v8/test/unittests/compiler/decompression-elimination-unittest.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

855 lines
33 KiB
C++
Raw Normal View History

// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/decompression-elimination.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
#include "test/unittests/compiler/graph-reducer-unittest.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/compiler/node-test-utils.h"
#include "testing/gmock-support.h"
using testing::_;
using testing::StrictMock;
namespace v8 {
namespace internal {
namespace compiler {
class DecompressionEliminationTest : public GraphTest {
public:
DecompressionEliminationTest()
: GraphTest(),
machine_(zone(), MachineType::PointerRepresentation(),
MachineOperatorBuilder::kNoFlags),
simplified_(zone()) {}
~DecompressionEliminationTest() override = default;
protected:
Reduction Reduce(StrictMock<MockAdvancedReducerEditor>* editor, Node* node) {
DecompressionElimination decompression_elimination(editor, graph(),
machine(), common());
return decompression_elimination.Reduce(node);
}
Reduction Reduce(Node* node) {
StrictMock<MockAdvancedReducerEditor> editor;
return Reduce(&editor, node);
}
Node* GetUniqueValueUse(Node* node) {
Node* value_use = nullptr;
for (Edge edge : node->use_edges()) {
if (NodeProperties::IsValueEdge(edge)) {
if (value_use) {
return nullptr;
} else {
value_use = edge.from();
}
}
}
// Return the value use of node after the reduction, if there is exactly one
return value_use;
}
const Operator* DecompressionOpFromAccess(const ElementAccess access) {
switch (access.machine_type.representation()) {
case MachineRepresentation::kCompressed:
return machine()->ChangeCompressedToTagged();
case MachineRepresentation::kCompressedSigned:
return machine()->ChangeCompressedSignedToTaggedSigned();
case MachineRepresentation::kCompressedPointer:
return machine()->ChangeCompressedPointerToTaggedPointer();
default:
UNREACHABLE();
}
}
const Operator* CompressionOpFromAccess(const ElementAccess access) {
switch (access.machine_type.representation()) {
case MachineRepresentation::kCompressed:
return machine()->ChangeTaggedToCompressed();
case MachineRepresentation::kCompressedSigned:
return machine()->ChangeTaggedSignedToCompressedSigned();
case MachineRepresentation::kCompressedPointer:
return machine()->ChangeTaggedPointerToCompressedPointer();
default:
UNREACHABLE();
}
}
// 'Global' accesses used to simplify the tests.
ElementAccess const any_access = {kTaggedBase, kTaggedSize, Type::Any(),
MachineType::AnyCompressed(),
kNoWriteBarrier};
ElementAccess const signed_access = {kTaggedBase, kTaggedSize, Type::Any(),
MachineType::CompressedSigned(),
kNoWriteBarrier};
ElementAccess const pointer_access = {kTaggedBase, kTaggedSize, Type::Any(),
MachineType::CompressedPointer(),
kNoWriteBarrier};
const ElementAccess element_accesses[3] = {any_access, signed_access,
pointer_access};
MachineOperatorBuilder* machine() { return &machine_; }
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
private:
MachineOperatorBuilder machine_;
SimplifiedOperatorBuilder simplified_;
};
// -----------------------------------------------------------------------------
// Direct Decompression & Compression.
TEST_F(DecompressionEliminationTest, BasicDecompressionCompression) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
// Pairs of <load, store> accesses
const std::pair<ElementAccess, ElementAccess> accesses[] = {
{any_access, any_access}, {signed_access, any_access},
{pointer_access, any_access}, {any_access, signed_access},
{signed_access, signed_access}, {any_access, pointer_access},
{pointer_access, pointer_access}};
for (size_t i = 0; i < arraysize(accesses); ++i) {
// Create the graph.
Node* load = graph()->NewNode(simplified()->LoadElement(accesses[i].first),
object, index, effect, control);
Node* change_to_tagged =
graph()->NewNode(DecompressionOpFromAccess(accesses[i].first), load);
Node* change_to_compressed = graph()->NewNode(
CompressionOpFromAccess(accesses[i].second), change_to_tagged);
effect =
graph()->NewNode(simplified()->StoreElement(accesses[i].second), object,
index, change_to_compressed, effect, control);
// Reduce.
