v8/src/code-factory.cc

512 lines
15 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/code-factory.h"
#include "src/bootstrapper.h"
#include "src/ic/ic.h"
namespace v8 {
namespace internal {
namespace {
// TODO(ishell): make it (const Stub& stub) once CodeStub::GetCode() is const.
template <typename Stub>
Callable make_callable(Stub& stub) {
typedef typename Stub::Descriptor Descriptor;
return Callable(stub.GetCode(), Descriptor(stub.isolate()));
}
} // namespace
// static
Handle<Code> CodeFactory::RuntimeCEntry(Isolate* isolate, int result_size) {
CEntryStub stub(isolate, result_size);
return stub.GetCode();
}
// static
Callable CodeFactory::LoadIC(Isolate* isolate) {
LoadICTrampolineStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::ApiGetter(Isolate* isolate) {
CallApiGetterStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::LoadICInOptimizedCode(Isolate* isolate) {
LoadICStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::LoadGlobalIC(Isolate* isolate, TypeofMode typeof_mode) {
LoadGlobalICTrampolineStub stub(isolate, LoadGlobalICState(typeof_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::LoadGlobalICInOptimizedCode(Isolate* isolate,
TypeofMode typeof_mode) {
LoadGlobalICStub stub(isolate, LoadGlobalICState(typeof_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedLoadIC(Isolate* isolate) {
KeyedLoadICTrampolineTFStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedLoadICInOptimizedCode(Isolate* isolate) {
KeyedLoadICTFStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedLoadIC_Megamorphic(Isolate* isolate) {
return Callable(isolate->builtins()->KeyedLoadIC_Megamorphic_TF(),
LoadWithVectorDescriptor(isolate));
}
// static
Callable CodeFactory::CallIC(Isolate* isolate, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
CallICTrampolineStub stub(isolate, CallICState(mode, tail_call_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::CallICInOptimizedCode(Isolate* isolate,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
CallICStub stub(isolate, CallICState(mode, tail_call_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::StoreIC(Isolate* isolate, LanguageMode language_mode) {
StoreICTrampolineStub stub(isolate, StoreICState(language_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::StoreICInOptimizedCode(Isolate* isolate,
LanguageMode language_mode) {
StoreICStub stub(isolate, StoreICState(language_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedStoreIC(Isolate* isolate,
LanguageMode language_mode) {
KeyedStoreICTrampolineTFStub stub(isolate, StoreICState(language_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedStoreICInOptimizedCode(Isolate* isolate,
LanguageMode language_mode) {
KeyedStoreICTFStub stub(isolate, StoreICState(language_mode));
return make_callable(stub);
}
// static
Callable CodeFactory::KeyedStoreIC_Megamorphic(Isolate* isolate,
LanguageMode language_mode) {
return Callable(
language_mode == STRICT
? isolate->builtins()->KeyedStoreIC_Megamorphic_Strict_TF()
: isolate->builtins()->KeyedStoreIC_Megamorphic_TF(),
StoreWithVectorDescriptor(isolate));
}
// static
Callable CodeFactory::CompareIC(Isolate* isolate, Token::Value op) {
CompareICStub stub(isolate, op);
return make_callable(stub);
}
// static
Callable CodeFactory::BinaryOpIC(Isolate* isolate, Token::Value op) {
BinaryOpICStub stub(isolate, op);
return make_callable(stub);
}
// static
Callable CodeFactory::GetProperty(Isolate* isolate) {
GetPropertyStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::ToBoolean(Isolate* isolate) {
return Callable(isolate->builtins()->ToBoolean(),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::ToNumber(Isolate* isolate) {
return Callable(isolate->builtins()->ToNumber(),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::NonNumberToNumber(Isolate* isolate) {
