v8/src/hydrogen-environment-liveness.cc

232 lines
7.9 KiB
C++
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/hydrogen-environment-liveness.h"
namespace v8 {
namespace internal {
HEnvironmentLivenessAnalysisPhase::HEnvironmentLivenessAnalysisPhase(
HGraph* graph)
: HPhase("H_Environment liveness analysis", graph),
block_count_(graph->blocks()->length()),
maximum_environment_size_(graph->maximum_environment_size()),
live_at_block_start_(block_count_, zone()),
first_simulate_(block_count_, zone()),
first_simulate_invalid_for_index_(block_count_, zone()),
markers_(maximum_environment_size_, zone()),
collect_markers_(true),
last_simulate_(NULL),
went_live_since_last_simulate_(maximum_environment_size_, zone()) {
DCHECK(maximum_environment_size_ > 0);
for (int i = 0; i < block_count_; ++i) {
live_at_block_start_.Add(
new(zone()) BitVector(maximum_environment_size_, zone()), zone());
first_simulate_.Add(NULL, zone());
first_simulate_invalid_for_index_.Add(
new(zone()) BitVector(maximum_environment_size_, zone()), zone());
}
}
void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlot(
int index, HSimulate* simulate) {
int operand_index = simulate->ToOperandIndex(index);
if (operand_index == -1) {
simulate->AddAssignedValue(index, graph()->GetConstantUndefined());
} else {
simulate->SetOperandAt(operand_index, graph()->GetConstantUndefined());
}
}
void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlotsInSuccessors(
HBasicBlock* block, BitVector* live) {
// When a value is live in successor A but dead in B, we must
// explicitly zap it in B.
for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
HBasicBlock* successor = it.Current();
int successor_id = successor->block_id();
BitVector* live_in_successor = live_at_block_start_[successor_id];
if (live_in_successor->Equals(*live)) continue;
for (int i = 0; i < live->length(); ++i) {
if (!live->Contains(i)) continue;
if (live_in_successor->Contains(i)) continue;
if (first_simulate_invalid_for_index_.at(successor_id)->Contains(i)) {
continue;
}
HSimulate* simulate = first_simulate_.at(successor_id);
if (simulate == NULL) continue;
DCHECK(VerifyClosures(simulate->closure(),
block->last_environment()->closure()));
ZapEnvironmentSlot(i, simulate);
}
}
}
void HEnvironmentLivenessAnalysisPhase::ZapEnvironmentSlotsForInstruction(
HEnvironmentMarker* marker) {
if (!marker->CheckFlag(HValue::kEndsLiveRange)) return;
HSimulate* simulate = marker->next_simulate();
if (simulate != NULL) {
DCHECK(VerifyClosures(simulate->closure(), marker->closure()));
ZapEnvironmentSlot(marker->index(), simulate);
}
}
void HEnvironmentLivenessAnalysisPhase::UpdateLivenessAtBlockEnd(
HBasicBlock* block,
BitVector* live) {
// Liveness at the end of each block: union of liveness in successors.
live->Clear();
for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
live->Union(*live_at_block_start_[it.Current()->block_id()]);
}
}
void HEnvironmentLivenessAnalysisPhase::UpdateLivenessAtInstruction(
HInstruction* instr,
BitVector* live) {
switch (instr->opcode()) {
case HValue::kEnvironmentMarker: {
HEnvironmentMarker* marker = HEnvironmentMarker::cast(instr);
int index = marker->index();
if (!live->Contains(index)) {
marker->SetFlag(HValue::kEndsLiveRange);
} else {
marker->ClearFlag(HValue::kEndsLiveRange);
}
if (!went_live_since_last_simulate_.Contains(index)) {
marker->set_next_simulate(last_simulate_);
}
if (marker->kind() == HEnvironmentMarker::LOOKUP) {
live->Add(index);
} else {
DCHECK(marker->kind() == HEnvironmentMarker::BIND);
live->Remove(index);
went_live_since_last_simulate_.Add(index);
}
if (collect_markers_) {
// Populate |markers_| list during the first pass.