Reduction r = Reduce(change_to_compressed);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(load, r.replacement());
}
}
// -----------------------------------------------------------------------------
// Direct Compression & Decompression
TEST_F(DecompressionEliminationTest, BasicCompressionDecompression) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
// Pairs of <load, store> accesses
const std::pair<ElementAccess, ElementAccess> accesses[] = {
{any_access, any_access}, {signed_access, any_access},
{pointer_access, any_access}, {any_access, signed_access},
{signed_access, signed_access}, {any_access, pointer_access},
{pointer_access, pointer_access}};
for (size_t i = 0; i < arraysize(accesses); ++i) {
// Create the graph.
Node* load = graph()->NewNode(simplified()->LoadElement(accesses[i].first),
object, index, effect, control);
Node* change_to_compressed =
graph()->NewNode(CompressionOpFromAccess(accesses[i].first), load);
Node* change_to_tagged = graph()->NewNode(
DecompressionOpFromAccess(accesses[i].second), change_to_compressed);
effect = graph()->NewNode(simplified()->StoreElement(accesses[i].second),
object, index, change_to_tagged, effect, control);
// Reduce.
Reduction r = Reduce(change_to_tagged);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(load, r.replacement());
}
}
// -----------------------------------------------------------------------------
// Compress after constant.
TEST_F(DecompressionEliminationTest, CompressionAfterInt64Constant) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int64_t constants[] = {static_cast<int64_t>(0x0000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0x0000FFFFFFFF0000),
static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
static_cast<int64_t>(0x8000000000000000),
static_cast<int64_t>(0x8000000000000001),
static_cast<int64_t>(0x8000FFFFFFFF0000),
static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// For every Int64Constant.
for (size_t j = 0; j < arraysize(constants); ++j) {
// Create the graph.
Node* constant = graph()->NewNode(common()->Int64Constant(constants[j]));
Node* change_to_compressed = graph()->NewNode(
CompressionOpFromAccess(element_accesses[i]), constant);
effect = graph()->NewNode(simplified()->StoreElement(element_accesses[i]),
object, index, change_to_compressed, effect,
control);
// Reduce.
Reduction r = Reduce(change_to_compressed);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kInt32Constant);
}
}
}
TEST_F(DecompressionEliminationTest, CompressionAfterHeapConstant) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const Handle<HeapNumber> heap_constants[] = {
factory()->NewHeapNumber(0.0),
factory()->NewHeapNumber(-0.0),
factory()->NewHeapNumber(11.2),
factory()->NewHeapNumber(-11.2),
factory()->NewHeapNumber(3.1415 + 1.4142),
factory()->NewHeapNumber(3.1415 - 1.4142),
factory()->NewHeapNumber(0x0000000000000000),
factory()->NewHeapNumber(0x0000000000000001),
factory()->NewHeapNumber(0x0000FFFFFFFF0000),
factory()->NewHeapNumber(0x7FFFFFFFFFFFFFFF),
factory()->NewHeapNumber(0x8000000000000000),
factory()->NewHeapNumber(0x8000000000000001),
factory()->NewHeapNumber(0x8000FFFFFFFF0000),
factory()->NewHeapNumber(0x8FFFFFFFFFFFFFFF),
factory()->NewHeapNumber(0xFFFFFFFFFFFFFFFF)};
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// For every HeapNumber.
for (size_t j = 0; j < arraysize(heap_constants); ++j) {
// Create the graph.
Node* constant =
graph()->NewNode(common()->HeapConstant(heap_constants[j]));
Node* change_to_compressed = graph()->NewNode(
CompressionOpFromAccess(element_accesses[i]), constant);
effect = graph()->NewNode(simplified()->StoreElement(element_accesses[i]),
object, index, change_to_compressed, effect,
control);
// Reduce.
Reduction r = Reduce(change_to_compressed);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kCompressedHeapConstant);
}
}
}
// -----------------------------------------------------------------------------
// Phi.