return Callable(isolate->builtins()->NonNumberToNumber(),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::StringToNumber(Isolate* isolate) {
return Callable(isolate->builtins()->StringToNumber(),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::ToName(Isolate* isolate) {
return Callable(isolate->builtins()->ToName(),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::NonPrimitiveToPrimitive(Isolate* isolate,
ToPrimitiveHint hint) {
return Callable(isolate->builtins()->NonPrimitiveToPrimitive(hint),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::OrdinaryToPrimitive(Isolate* isolate,
OrdinaryToPrimitiveHint hint) {
return Callable(isolate->builtins()->OrdinaryToPrimitive(hint),
TypeConversionDescriptor(isolate));
}
// static
Callable CodeFactory::NumberToString(Isolate* isolate) {
NumberToStringStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::RegExpExec(Isolate* isolate) {
RegExpExecStub stub(isolate);
return Callable(stub.GetCode(), stub.GetCallInterfaceDescriptor());
}
// static
Callable CodeFactory::StringFromCharCode(Isolate* isolate) {
Handle<Code> code(isolate->builtins()->StringFromCharCode());
return Callable(code, BuiltinDescriptor(isolate));
}
#define DECLARE_TFS(Name, Kind, Extra, InterfaceDescriptor) \
typedef InterfaceDescriptor##Descriptor Name##Descriptor;
BUILTIN_LIST(IGNORE_BUILTIN, IGNORE_BUILTIN, IGNORE_BUILTIN, DECLARE_TFS,
IGNORE_BUILTIN, IGNORE_BUILTIN, IGNORE_BUILTIN)
#undef DECLARE_TFS
#define TFS_BUILTIN(Name) \
Callable CodeFactory::Name(Isolate* isolate) { \
Handle<Code> code(isolate->builtins()->Name()); \
return Callable(code, Name##Descriptor(isolate)); \
}
TFS_BUILTIN(ToString)
TFS_BUILTIN(Add)
TFS_BUILTIN(Subtract)
TFS_BUILTIN(Multiply)
TFS_BUILTIN(Divide)
TFS_BUILTIN(Modulus)
TFS_BUILTIN(BitwiseAnd)
TFS_BUILTIN(BitwiseOr)
TFS_BUILTIN(BitwiseXor)
TFS_BUILTIN(ShiftLeft)
TFS_BUILTIN(ShiftRight)
TFS_BUILTIN(ShiftRightLogical)
TFS_BUILTIN(LessThan)
TFS_BUILTIN(LessThanOrEqual)
TFS_BUILTIN(GreaterThan)
TFS_BUILTIN(GreaterThanOrEqual)
TFS_BUILTIN(Equal)
TFS_BUILTIN(NotEqual)
TFS_BUILTIN(StrictEqual)
TFS_BUILTIN(StrictNotEqual)
TFS_BUILTIN(HasProperty)
TFS_BUILTIN(ToInteger)
TFS_BUILTIN(ToLength)
TFS_BUILTIN(ToObject)
TFS_BUILTIN(Typeof)
TFS_BUILTIN(InstanceOf)
TFS_BUILTIN(OrdinaryHasInstance)
TFS_BUILTIN(ForInFilter)
TFS_BUILTIN(NewUnmappedArgumentsElements)
TFS_BUILTIN(NewRestParameterElements)
TFS_BUILTIN(PromiseHandleReject)
TFS_BUILTIN(GetSuperConstructor)
TFS_BUILTIN(StringCharAt)
TFS_BUILTIN(StringCharCodeAt)
#undef TFS_BUILTIN
// static
Callable CodeFactory::StringAdd(Isolate* isolate, StringAddFlags flags,
PretenureFlag pretenure_flag) {
StringAddStub stub(isolate, flags, pretenure_flag);
return make_callable(stub);
}
// static
Callable CodeFactory::StringCompare(Isolate* isolate, Token::Value token) {
switch (token) {
case Token::EQ:
case Token::EQ_STRICT:
return StringEqual(isolate);
case Token::NE:
case Token::NE_STRICT:
return StringNotEqual(isolate);
case Token::LT:
return StringLessThan(isolate);
case Token::GT:
return StringGreaterThan(isolate);
case Token::LTE:
return StringLessThanOrEqual(isolate);
case Token::GTE:
return StringGreaterThanOrEqual(isolate);
default:
break;
}
UNREACHABLE();
return StringEqual(isolate);
}
// static
Callable CodeFactory::StringEqual(Isolate* isolate) {
return Callable(isolate->builtins()->StringEqual(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::StringNotEqual(Isolate* isolate) {
return Callable(isolate->builtins()->StringNotEqual(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::StringLessThan(Isolate* isolate) {
return Callable(isolate->builtins()->StringLessThan(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::StringLessThanOrEqual(Isolate* isolate) {
