == kGetter);
return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info);
}
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
SharedFunctionInfo* shared_info, int height) {
return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(),
shared_info, height);
}
TranslatedFrame TranslatedFrame::ConstructStubFrame(
SharedFunctionInfo* shared_info, int height) {
return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info,
height);
}
int TranslatedFrame::GetValueCount() {
switch (kind()) {
case kFunction: {
int parameter_count =
raw_shared_info_->internal_formal_parameter_count() + 1;
return height_ + parameter_count + 1;
}
case kGetter:
return 2; // Function and receiver.
case kSetter:
return 3; // Function, receiver and the value to set.
case kArgumentsAdaptor:
case kConstructStub:
return 1 + height_;
case kCompiledStub:
return height_;
case kInvalid:
UNREACHABLE();
break;
}
UNREACHABLE();
return -1;
}
void TranslatedFrame::Handlify() {
if (raw_shared_info_ != nullptr) {
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
raw_shared_info_ = nullptr;
}
for (auto& value : values_) {
value.Handlify();
}
}
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
JSFunction* frame_function, FILE* trace_file) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::JS_FRAME: {
BailoutId node_id = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
SmartArrayPointer<char> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading input frame %s", name.get());
int arg_count = shared_info->internal_formal_parameter_count() + 1;
PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n",
arg_count, node_id.ToInt(), height);
}
return TranslatedFrame::JSFrame(node_id, shared_info, height);
}
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
SmartArrayPointer<char> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
}
case Translation::CONSTRUCT_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
SmartArrayPointer<char> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading construct stub frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ConstructStubFrame(shared_info, height);
}
case Translation::GETTER_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
if (trace_file != nullptr) {
SmartArrayPointer<char> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading getter frame %s; inputs:\n", name.get());
}
return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter,
shared_info);
}
case Translation::SETTER_STUB_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
if (trace_file != nullptr) {
SmartArrayPointer<char> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading setter frame %s; inputs:\n", name.get());
}
return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter,
shared_info);
}
case Translation::COMPILED_STUB_FRAME: {
int height = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file,
" reading compiler stub frame => height=%d; inputs:\n", height);
}
return TranslatedFrame::CompiledStubFrame(height,
literal_array->GetIsolate());
}
case Translation::BEGIN:
case Translation::DUPLICATED_OBJECT:
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::BOOL_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::BOOL_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
case Translation::JS_FRAME_FUNCTION:
break;
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedFrame::InvalidFrame();
}
// static
void TranslatedFrame::AdvanceIterator(
std::deque<TranslatedValue>::iterator* iter) {
int values_to_skip = 1;
while (values_to_skip > 0) {
// Consume the current element.
values_to_skip--;
// Add all the children.
values_to_skip += (*iter)->GetChildrenCount();
(*iter)++;
}
}
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
TranslatedValue TranslatedState::CreateNextTranslatedValue(
int frame_index, int value_index, TranslationIterator* iterator,
FixedArray* literal_array, Address fp, RegisterValues* registers,
FILE* trace_file) {
disasm::NameConverter converter;
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
int object_id = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file, "duplicated object #%d", object_id);
}
object_positions_.push_back(object_positions_[object_id]);
return TranslatedValue::NewDuplicateObject(this, object_id);
}
case Translation::ARGUMENTS_OBJECT: {
int arg_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "argumets object #%d (length = %d)", object_index,