TEST_F(DecompressionEliminationTest, PhiOneDecompress) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 1;
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, number_of_inputs),
change_to_tagged, control);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
EXPECT_CALL(editor, ReplaceWithValue(phi, _, _, _));
Reduction r = Reduce(&editor, phi);
ASSERT_TRUE(r.Changed());
// Get the actual decompress after the Phi, and check against the expected
// one.
Node* decompress = GetUniqueValueUse(phi);
EXPECT_EQ(DecompressionOpFromAccess(element_accesses[i]), decompress->op());
}
}
TEST_F(DecompressionEliminationTest, PhiThreeDecompressSameRepresentation) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* load3 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load1);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load2);
Node* change_to_tagged_3 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load3);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, number_of_inputs),
change_to_tagged_1, change_to_tagged_2, change_to_tagged_3, control);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
EXPECT_CALL(editor, ReplaceWithValue(phi, _, _, _));
Reduction r = Reduce(&editor, phi);
ASSERT_TRUE(r.Changed());
// Get the actual decompress after the Phi, and check against the expected
// one.
Node* decompress = GetUniqueValueUse(phi);
EXPECT_EQ(DecompressionOpFromAccess(element_accesses[i]), decompress->op());
}
}
TEST_F(DecompressionEliminationTest, PhiThreeDecompressOneAnyRepresentation) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
// Signed and Pointer (and not Any) accesses.
const ElementAccess not_any_accesses[] = {signed_access, pointer_access};
// For every access.
for (size_t i = 0; i < arraysize(not_any_accesses); ++i) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(not_any_accesses[i]), object,
index, effect, control);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(not_any_accesses[i]), object,
index, effect, control);
// Note that load3 loads a CompressedAny instead of not_any_accesses[i]
Node* load3 = graph()->NewNode(simplified()->LoadElement(any_access),
object, index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(not_any_accesses[i]), load1);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(not_any_accesses[i]), load2);
Node* change_to_tagged_3 =
graph()->NewNode(machine()->ChangeCompressedToTagged(), load3);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, number_of_inputs),
change_to_tagged_1, change_to_tagged_2, change_to_tagged_3, control);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
EXPECT_CALL(editor, ReplaceWithValue(phi, _, _, _));
Reduction r = Reduce(&editor, phi);
ASSERT_TRUE(r.Changed());
// Get the actual decompress after the Phi, and check against the expected
// one.
Node* decompress = GetUniqueValueUse(phi);
EXPECT_EQ(machine()->ChangeCompressedToTagged(), decompress->op());
}
}
TEST_F(DecompressionEliminationTest, PhiThreeInputsOneNotDecompressed) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* load3 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load1);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load2);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, number_of_inputs),
change_to_tagged_1, change_to_tagged_2, load3, control);
// Reduce.
Reduction r = Reduce(phi);
ASSERT_FALSE(r.Changed());
}
}
// In the case of having one decompress Signed and one Pointer, we have to
// generate the conservative decompress any after the Phi.
TEST_F(DecompressionEliminationTest, PhiTwoDecompressesOneSignedOnePointer) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 2;
// Create the graph.
Node* load1 = graph()->NewNode(simplified()->LoadElement(signed_access),
object, index, effect, control);
Node* load2 = graph()->NewNode(simplified()->LoadElement(pointer_access),
object, index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(signed_access), load1);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(pointer_access), load2);
Node* phi = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, number_of_inputs),
change_to_tagged_1, change_to_tagged_2, control);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
EXPECT_CALL(editor, ReplaceWithValue(phi, _, _, _));
Reduction r = Reduce(&editor, phi);
ASSERT_TRUE(r.Changed());
// Get the actual decompress after the Phi, and check against the expected
// one.
Node* decompress = GetUniqueValueUse(phi);
EXPECT_EQ(machine()->ChangeCompressedToTagged(), decompress->op());
}
// -----------------------------------------------------------------------------
// TypedStateValues.
