v8/src/profile-generator.cc

945 lines
29 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "profile-generator-inl.h"
#include "compiler.h"
#include "global-handles.h"
#include "scopeinfo.h"
#include "unicode.h"
#include "zone-inl.h"
#include "debug.h"
namespace v8 {
namespace internal {
TokenEnumerator::TokenEnumerator()
: token_locations_(4),
token_removed_(4) {
}
TokenEnumerator::~TokenEnumerator() {
Isolate* isolate = Isolate::Current();
for (int i = 0; i < token_locations_.length(); ++i) {
if (!token_removed_[i]) {
isolate->global_handles()->ClearWeakness(token_locations_[i]);
isolate->global_handles()->Destroy(token_locations_[i]);
}
}
}
int TokenEnumerator::GetTokenId(Object* token) {
Isolate* isolate = Isolate::Current();
if (token == NULL) return TokenEnumerator::kNoSecurityToken;
for (int i = 0; i < token_locations_.length(); ++i) {
if (*token_locations_[i] == token && !token_removed_[i]) return i;
}
Handle<Object> handle = isolate->global_handles()->Create(token);
// handle.location() points to a memory cell holding a pointer
// to a token object in the V8's heap.
isolate->global_handles()->MakeWeak(handle.location(),
this,
TokenRemovedCallback);
token_locations_.Add(handle.location());
token_removed_.Add(false);
return token_locations_.length() - 1;
}
void TokenEnumerator::TokenRemovedCallback(v8::Isolate* isolate,
v8::Persistent<v8::Value>* handle,
void* parameter) {
reinterpret_cast<TokenEnumerator*>(parameter)->TokenRemoved(
Utils::OpenPersistent(handle).location());
handle->Dispose(isolate);
}
void TokenEnumerator::TokenRemoved(Object** token_location) {
for (int i = 0; i < token_locations_.length(); ++i) {
if (token_locations_[i] == token_location && !token_removed_[i]) {
token_removed_[i] = true;
return;
}
}
}
StringsStorage::StringsStorage()
: names_(StringsMatch) {
}
StringsStorage::~StringsStorage() {
for (HashMap::Entry* p = names_.Start();
p != NULL;
p = names_.Next(p)) {
DeleteArray(reinterpret_cast<const char*>(p->value));
}
}
const char* StringsStorage::GetCopy(const char* src) {
int len = static_cast<int>(strlen(src));
Vector<char> dst = Vector<char>::New(len + 1);
OS::StrNCpy(dst, src, len);
dst[len] = '\0';
uint32_t hash =
StringHasher::HashSequentialString(dst.start(), len, HEAP->HashSeed());
return AddOrDisposeString(dst.start(), hash);
}
const char* StringsStorage::GetFormatted(const char* format, ...) {
va_list args;
va_start(args, format);
const char* result = GetVFormatted(format, args);
va_end(args);
return result;
}
const char* StringsStorage::AddOrDisposeString(char* str, uint32_t hash) {
HashMap::Entry* cache_entry = names_.Lookup(str, hash, true);
if (cache_entry->value == NULL) {
// New entry added.