arg_count);
}
object_positions_.push_back({frame_index, value_index});
return TranslatedValue::NewArgumentsObject(this, arg_count, object_index);
}
case Translation::CAPTURED_OBJECT: {
int field_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
field_count);
}
object_positions_.push_back({frame_index, value_index});
return TranslatedValue::NewDeferredObject(this, field_count,
object_index);
}
case Translation::REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
}
return TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
}
case Translation::BOOL_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
converter.NameOfCPURegister(input_reg));
}
return TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) return TranslatedValue::NewInvalid(this);
double value = registers->GetDoubleRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (bool)", value,
DoubleRegister::AllocationIndexToString(input_reg));
}
return TranslatedValue::NewDouble(this, value);
}
case Translation::STACK_SLOT: {
int slot_offset = SlotOffsetFp(iterator->Next());
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
case Translation::INT32_STACK_SLOT: {
int slot_offset = SlotOffsetFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
return TranslatedValue::NewInt32(this, value);
}
case Translation::UINT32_STACK_SLOT: {
int slot_offset = SlotOffsetFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewUInt32(this, value);
}
case Translation::BOOL_STACK_SLOT: {
int slot_offset = SlotOffsetFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewBool(this, value);
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_offset = SlotOffsetFp(iterator->Next());
double value = ReadDoubleValue(fp + slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
return TranslatedValue::NewDouble(this, value);
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
Object* value = literal_array->get(literal_index);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
reinterpret_cast<intptr_t>(value), literal_index);
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, value);
}
case Translation::JS_FRAME_FUNCTION: {
int slot_offset = JavaScriptFrameConstants::kFunctionOffset;
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (frame function) ", value);
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
}
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedValue(nullptr, TranslatedValue::kInvalid);
}
TranslatedState::TranslatedState(JavaScriptFrame* frame)
: isolate_(nullptr),
stack_frame_pointer_(nullptr),
has_adapted_arguments_(false) {
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Init(frame->fp(), frame->function(), &it, data->LiteralArray(),
nullptr /* registers */, nullptr /* trace file */);
}
TranslatedState::TranslatedState()
: isolate_(nullptr),
stack_frame_pointer_(nullptr),
has_adapted_arguments_(false) {}
void TranslatedState::Init(Address input_frame_pointer,
JSFunction* input_frame_function,
TranslationIterator* iterator,
FixedArray* literal_array, RegisterValues* registers,
FILE* trace_file) {
DCHECK(frames_.empty());
isolate_ = literal_array->GetIsolate();
// Read out the 'header' translation.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
CHECK(opcode == Translation::BEGIN);
int count = iterator->Next();
iterator->Next(); // Drop JS frames count.
frames_.reserve(count);
std::stack<int> nested_counts;
// Read the frames
for (int i = 0; i < count; i++) {
// Read the frame descriptor.
frames_.push_back(
CreateNextTranslatedFrame(iterator, literal_array, input_frame_pointer,
input_frame_function, trace_file));
TranslatedFrame& frame = frames_.back();
// Read the values.
int values_to_process = frame.GetValueCount();
while (values_to_process > 0 || !nested_counts.empty()) {
if (trace_file != nullptr) {
if (nested_counts.empty()) {
// For top level values, print the value number.
PrintF(trace_file, " %3i: ",
frame.GetValueCount() - values_to_process);
} else {
// Take care of indenting for nested values.
PrintF(trace_file, " ");
for (size_t j = 0; j < nested_counts.size(); j++) {
PrintF(trace_file, " ");
}
}
}
TranslatedValue value = CreateNextTranslatedValue(
i, static_cast<int>(frame.values_.size()), iterator, literal_array,
input_frame_pointer, registers, trace_file);
frame.Add(value);
if (trace_file != nullptr) {
PrintF(trace_file, "\n");
}
// Update the value count and resolve the nesting.