TEST_F(DecompressionEliminationTest, TypedStateValuesOneDecompress) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 1;
const ZoneVector<MachineType>* types =
new (graph()->zone()->New(sizeof(ZoneVector<MachineType>)))
ZoneVector<MachineType>(number_of_inputs, graph()->zone());
SparseInputMask dense = SparseInputMask::Dense();
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load);
Node* typedStateValues = graph()->NewNode(
common()->TypedStateValues(types, dense), change_to_tagged);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
DecompressionElimination decompression_elimination(&editor, graph(),
machine(), common());
Reduction r = decompression_elimination.Reduce(typedStateValues);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->InputAt(0), load);
}
}
TEST_F(DecompressionEliminationTest, TypedStateValuesTwoDecompresses) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
const ZoneVector<MachineType>* types =
new (graph()->zone()->New(sizeof(ZoneVector<MachineType>)))
ZoneVector<MachineType>(number_of_inputs, graph()->zone());
SparseInputMask dense = SparseInputMask::Dense();
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load1);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load2);
Node* typedStateValues =
graph()->NewNode(common()->TypedStateValues(types, dense),
change_to_tagged_1, load1, change_to_tagged_2);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
DecompressionElimination decompression_elimination(&editor, graph(),
machine(), common());
Reduction r = decompression_elimination.Reduce(typedStateValues);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->InputAt(0), load1);
// Note that the input at index 1 didn't change.
EXPECT_EQ(r.replacement()->InputAt(1), load1);
EXPECT_EQ(r.replacement()->InputAt(2), load2);
}
}
TEST_F(DecompressionEliminationTest, TypedStateValuesAllDecompresses) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
const ZoneVector<MachineType>* types =
new (graph()->zone()->New(sizeof(ZoneVector<MachineType>)))
ZoneVector<MachineType>(number_of_inputs, graph()->zone());
SparseInputMask dense = SparseInputMask::Dense();
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_1 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load1);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_2 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load2);
Node* load3 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged_3 =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load3);
Node* typedStateValues = graph()->NewNode(
common()->TypedStateValues(types, dense), change_to_tagged_1,
change_to_tagged_2, change_to_tagged_3);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
DecompressionElimination decompression_elimination(&editor, graph(),
machine(), common());
Reduction r = decompression_elimination.Reduce(typedStateValues);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->InputAt(0), load1);
EXPECT_EQ(r.replacement()->InputAt(1), load2);
EXPECT_EQ(r.replacement()->InputAt(2), load3);
}
}
TEST_F(DecompressionEliminationTest, TypedStateValuesNoDecompresses) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int number_of_inputs = 3;
const ZoneVector<MachineType>* types =
new (graph()->zone()->New(sizeof(ZoneVector<MachineType>)))
ZoneVector<MachineType>(number_of_inputs, graph()->zone());
SparseInputMask dense = SparseInputMask::Dense();
// For every access.
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* typedStateValues = graph()->NewNode(
common()->TypedStateValues(types, dense), load, load, load);
// Reduce.
StrictMock<MockAdvancedReducerEditor> editor;
DecompressionElimination decompression_elimination(&editor, graph(),
machine(), common());
Reduction r = decompression_elimination.Reduce(typedStateValues);
ASSERT_FALSE(r.Changed());
}
}
// -----------------------------------------------------------------------------
// Word64Equal comparison of two decompressions.
TEST_F(DecompressionEliminationTest, TwoDecompressionWord64Equal) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
// For every decompression (lhs).
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// For every decompression (rhs)
for (size_t j = 0; j < arraysize(element_accesses); ++j) {
// Create the graph.
Node* load1 =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]),
object, index, effect, control);
Node* change_to_tagged_1 = graph()->NewNode(
DecompressionOpFromAccess(element_accesses[i]), load1);
Node* load2 =
graph()->NewNode(simplified()->LoadElement(element_accesses[j]),
object, index, effect, control);
Node* change_to_tagged_2 = graph()->NewNode(
DecompressionOpFromAccess(element_accesses[i]), load2);
Node* comparison = graph()->NewNode(
machine()->Word64Equal(), change_to_tagged_1, change_to_tagged_2);
// Reduce.
Reduction r = Reduce(comparison);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kWord32Equal);
}
}
}
// -----------------------------------------------------------------------------
// Word64Equal comparison of two decompressions, where lhs == rhs.