cache_entry->value = str;
} else {
DeleteArray(str);
}
return reinterpret_cast<const char*>(cache_entry->value);
}
const char* StringsStorage::GetVFormatted(const char* format, va_list args) {
Vector<char> str = Vector<char>::New(1024);
int len = OS::VSNPrintF(str, format, args);
if (len == -1) {
DeleteArray(str.start());
return format;
}
uint32_t hash = StringHasher::HashSequentialString(
str.start(), len, HEAP->HashSeed());
return AddOrDisposeString(str.start(), hash);
}
const char* StringsStorage::GetName(Name* name) {
if (name->IsString()) {
String* str = String::cast(name);
int length = Min(kMaxNameSize, str->length());
SmartArrayPointer<char> data =
str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length);
uint32_t hash = StringHasher::HashSequentialString(
*data, length, name->GetHeap()->HashSeed());
return AddOrDisposeString(data.Detach(), hash);
} else if (name->IsSymbol()) {
return "<symbol>";
}
return "";
}
const char* StringsStorage::GetName(int index) {
return GetFormatted("%d", index);
}
size_t StringsStorage::GetUsedMemorySize() const {
size_t size = sizeof(*this);
size += sizeof(HashMap::Entry) * names_.capacity();
for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) {
size += strlen(reinterpret_cast<const char*>(p->value)) + 1;
}
return size;
}
const char* const CodeEntry::kEmptyNamePrefix = "";
const char* const CodeEntry::kEmptyResourceName = "";
CodeEntry::~CodeEntry() {
delete no_frame_ranges_;
}
void CodeEntry::CopyData(const CodeEntry& source) {
tag_ = source.tag_;
name_prefix_ = source.name_prefix_;
name_ = source.name_;
resource_name_ = source.resource_name_;
line_number_ = source.line_number_;
}
uint32_t CodeEntry::GetCallUid() const {
uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed);
if (shared_id_ != 0) {
hash ^= ComputeIntegerHash(static_cast<uint32_t>(shared_id_),
v8::internal::kZeroHashSeed);
} else {
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed);
}
return hash;
}
bool CodeEntry::IsSameAs(CodeEntry* entry) const {
return this == entry
|| (tag_ == entry->tag_
&& shared_id_ == entry->shared_id_
&& (shared_id_ != 0
|| (name_prefix_ == entry->name_prefix_
&& name_ == entry->name_
&& resource_name_ == entry->resource_name_
&& line_number_ == entry->line_number_)));
}
void CodeEntry::SetBuiltinId(Builtins::Name id) {
tag_ = Logger::BUILTIN_TAG;
builtin_id_ = id;
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), false);
return map_entry != NULL ?
reinterpret_cast<ProfileNode*>(map_entry->value) : NULL;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), true);
if (map_entry->value == NULL) {
// New node added.
ProfileNode* new_node = new ProfileNode(tree_, entry);
map_entry->value = new_node;
children_list_.Add(new_node);
}
return reinterpret_cast<ProfileNode*>(map_entry->value);
}
double ProfileNode::GetSelfMillis() const {
return tree_->TicksToMillis(self_ticks_);
}
double ProfileNode::GetTotalMillis() const {
return tree_->TicksToMillis(total_ticks_);
}
void ProfileNode::Print(int indent) {
OS::Print("%5u %5u %*c %s%s [%d] #%d %d",
total_ticks_, self_ticks_,
indent, ' ',
entry_->name_prefix(),
entry_->name(),
entry_->security_token_id(),
entry_->script_id(),
id());
if (entry_->resource_name()[0] != '\0')
OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
OS::Print("\n");
for (HashMap::Entry* p = children_.Start();
p != NULL;
p = children_.Next(p)) {
reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree()
: root_entry_(Logger::FUNCTION_TAG, "(root)"),
next_node_id_(1),
root_(new ProfileNode(this, &root_entry_)) {
}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
ProfileNode* ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start() + path.length() - 1;
entry != path.start() - 1;
--entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
return node;
}
void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start();
entry != path.start() + path.length();
++entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
struct NodesPair {
NodesPair(ProfileNode* src, ProfileNode* dst)
: src(src), dst(dst) { }
ProfileNode* src;
ProfileNode* dst;
};
class FilteredCloneCallback {
public:
FilteredCloneCallback(ProfileNode* dst_root, int security_token_id)
: stack_(10),
security_token_id_(security_token_id) {
stack_.Add(NodesPair(NULL, dst_root));
}
void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) {
if (IsTokenAcceptable(child->entry()->security_token_id(),
parent->entry()->security_token_id())) {
ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry());
clone->IncreaseSelfTicks(child->self_ticks());
stack_.Add(NodesPair(child, clone));
} else {
// Attribute ticks to parent node.