return Callable(isolate->builtins()->StringLessThanOrEqual(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::StringGreaterThan(Isolate* isolate) {
return Callable(isolate->builtins()->StringGreaterThan(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::StringGreaterThanOrEqual(Isolate* isolate) {
return Callable(isolate->builtins()->StringGreaterThanOrEqual(),
CompareDescriptor(isolate));
}
// static
Callable CodeFactory::SubString(Isolate* isolate) {
SubStringStub stub(isolate);
return Callable(stub.GetCode(), stub.GetCallInterfaceDescriptor());
}
// static
Callable CodeFactory::ResumeGenerator(Isolate* isolate) {
return Callable(isolate->builtins()->ResumeGeneratorTrampoline(),
ResumeGeneratorDescriptor(isolate));
}
// static
Callable CodeFactory::FastCloneRegExp(Isolate* isolate) {
FastCloneRegExpStub stub(isolate);
return make_callable(stub);
}
// static
Callable CodeFactory::FastCloneShallowArray(Isolate* isolate) {
// TODO(mstarzinger): Thread through AllocationSiteMode at some point.
FastCloneShallowArrayStub stub(isolate, DONT_TRACK_ALLOCATION_SITE);
return make_callable(stub);
}
// static
Callable CodeFactory::FastCloneShallowObject(Isolate* isolate, int length) {
FastCloneShallowObjectStub stub(isolate, length);
return make_callable(stub);
}
// static
Callable CodeFactory::FastNewFunctionContext(Isolate* isolate,
ScopeType scope_type) {
FastNewFunctionContextStub stub(isolate, scope_type);
return make_callable(stub);
}
// static
Callable CodeFactory::FastNewClosure(Isolate* isolate) {
return Callable(isolate->builtins()->FastNewClosure(),
FastNewClosureDescriptor(isolate));
}
// static
Callable CodeFactory::FastNewObject(Isolate* isolate) {
FastNewObjectStub stub(isolate);
return make_callable(stub);
}
[runtime] Optimize and unify rest parameters. Replace the somewhat awkward RestParamAccessStub, which would always call into the runtime anyway with a proper FastNewRestParameterStub, which is basically based on the code that was already there for strict arguments object materialization. But for rest parameters we could optimize even further (leading to 8-10x improvements for functions with rest parameters), by fixing the internal formal parameter count: Every SharedFunctionInfo has a formal_parameter_count field, which specifies the number of formal parameters, and is used to decide whether we need to create an arguments adaptor frame when calling a function (i.e. if there's a mismatch between the actual and expected parameters). Previously the formal_parameter_count included the rest parameter, which was sort of unfortunate, as that meant that calling a function with only the non-rest parameters still required an arguments adaptor (plus some other oddities). Now with this CL we fix, so that we do no longer include the rest parameter in that count. Thereby checking for rest parameters is very efficient, as we only need to check whether there is an arguments adaptor frame, and if not create an empty array, otherwise check whether the arguments adaptor frame has more parameters than specified by the formal_parameter_count. The FastNewRestParameterStub is written in a way that it can be directly used by Ignition as well, and with some tweaks to the TurboFan backends and the CodeStubAssembler, we should be able to rewrite it as TurboFanCodeStub in the near future. Drive-by-fix: Refactor and unify the CreateArgumentsType which was different in TurboFan and Ignition; now we have a single enum class which is used in both TurboFan and Ignition. R=jarin@chromium.org, rmcilroy@chromium.org TBR=rossberg@chromium.org BUG=v8:2159 LOG=n Review URL: https://codereview.chromium.org/1676883002 Cr-Commit-Position: refs/heads/master@{#33809}
2016-02-08 10:08:21 +00:00
// static
Callable CodeFactory::FastNewRestParameter(Isolate* isolate,
bool skip_stub_frame) {
FastNewRestParameterStub stub(isolate, skip_stub_frame);