TEST_F(DecompressionEliminationTest, TwoDecompressionWord64EqualSameInput) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
// For every access. (same for lhs and rhs)
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]), object,
index, effect, control);
Node* change_to_tagged =
graph()->NewNode(DecompressionOpFromAccess(element_accesses[i]), load);
Node* comparison = graph()->NewNode(machine()->Word64Equal(),
change_to_tagged, change_to_tagged);
// Reduce.
Reduction r = Reduce(comparison);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kWord32Equal);
}
}
// -----------------------------------------------------------------------------
// Word64Equal comparison of decompress and a constant.
TEST_F(DecompressionEliminationTest, DecompressionConstantWord64Equal) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const int64_t constants[] = {static_cast<int64_t>(0x0000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0x0000FFFFFFFF0000),
static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
static_cast<int64_t>(0x8000000000000000),
static_cast<int64_t>(0x8000000000000001),
static_cast<int64_t>(0x8000FFFFFFFF0000),
static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
// For every decompression (lhs).
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// For every constant (rhs).
for (size_t j = 0; j < arraysize(constants); ++j) {
// Test with both (lhs, rhs) combinations.
for (bool lhs_is_decompression : {false, true}) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]),
object, index, effect, control);
Node* change_to_tagged = graph()->NewNode(
DecompressionOpFromAccess(element_accesses[i]), load);
Node* constant =
graph()->NewNode(common()->Int64Constant(constants[j]));
Node* lhs = lhs_is_decompression ? change_to_tagged : constant;
Node* rhs = lhs_is_decompression ? constant : change_to_tagged;
Node* comparison = graph()->NewNode(machine()->Word64Equal(), lhs, rhs);
// Reduce.
Reduction r = Reduce(comparison);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kWord32Equal);
}
}
}
}
TEST_F(DecompressionEliminationTest, DecompressionHeapConstantWord64Equal) {
// Skip test if pointer compression is not enabled.
if (!COMPRESS_POINTERS_BOOL) {
return;
}
// Define variables.
Node* const control = graph()->start();
Node* object = Parameter(Type::Any(), 0);
Node* effect = graph()->start();
Node* index = Parameter(Type::UnsignedSmall(), 1);
const Handle<HeapNumber> heap_constants[] = {
factory()->NewHeapNumber(0.0),
factory()->NewHeapNumber(-0.0),
factory()->NewHeapNumber(11.2),
factory()->NewHeapNumber(-11.2),
factory()->NewHeapNumber(3.1415 + 1.4142),
factory()->NewHeapNumber(3.1415 - 1.4142),
factory()->NewHeapNumber(0x0000000000000000),
factory()->NewHeapNumber(0x0000000000000001),
factory()->NewHeapNumber(0x0000FFFFFFFF0000),
factory()->NewHeapNumber(0x7FFFFFFFFFFFFFFF),
factory()->NewHeapNumber(0x8000000000000000),
factory()->NewHeapNumber(0x8000000000000001),
factory()->NewHeapNumber(0x8000FFFFFFFF0000),
factory()->NewHeapNumber(0x8FFFFFFFFFFFFFFF),
factory()->NewHeapNumber(0xFFFFFFFFFFFFFFFF)};
// For every decompression (lhs).
for (size_t i = 0; i < arraysize(element_accesses); ++i) {
// For every constant (rhs).
for (size_t j = 0; j < arraysize(heap_constants); ++j) {
// Test with both (lhs, rhs) combinations.
for (bool lhs_is_decompression : {false, true}) {
// Create the graph.
Node* load =
graph()->NewNode(simplified()->LoadElement(element_accesses[i]),
object, index, effect, control);
Node* change_to_tagged = graph()->NewNode(
DecompressionOpFromAccess(element_accesses[i]), load);
Node* constant =
graph()->NewNode(common()->HeapConstant(heap_constants[j]));
Node* lhs = lhs_is_decompression ? change_to_tagged : constant;
Node* rhs = lhs_is_decompression ? constant : change_to_tagged;
Node* comparison = graph()->NewNode(machine()->Word64Equal(), lhs, rhs);
// Reduce.
Reduction r = Reduce(comparison);
ASSERT_TRUE(r.Changed());
EXPECT_EQ(r.replacement()->opcode(), IrOpcode::kWord32Equal);
}
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8