stack_.last().dst->IncreaseSelfTicks(child->self_ticks());
}
}
void AfterAllChildrenTraversed(ProfileNode* parent) { }
void AfterChildTraversed(ProfileNode*, ProfileNode* child) {
if (stack_.last().src == child) {
stack_.RemoveLast();
}
}
private:
bool IsTokenAcceptable(int token, int parent_token) {
if (token == TokenEnumerator::kNoSecurityToken
|| token == security_token_id_) return true;
if (token == TokenEnumerator::kInheritsSecurityToken) {
ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken);
return parent_token == TokenEnumerator::kNoSecurityToken
|| parent_token == security_token_id_;
}
return false;
}
List<NodesPair> stack_;
int security_token_id_;
};
void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) {
ms_to_ticks_scale_ = src->ms_to_ticks_scale_;
FilteredCloneCallback cb(root_, security_token_id);
src->TraverseDepthFirst(&cb);
CalculateTotalTicks();
}
void ProfileTree::SetTickRatePerMs(double ticks_per_ms) {
ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0;
}
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
INLINE(ProfileNode* current_child()) {
return node->children()->at(child_idx_);
}
INLINE(bool has_current_child()) {
return child_idx_ < node->children()->length();
}
INLINE(void next_child()) { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
List<Position> stack(10);
stack.Add(Position(root_));
while (stack.length() > 0) {
Position& current = stack.last();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.Add(Position(current.current_child()));
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.length() > 1) {
Position& parent = stack[stack.length() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.RemoveLast();
}
}
}
class CalculateTotalTicksCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
node->IncreaseTotalTicks(node->self_ticks());
}
void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) {
parent->IncreaseTotalTicks(child->total_ticks());
}
};
void ProfileTree::CalculateTotalTicks() {
CalculateTotalTicksCallback cb;
TraverseDepthFirst(&cb);
}
void ProfileTree::ShortPrint() {
OS::Print("root: %u %u %.2fms %.2fms\n",
root_->total_ticks(), root_->self_ticks(),
root_->GetTotalMillis(), root_->GetSelfMillis());
}
void CpuProfile::AddPath(const Vector<CodeEntry*>& path) {
ProfileNode* top_frame_node = top_down_.AddPathFromEnd(path);
if (record_samples_) samples_.Add(top_frame_node);
}
void CpuProfile::CalculateTotalTicks() {
top_down_.CalculateTotalTicks();
}
void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) {
top_down_.SetTickRatePerMs(actual_sampling_rate);
}
CpuProfile* CpuProfile::FilteredClone(int security_token_id) {
ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken);
CpuProfile* clone = new CpuProfile(title_, uid_, false);
clone->top_down_.FilteredClone(&top_down_, security_token_id);
return clone;
}
void CpuProfile::ShortPrint() {
OS::Print("top down ");
top_down_.ShortPrint();
}
void CpuProfile::Print() {
OS::Print("[Top down]:\n");
top_down_.Print();
}
CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL;
const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL;
void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) {
DeleteAllCoveredCode(addr, addr + size);
CodeTree::Locator locator;
tree_.Insert(addr, &locator);
locator.set_value(CodeEntryInfo(entry, size));
}
void CodeMap::DeleteAllCoveredCode(Address start, Address end) {
List<Address> to_delete;
Address addr = end - 1;
while (addr >= start) {
CodeTree::Locator locator;
if (!tree_.FindGreatestLessThan(addr, &locator)) break;
Address start2 = locator.key(), end2 = start2 + locator.value().size;
if (start2 < end && start < end2) to_delete.Add(start2);
addr = start2 - 1;
}
for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]);
}
CodeEntry* CodeMap::FindEntry(Address addr, Address* start) {
CodeTree::Locator locator;
if (tree_.FindGreatestLessThan(addr, &locator)) {
// locator.key() <= addr. Need to check that addr is within entry.
const CodeEntryInfo& entry = locator.value();
if (addr < (locator.key() + entry.size)) {
if (start) {
*start = locator.key();
}
return entry.entry;
}
}
return NULL;
}
int CodeMap::GetSharedId(Address addr) {
CodeTree::Locator locator;
// For shared function entries, 'size' field is used to store their IDs.
if (tree_.Find(addr, &locator)) {
const CodeEntryInfo& entry = locator.value();
ASSERT(entry.entry == kSharedFunctionCodeEntry);
return entry.size;
} else {
tree_.Insert(addr, &locator);
int id = next_shared_id_++;
locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id));
return id;
}
}
void CodeMap::MoveCode(Address from, Address to) {
if (from == to) return;
CodeTree::Locator locator;
if (!tree_.Find(from, &locator)) return;
CodeEntryInfo entry = locator.value();
tree_.Remove(from);
AddCode(to, entry.entry, entry.size);
}
void CodeMap::CodeTreePrinter::Call(
const Address& key, const CodeMap::CodeEntryInfo& value) {
// For shared function entries, 'size' field is used to store their IDs.