return make_callable(stub);
[runtime] Optimize and unify rest parameters. Replace the somewhat awkward RestParamAccessStub, which would always call into the runtime anyway with a proper FastNewRestParameterStub, which is basically based on the code that was already there for strict arguments object materialization. But for rest parameters we could optimize even further (leading to 8-10x improvements for functions with rest parameters), by fixing the internal formal parameter count: Every SharedFunctionInfo has a formal_parameter_count field, which specifies the number of formal parameters, and is used to decide whether we need to create an arguments adaptor frame when calling a function (i.e. if there's a mismatch between the actual and expected parameters). Previously the formal_parameter_count included the rest parameter, which was sort of unfortunate, as that meant that calling a function with only the non-rest parameters still required an arguments adaptor (plus some other oddities). Now with this CL we fix, so that we do no longer include the rest parameter in that count. Thereby checking for rest parameters is very efficient, as we only need to check whether there is an arguments adaptor frame, and if not create an empty array, otherwise check whether the arguments adaptor frame has more parameters than specified by the formal_parameter_count. The FastNewRestParameterStub is written in a way that it can be directly used by Ignition as well, and with some tweaks to the TurboFan backends and the CodeStubAssembler, we should be able to rewrite it as TurboFanCodeStub in the near future. Drive-by-fix: Refactor and unify the CreateArgumentsType which was different in TurboFan and Ignition; now we have a single enum class which is used in both TurboFan and Ignition. R=jarin@chromium.org, rmcilroy@chromium.org TBR=rossberg@chromium.org BUG=v8:2159 LOG=n Review URL: https://codereview.chromium.org/1676883002 Cr-Commit-Position: refs/heads/master@{#33809}
2016-02-08 10:08:21 +00:00
}
// static
Callable CodeFactory::FastNewSloppyArguments(Isolate* isolate,
bool skip_stub_frame) {
FastNewSloppyArgumentsStub stub(isolate, skip_stub_frame);
return make_callable(stub);
}
// static
Callable CodeFactory::FastNewStrictArguments(Isolate* isolate,
bool skip_stub_frame) {
FastNewStrictArgumentsStub stub(isolate, skip_stub_frame);
return make_callable(stub);
}
// static
Callable CodeFactory::CopyFastSmiOrObjectElements(Isolate* isolate) {
return Callable(isolate->builtins()->CopyFastSmiOrObjectElements(),
CopyFastSmiOrObjectElementsDescriptor(isolate));
}
// static
Callable CodeFactory::GrowFastDoubleElements(Isolate* isolate) {
return Callable(isolate->builtins()->GrowFastDoubleElements(),
GrowArrayElementsDescriptor(isolate));
}
// static
Callable CodeFactory::GrowFastSmiOrObjectElements(Isolate* isolate) {
return Callable(isolate->builtins()->GrowFastSmiOrObjectElements(),
GrowArrayElementsDescriptor(isolate));
}
// static
Callable CodeFactory::AllocateHeapNumber(Isolate* isolate) {
AllocateHeapNumberStub stub(isolate);
return make_callable(stub);
}
#define SIMD128_ALLOC(TYPE, Type, type, lane_count, lane_type) \
Callable CodeFactory::Allocate##Type(Isolate* isolate) { \
Allocate##Type##Stub stub(isolate); \
return make_callable(stub); \
}
SIMD128_TYPES(SIMD128_ALLOC)
#undef SIMD128_ALLOC
// static
Callable CodeFactory::ArgumentAdaptor(Isolate* isolate) {
return Callable(isolate->builtins()->ArgumentsAdaptorTrampoline(),
ArgumentAdaptorDescriptor(isolate));
}
// static
Callable CodeFactory::Call(Isolate* isolate, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
return Callable(isolate->builtins()->Call(mode, tail_call_mode),
CallTrampolineDescriptor(isolate));
}
// static
Callable CodeFactory::CallFunction(Isolate* isolate, ConvertReceiverMode mode) {
