v8/test/unittests/libplatform/default-worker-threads-task-runner-unittest.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

279 lines
8.0 KiB
C++
Raw Normal View History

// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/libplatform/default-worker-threads-task-runner.h"
#include <vector>
#include "include/v8-platform.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/semaphore.h"
#include "src/base/platform/time.h"
#include "testing/gtest-support.h"
namespace v8 {
namespace platform {
class TestTask : public v8::Task {
public:
explicit TestTask(std::function<void()> f) : f_(std::move(f)) {}
void Run() override { f_(); }
private:
std::function<void()> f_;
};
double RealTime() {
return base::TimeTicks::HighResolutionNow().ToInternalValue() /
static_cast<double>(base::Time::kMicrosecondsPerSecond);
}
TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostTaskOrder) {
DefaultWorkerThreadsTaskRunner runner(1, RealTime);
std::vector<int> order;
base::Semaphore semaphore(0);
std::unique_ptr<TestTask> task1 =
base::make_unique<TestTask>([&] { order.push_back(1); });
std::unique_ptr<TestTask> task2 =
base::make_unique<TestTask>([&] { order.push_back(2); });
std::unique_ptr<TestTask> task3 = base::make_unique<TestTask>([&] {
order.push_back(3);
semaphore.Signal();
});
runner.PostTask(std::move(task1));
runner.PostTask(std::move(task2));
runner.PostTask(std::move(task3));
semaphore.Wait();
runner.Terminate();
ASSERT_EQ(3UL, order.size());
ASSERT_EQ(1, order[0]);
ASSERT_EQ(2, order[1]);
ASSERT_EQ(3, order[2]);
}
TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostTaskOrderMultipleWorkers) {
DefaultWorkerThreadsTaskRunner runner(4, RealTime);
base::Mutex vector_lock;
std::vector<int> order;
std::atomic_int count{0};
std::unique_ptr<TestTask> task1 = base::make_unique<TestTask>([&] {
base::MutexGuard guard(&vector_lock);
order.push_back(1);
count++;
});
std::unique_ptr<TestTask> task2 = base::make_unique<TestTask>([&] {
base::MutexGuard guard(&vector_lock);
order.push_back(2);
count++;
});
std::unique_ptr<TestTask> task3 = base::make_unique<TestTask>([&] {
base::MutexGuard guard(&vector_lock);
order.push_back(3);
count++;
});
std::unique_ptr<TestTask> task4 = base::make_unique<TestTask>([&] {
base::MutexGuard guard(&vector_lock);
order.push_back(4);
count++;
});
std::unique_ptr<TestTask> task5 = base::make_unique<TestTask>([&] {
base::MutexGuard guard(&vector_lock);
order.push_back(5);
count++;
});
runner.PostTask(std::move(task1));
runner.PostTask(std::move(task2));
runner.PostTask(std::move(task3));
runner.PostTask(std::move(task4));
runner.PostTask(std::move(task5));
// We can't observe any ordering when there are multiple worker threads. The
// tasks are guaranteed to be dispatched to workers in the input order, but
// the workers are different threads and can be scheduled arbitrarily. Just
// check that all of the tasks were run once.
while (count != 5) {
}
runner.Terminate();
ASSERT_EQ(5UL, order.size());
ASSERT_EQ(1, std::count(order.begin(), order.end(), 1));
ASSERT_EQ(1, std::count(order.begin(), order.end(), 2));
ASSERT_EQ(1, std::count(order.begin(), order.end(), 3));
ASSERT_EQ(1, std::count(order.begin(), order.end(), 4));
ASSERT_EQ(1, std::count(order.begin(), order.end(), 5));
}
class FakeClock {
public:
static double time() { return time_.load(); }
static void set_time(double time) { time_.store(time); }
static void set_time_and_wake_up_runner(
double time, DefaultWorkerThreadsTaskRunner* runner) {
time_.store(time);
// PostTask will cause the condition variable WaitFor() call to be notified
// early, rather than waiting for the real amount of time. WaitFor() listens
// to the system clock and not our FakeClock.