if (value.entry == kSharedFunctionCodeEntry) {
OS::Print("%p SharedFunctionInfo %d\n", key, value.size);
} else {
OS::Print("%p %5d %s\n", key, value.size, value.entry->name());
}
}
void CodeMap::Print() {
CodeTreePrinter printer;
tree_.ForEach(&printer);
}
CpuProfilesCollection::CpuProfilesCollection()
: profiles_uids_(UidsMatch),
current_profiles_semaphore_(OS::CreateSemaphore(1)) {
// Create list of unabridged profiles.
profiles_by_token_.Add(new List<CpuProfile*>());
}
static void DeleteCodeEntry(CodeEntry** entry_ptr) {
delete *entry_ptr;
}
static void DeleteCpuProfile(CpuProfile** profile_ptr) {
delete *profile_ptr;
}
static void DeleteProfilesList(List<CpuProfile*>** list_ptr) {
if (*list_ptr != NULL) {
(*list_ptr)->Iterate(DeleteCpuProfile);
delete *list_ptr;
}
}
CpuProfilesCollection::~CpuProfilesCollection() {
delete current_profiles_semaphore_;
current_profiles_.Iterate(DeleteCpuProfile);
detached_profiles_.Iterate(DeleteCpuProfile);
profiles_by_token_.Iterate(DeleteProfilesList);
code_entries_.Iterate(DeleteCodeEntry);
}
bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid,
bool record_samples) {
ASSERT(uid > 0);
current_profiles_semaphore_->Wait();
if (current_profiles_.length() >= kMaxSimultaneousProfiles) {
current_profiles_semaphore_->Signal();
return false;
}
for (int i = 0; i < current_profiles_.length(); ++i) {
if (strcmp(current_profiles_[i]->title(), title) == 0) {
// Ignore attempts to start profile with the same title.
current_profiles_semaphore_->Signal();
return false;
}
}
current_profiles_.Add(new CpuProfile(title, uid, record_samples));
current_profiles_semaphore_->Signal();
return true;
}
CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id,
const char* title,
double actual_sampling_rate) {
const int title_len = StrLength(title);
CpuProfile* profile = NULL;
current_profiles_semaphore_->Wait();
for (int i = current_profiles_.length() - 1; i >= 0; --i) {
if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) {
profile = current_profiles_.Remove(i);
break;
}
}
current_profiles_semaphore_->Signal();
if (profile != NULL) {
profile->CalculateTotalTicks();
profile->SetActualSamplingRate(actual_sampling_rate);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
unabridged_list->Add(profile);
HashMap::Entry* entry =
profiles_uids_.Lookup(reinterpret_cast<void*>(profile->uid()),
static_cast<uint32_t>(profile->uid()),
true);
ASSERT(entry->value == NULL);
entry->value = reinterpret_cast<void*>(unabridged_list->length() - 1);
return GetProfile(security_token_id, profile->uid());
}
return NULL;
}
CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id,
unsigned uid) {
int index = GetProfileIndex(uid);
if (index < 0) return NULL;
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list->at(index);
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
if (list->at(index) == NULL) {
(*list)[index] =
unabridged_list->at(index)->FilteredClone(security_token_id);
}
return list->at(index);
}
int CpuProfilesCollection::GetProfileIndex(unsigned uid) {
HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid),
false);
return entry != NULL ?
static_cast<int>(reinterpret_cast<intptr_t>(entry->value)) : -1;
}
bool CpuProfilesCollection::IsLastProfile(const char* title) {
// Called from VM thread, and only it can mutate the list,
// so no locking is needed here.
if (current_profiles_.length() != 1) return false;
return StrLength(title) == 0
|| strcmp(current_profiles_[0]->title(), title) == 0;
}
void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) {
// Called from VM thread for a completed profile.