values_to_process--;
int children_count = value.GetChildrenCount();
if (children_count > 0) {
nested_counts.push(values_to_process);
values_to_process = children_count;
} else {
while (values_to_process == 0 && !nested_counts.empty()) {
values_to_process = nested_counts.top();
nested_counts.pop();
}
}
}
}
CHECK(!iterator->HasNext() ||
static_cast<Translation::Opcode>(iterator->Next()) ==
Translation::BEGIN);
}
void TranslatedState::Prepare(bool has_adapted_arguments,
Address stack_frame_pointer) {
for (auto& frame : frames_) frame.Handlify();
stack_frame_pointer_ = stack_frame_pointer;
has_adapted_arguments_ = has_adapted_arguments;
UpdateFromPreviouslyMaterializedObjects();
}
Handle<Object> TranslatedState::MaterializeAt(int frame_index,
int* value_index) {
TranslatedFrame* frame = &(frames_[frame_index]);
DCHECK(static_cast<size_t>(*value_index) < frame->values_.size());
TranslatedValue* slot = &(frame->values_[*value_index]);
(*value_index)++;
switch (slot->kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kDouble: {
slot->MaterializeSimple();
Handle<Object> value = slot->GetValue();
if (value->IsMutableHeapNumber()) {
HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map());
}
return value;
}
case TranslatedValue::kArgumentsObject: {
int length = slot->GetChildrenCount();
Handle<JSObject> arguments;
if (GetAdaptedArguments(&arguments, frame_index)) {
// Store the materialized object and consume the nested values.
for (int i = 0; i < length; ++i) {
MaterializeAt(frame_index, value_index);
}
} else {
Handle<JSFunction> function =
Handle<JSFunction>::cast(frame->front().GetValue());
arguments = isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
DCHECK_EQ(array->length(), length);
arguments->set_elements(*array);
for (int i = 0; i < length; ++i) {
Handle<Object> value = MaterializeAt(frame_index, value_index);
array->set(i, *value);
}
}
slot->value_ = arguments;
return arguments;
}
case TranslatedValue::kCapturedObject: {
int length = slot->GetChildrenCount();
// The map must be a tagged object.
CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged);
Handle<Object> result;
if (slot->value_.ToHandle(&result)) {
// This has been previously materialized, return the previous value.
// We still need to skip all the nested objects.
for (int i = 0; i < length; i++) {
MaterializeAt(frame_index, value_index);
}
return result;
}
Handle<Object> map_object = MaterializeAt(frame_index, value_index);
Handle<Map> map =
Map::GeneralizeAllFieldRepresentations(Handle<Map>::cast(map_object));
switch (map->instance_type()) {
case MUTABLE_HEAP_NUMBER_TYPE:
case HEAP_NUMBER_TYPE: {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly.
Handle<Object> object = MaterializeAt(frame_index, value_index);
slot->value_ = object;
// On 32-bit architectures, there is an extra slot there because
// the escape analysis calculates the number of slots as
// object-size/pointer-size. To account for this, we read out
// any extra slots.
for (int i = 0; i < length - 2; i++) {
MaterializeAt(frame_index, value_index);
}
return object;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED);
slot->value_ = object;
Handle<Object> properties = MaterializeAt(frame_index, value_index);
Handle<Object> elements = MaterializeAt(frame_index, value_index);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
for (int i = 0; i < length - 3; ++i) {
Handle<Object> value = MaterializeAt(frame_index, value_index);
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
object->FastPropertyAtPut(index, *value);
}
return object;
}
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate_->factory()->NewJSArray(0, map->elements_kind());
slot->value_ = object;
Handle<Object> properties = MaterializeAt(frame_index, value_index);
Handle<Object> elements = MaterializeAt(frame_index, value_index);
Handle<Object> length = MaterializeAt(frame_index, value_index);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
object->set_length(*length);
return object;
}
default:
PrintF(stderr, "[couldn't handle instance type %d]\n",
map->instance_type());
FATAL("unreachable");
return Handle<Object>::null();
}
UNREACHABLE();
break;
}
case TranslatedValue::kDuplicatedObject: {
int object_index = slot->object_index();
TranslatedState::ObjectPosition pos = object_positions_[object_index];
// Make sure the duplicate is refering to a previous object.
DCHECK(pos.frame_index_ < frame_index ||
(pos.frame_index_ == frame_index &&
pos.value_index_ < *value_index - 1));
Handle<Object> object =
frames_[pos.frame_index_].values_[pos.value_index_].GetValue();
// The object should have a (non-sentinel) value.