runner->PostTask(base::make_unique<TestTask>([] {}));
}
private:
static std::atomic<double> time_;
};
std::atomic<double> FakeClock::time_{0.0};
TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostDelayedTaskOrder) {
FakeClock::set_time(0.0);
DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);
std::vector<int> order;
base::Semaphore task1_semaphore(0);
base::Semaphore task3_semaphore(0);
std::unique_ptr<TestTask> task1 = base::make_unique<TestTask>([&] {
order.push_back(1);
task1_semaphore.Signal();
});
std::unique_ptr<TestTask> task2 =
base::make_unique<TestTask>([&] { order.push_back(2); });
std::unique_ptr<TestTask> task3 = base::make_unique<TestTask>([&] {
order.push_back(3);
task3_semaphore.Signal();
});
runner.PostDelayedTask(std::move(task1), 100);
runner.PostTask(std::move(task2));
runner.PostTask(std::move(task3));
FakeClock::set_time_and_wake_up_runner(99, &runner);
task3_semaphore.Wait();
ASSERT_EQ(2UL, order.size());
ASSERT_EQ(2, order[0]);
ASSERT_EQ(3, order[1]);
FakeClock::set_time_and_wake_up_runner(101, &runner);
task1_semaphore.Wait();
runner.Terminate();
ASSERT_EQ(3UL, order.size());
ASSERT_EQ(2, order[0]);
ASSERT_EQ(3, order[1]);
ASSERT_EQ(1, order[2]);
}
TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostDelayedTaskOrder2) {
FakeClock::set_time(0.0);
DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);
std::vector<int> order;
base::Semaphore task1_semaphore(0);
base::Semaphore task2_semaphore(0);
base::Semaphore task3_semaphore(0);
std::unique_ptr<TestTask> task1 = base::make_unique<TestTask>([&] {
order.push_back(1);
task1_semaphore.Signal();
});
std::unique_ptr<TestTask> task2 = base::make_unique<TestTask>([&] {
order.push_back(2);
task2_semaphore.Signal();
});
std::unique_ptr<TestTask> task3 = base::make_unique<TestTask>([&] {
order.push_back(3);
task3_semaphore.Signal();
});
runner.PostDelayedTask(std::move(task1), 500);
runner.PostDelayedTask(std::move(task2), 100);
runner.PostDelayedTask(std::move(task3), 200);
FakeClock::set_time_and_wake_up_runner(101, &runner);
task2_semaphore.Wait();
ASSERT_EQ(1UL, order.size());
ASSERT_EQ(2, order[0]);
FakeClock::set_time_and_wake_up_runner(201, &runner);
task3_semaphore.Wait();
ASSERT_EQ(2UL, order.size());
ASSERT_EQ(2, order[0]);
ASSERT_EQ(3, order[1]);
FakeClock::set_time_and_wake_up_runner(501, &runner);
task1_semaphore.Wait();
runner.Terminate();
ASSERT_EQ(3UL, order.size());
ASSERT_EQ(2, order[0]);
ASSERT_EQ(3, order[1]);
ASSERT_EQ(1, order[2]);
}
TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostAfterTerminate) {
FakeClock::set_time(0.0);
DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);
std::vector<int> order;
base::Semaphore task1_semaphore(0);
base::Semaphore task2_semaphore(0);
base::Semaphore task3_semaphore(0);
std::unique_ptr<TestTask> task1 = base::make_unique<TestTask>([&] {
order.push_back(1);
task1_semaphore.Signal();
});
std::unique_ptr<TestTask> task2 = base::make_unique<TestTask>([&] {
order.push_back(2);
task2_semaphore.Signal();
});
std::unique_ptr<TestTask> task3 = base::make_unique<TestTask>([&] {
order.push_back(3);
task3_semaphore.Signal();
});
runner.PostTask(std::move(task1));
runner.PostDelayedTask(std::move(task2), 100);
task1_semaphore.Wait();
ASSERT_EQ(1UL, order.size());
ASSERT_EQ(1, order[0]);
runner.Terminate();
FakeClock::set_time_and_wake_up_runner(201, &runner);
// OK, we can't actually prove that this never executes. But wait a bit at
// least.
bool signalled =
task2_semaphore.WaitFor(base::TimeDelta::FromMilliseconds(100));
ASSERT_FALSE(signalled);
ASSERT_EQ(1UL, order.size());
ASSERT_EQ(1, order[0]);
runner.PostTask(std::move(task3));
signalled = task3_semaphore.WaitFor(base::TimeDelta::FromMilliseconds(100));
ASSERT_FALSE(signalled);
ASSERT_EQ(1UL, order.size());
ASSERT_EQ(1, order[0]);
}
TEST(DefaultWorkerThreadsTaskRunnerUnittest, NoIdleTasks) {
DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);
ASSERT_FALSE(runner.IdleTasksEnabled());
runner.Terminate();
}
} // namespace platform
} // namespace v8