return Callable(isolate->builtins()->CallFunction(mode),
CallTrampolineDescriptor(isolate));
}
// static
Callable CodeFactory::Construct(Isolate* isolate) {
return Callable(isolate->builtins()->Construct(),
ConstructTrampolineDescriptor(isolate));
}
// static
Callable CodeFactory::ConstructFunction(Isolate* isolate) {
return Callable(isolate->builtins()->ConstructFunction(),
ConstructTrampolineDescriptor(isolate));
}
// static
Callable CodeFactory::InterpreterPushArgsAndCall(Isolate* isolate,
TailCallMode tail_call_mode,
CallableType function_type) {
return Callable(isolate->builtins()->InterpreterPushArgsAndCall(
tail_call_mode, function_type),
InterpreterPushArgsAndCallDescriptor(isolate));
}
// static
Callable CodeFactory::InterpreterPushArgsAndConstruct(
Isolate* isolate, CallableType function_type) {
return Callable(
isolate->builtins()->InterpreterPushArgsAndConstruct(function_type),
InterpreterPushArgsAndConstructDescriptor(isolate));
}
// static
Callable CodeFactory::InterpreterPushArgsAndConstructArray(Isolate* isolate) {
return Callable(isolate->builtins()->InterpreterPushArgsAndConstructArray(),
InterpreterPushArgsAndConstructArrayDescriptor(isolate));
}
// static
Callable CodeFactory::InterpreterCEntry(Isolate* isolate, int result_size) {
// Note: If we ever use fpregs in the interpreter then we will need to
// save fpregs too.
CEntryStub stub(isolate, result_size, kDontSaveFPRegs, kArgvInRegister);
return Callable(stub.GetCode(), InterpreterCEntryDescriptor(isolate));
}
Reland of [interpreter] Add explicit OSR polling bytecode. (patchset #1 id:1 of https://codereview.chromium.org/2184553003/ ) Reason for revert: Fix has been landed. Original issue's description: > Revert of [interpreter] Add explicit OSR polling bytecode. (patchset #6 id:100001 of https://codereview.chromium.org/2172233002/ ) > > Reason for revert: > Bunch of breakages. Maybe bad interaction with https://chromium.googlesource.com/v8/v8/+/e520e5da5550f0d1a975e87d6e66a2edecbb0c8e ? > > E.g.: > https://build.chromium.org/p/client.v8/builders/V8%20Linux64/builds/11607 > > Original issue's description: > > [interpreter] Add explicit OSR polling bytecode. > > > > This adds an explicit {OsrPoll} bytecode into every loop header which > > triggers on-stack replacement when armed. Note that each such bytecode > > stores the static loop depths as an operand, and hence can be armed for > > specific loop depths. > > > > This also adds builtin code that triggers OSR compilation and switches > > execution over to optimized code in case compilation succeeds. In case > > compilation fails, the bytecode dispatch just continues unhindered. > > > > R=rmcilroy@chromium.org > > TEST=mjsunit/ignition/osr-from-bytecode > > BUG=v8:4764 > > > > Committed: https://crrev.com/a55beb68e0ededb3773affa294a71edc50621458 > > Cr-Commit-Position: refs/heads/master@{#38043} > > TBR=rmcilroy@chromium.org,mstarzinger@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG=v8:4764 > > Committed: https://crrev.com/439aa2c6d708bfd95db725bd6f97c4c49bbc51fc > Cr-Commit-Position: refs/heads/master@{#38044} TBR=rmcilroy@chromium.org,machenbach@chromium.org BUG=v8:4764 Review-Url: https://codereview.chromium.org/2184713002 Cr-Commit-Position: refs/heads/master@{#38056}
2016-07-26 14:31:10 +00:00
// static
Callable CodeFactory::InterpreterOnStackReplacement(Isolate* isolate) {
return Callable(isolate->builtins()->InterpreterOnStackReplacement(),
ContextOnlyDescriptor(isolate));
}
// static
Callable CodeFactory::ArrayPush(Isolate* isolate) {
return Callable(isolate->builtins()->ArrayPush(), BuiltinDescriptor(isolate));
}
// static
Callable CodeFactory::FunctionPrototypeBind(Isolate* isolate) {
return Callable(isolate->builtins()->FunctionPrototypeBind(),
BuiltinDescriptor(isolate));
}
} // namespace internal
} // namespace v8