markers_.Add(marker, zone());
}
break;
}
case HValue::kLeaveInlined:
// No environment values are live at the end of an inlined section.
live->Clear();
last_simulate_ = NULL;
// The following DCHECKs guard the assumption used in case
// kEnterInlined below:
DCHECK(instr->next()->IsSimulate());
DCHECK(instr->next()->next()->IsGoto());
break;
case HValue::kEnterInlined: {
// Those environment values are live that are live at any return
// target block. Here we make use of the fact that the end of an
// inline sequence always looks like this: HLeaveInlined, HSimulate,
// HGoto (to return_target block), with no environment lookups in
// between (see DCHECKs above).
HEnterInlined* enter = HEnterInlined::cast(instr);
live->Clear();
for (int i = 0; i < enter->return_targets()->length(); ++i) {
int return_id = enter->return_targets()->at(i)->block_id();
live->Union(*live_at_block_start_[return_id]);
}
last_simulate_ = NULL;
break;
}
case HValue::kSimulate:
last_simulate_ = HSimulate::cast(instr);
went_live_since_last_simulate_.Clear();
break;
default:
break;
}
}
void HEnvironmentLivenessAnalysisPhase::Run() {
DCHECK(maximum_environment_size_ > 0);
// Main iteration. Compute liveness of environment slots, and store it
// for each block until it doesn't change any more. For efficiency, visit
// blocks in reverse order and walk backwards through each block. We
// need several iterations to propagate liveness through nested loops.
BitVector live(maximum_environment_size_, zone());
BitVector worklist(block_count_, zone());
for (int i = 0; i < block_count_; ++i) {
worklist.Add(i);
}
while (!worklist.IsEmpty()) {
for (int block_id = block_count_ - 1; block_id >= 0; --block_id) {
if (!worklist.Contains(block_id)) {
continue;
}
worklist.Remove(block_id);
last_simulate_ = NULL;
HBasicBlock* block = graph()->blocks()->at(block_id);
UpdateLivenessAtBlockEnd(block, &live);
for (HInstruction* instr = block->end(); instr != NULL;
instr = instr->previous()) {
UpdateLivenessAtInstruction(instr, &live);
}
// Reached the start of the block, do necessary bookkeeping:
// store computed information for this block and add predecessors
// to the work list as necessary.
first_simulate_.Set(block_id, last_simulate_);
first_simulate_invalid_for_index_[block_id]->CopyFrom(
went_live_since_last_simulate_);
if (live_at_block_start_[block_id]->UnionIsChanged(live)) {
for (int i = 0; i < block->predecessors()->length(); ++i) {
worklist.Add(block->predecessors()->at(i)->block_id());
}
if (block->IsInlineReturnTarget()) {
worklist.Add(block->inlined_entry_block()->block_id());
}
}
}
// Only collect bind/lookup instructions during the first pass.
collect_markers_ = false;
}
// Analysis finished. Zap dead environment slots.
for (int i = 0; i < markers_.length(); ++i) {
ZapEnvironmentSlotsForInstruction(markers_[i]);
}
for (int block_id = block_count_ - 1; block_id >= 0; --block_id) {
HBasicBlock* block = graph()->blocks()->at(block_id);
UpdateLivenessAtBlockEnd(block, &live);
ZapEnvironmentSlotsInSuccessors(block, &live);
}
// Finally, remove the HEnvironment{Bind,Lookup} markers.
for (int i = 0; i < markers_.length(); ++i) {
markers_[i]->DeleteAndReplaceWith(NULL);
}
}
#ifdef DEBUG
bool HEnvironmentLivenessAnalysisPhase::VerifyClosures(
Handle<JSFunction> a, Handle<JSFunction> b) {
Heap::RelocationLock for_heap_access(isolate()->heap());
AllowHandleDereference for_verification;
return a.is_identical_to(b);
}
#endif
} } // namespace v8::internal