DCHECK(!object.is_null() &&
!object.is_identical_to(isolate_->factory()->arguments_marker()));
slot->value_ = object;
return object;
}
case TranslatedValue::kInvalid:
UNREACHABLE();
break;
}
FATAL("We should never get here - unexpected deopt slot kind.");
return Handle<Object>::null();
}
Handle<Object> TranslatedState::MaterializeObjectAt(int object_index) {
TranslatedState::ObjectPosition pos = object_positions_[object_index];
return MaterializeAt(pos.frame_index_, &(pos.value_index_));
}
bool TranslatedState::GetAdaptedArguments(Handle<JSObject>* result,
int frame_index) {
if (frame_index == 0) {
// Top level frame -> we need to go to the parent frame on the stack.
if (!has_adapted_arguments_) return false;
// This is top level frame, so we need to go to the stack to get
// this function's argument. (Note that this relies on not inlining
// recursive functions!)
Handle<JSFunction> function =
Handle<JSFunction>::cast(frames_[frame_index].front().GetValue());
*result = Handle<JSObject>::cast(Accessors::FunctionGetArguments(function));
return true;
} else {
TranslatedFrame* previous_frame = &(frames_[frame_index]);
if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) {
return false;
}
// We get the adapted arguments from the parent translation.
int length = previous_frame->height();
Handle<JSFunction> function =
Handle<JSFunction>::cast(previous_frame->front().GetValue());
Handle<JSObject> arguments =
isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
arguments->set_elements(*array);
TranslatedFrame::iterator arg_iterator = previous_frame->begin();
arg_iterator++; // Skip function.
for (int i = 0; i < length; ++i) {
Handle<Object> value = arg_iterator->GetValue();
array->set(i, *value);
arg_iterator++;
}
CHECK(arg_iterator == previous_frame->end());
*result = arguments;
return true;
}
}
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
int jsframe_index, int* args_count) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kFunction) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
// We have the JS function frame, now check if it has arguments adaptor.
if (i > 0 &&
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
*args_count = frames_[i - 1].height();
return &(frames_[i - 1]);
}
*args_count =
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
return &(frames_[i]);
}
}
}
return nullptr;
}
void TranslatedState::StoreMaterializedValuesAndDeopt() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
bool new_store = false;
if (previously_materialized_objects.is_null()) {
previously_materialized_objects =
isolate_->factory()->NewFixedArray(length);
for (int i = 0; i < length; i++) {
previously_materialized_objects->set(i, *marker);
}
new_store = true;
}
DCHECK_EQ(length, previously_materialized_objects->length());
bool value_changed = false;
for (int i = 0; i < length; i++) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
DCHECK(value_info->IsMaterializedObject());
Handle<Object> value(value_info->GetRawValue(), isolate_);
if (!value.is_identical_to(marker)) {
if (previously_materialized_objects->get(i) == *marker) {
previously_materialized_objects->set(i, *value);
value_changed = true;
} else {
DCHECK(previously_materialized_objects->get(i) == *value);
}
}
}
if (new_store && value_changed) {
materialized_store->Set(stack_frame_pointer_,
previously_materialized_objects);
DCHECK_EQ(TranslatedFrame::kFunction, frames_[0].kind());
Object* const function = frames_[0].front().GetRawValue();
Deoptimizer::DeoptimizeFunction(JSFunction::cast(function));
}
}
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
// If we have no previously materialized objects, there is nothing to do.
if (previously_materialized_objects.is_null()) return;
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
DCHECK_EQ(length, previously_materialized_objects->length());
for (int i = 0; i < length; i++) {
// For a previously materialized objects, inject their value into the
// translated values.
if (previously_materialized_objects->get(i) != *marker) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
DCHECK(value_info->IsMaterializedObject());
value_info->value_ =
Handle<Object>(previously_materialized_objects->get(i), isolate_);
}
}
}
} // namespace internal
} // namespace v8