unsigned uid = profile->uid();
int index = GetProfileIndex(uid);
if (index < 0) {
detached_profiles_.RemoveElement(profile);
return;
}
profiles_uids_.Remove(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid));
// Decrement all indexes above the deleted one.
for (HashMap::Entry* p = profiles_uids_.Start();
p != NULL;
p = profiles_uids_.Next(p)) {
intptr_t p_index = reinterpret_cast<intptr_t>(p->value);
if (p_index > index) {
p->value = reinterpret_cast<void*>(p_index - 1);
}
}
for (int i = 0; i < profiles_by_token_.length(); ++i) {
List<CpuProfile*>* list = profiles_by_token_[i];
if (list != NULL && index < list->length()) {
// Move all filtered clones into detached_profiles_,
// so we can know that they are still in use.
CpuProfile* cloned_profile = list->Remove(index);
if (cloned_profile != NULL && cloned_profile != profile) {
detached_profiles_.Add(cloned_profile);
}
}
}
}
int CpuProfilesCollection::TokenToIndex(int security_token_id) {
ASSERT(TokenEnumerator::kNoSecurityToken == -1);
return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ...
}
List<CpuProfile*>* CpuProfilesCollection::GetProfilesList(
int security_token_id) {
const int index = TokenToIndex(security_token_id);
const int lists_to_add = index - profiles_by_token_.length() + 1;
if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
const int current_count = unabridged_list->length();
if (profiles_by_token_[index] == NULL) {
profiles_by_token_[index] = new List<CpuProfile*>(current_count);
}
List<CpuProfile*>* list = profiles_by_token_[index];
const int profiles_to_add = current_count - list->length();
if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add);
return list;
}
List<CpuProfile*>* CpuProfilesCollection::Profiles(int security_token_id) {
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list;
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
const int current_count = unabridged_list->length();
for (int i = 0; i < current_count; ++i) {
if (list->at(i) == NULL) {
(*list)[i] = unabridged_list->at(i)->FilteredClone(security_token_id);
}
}
return list;
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
const Vector<CodeEntry*>& path) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_->Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
current_profiles_[i]->AddPath(path);
}
current_profiles_semaphore_->Signal();
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(
Logger::LogEventsAndTags tag,
const char* name,
int security_token_id,
const char* name_prefix,
const char* resource_name,
int line_number) {
CodeEntry* code_entry = new CodeEntry(tag,
name,
security_token_id,
name_prefix,
resource_name,
line_number);
code_entries_.Add(code_entry);
return code_entry;
}
void SampleRateCalculator::Tick() {
if (--wall_time_query_countdown_ == 0)
UpdateMeasurements(OS::TimeCurrentMillis());
}
void SampleRateCalculator::UpdateMeasurements(double current_time) {
if (measurements_count_++ != 0) {
const double measured_ticks_per_ms =
(kWallTimeQueryIntervalMs * ticks_per_ms_) /
(current_time - last_wall_time_);
// Update the average value.
ticks_per_ms_ +=
(measured_ticks_per_ms - ticks_per_ms_) / measurements_count_;
// Update the externally accessible result.
result_ = static_cast<AtomicWord>(ticks_per_ms_ * kResultScale);
}
last_wall_time_ = current_time;
wall_time_query_countdown_ =
static_cast<unsigned>(kWallTimeQueryIntervalMs * ticks_per_ms_);
}
const char* const ProfileGenerator::kAnonymousFunctionName =
"(anonymous function)";
const char* const ProfileGenerator::kProgramEntryName =
"(program)";
const char* const ProfileGenerator::kGarbageCollectorEntryName =
"(garbage collector)";
const char* const ProfileGenerator::kUnresolvedFunctionName =
"(unresolved function)";
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles),
program_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)),
gc_entry_(
profiles->NewCodeEntry(Logger::BUILTIN_TAG,
kGarbageCollectorEntryName)),
unresolved_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG,
kUnresolvedFunctionName)) {
}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
// Allocate space for stack frames + pc + function + vm-state.
ScopedVector<CodeEntry*> entries(sample.frames_count + 3);
// As actual number of decoded code entries may vary, initialize
// entries vector with NULL values.
CodeEntry** entry = entries.start();
memset(entry, 0, entries.length() * sizeof(*entry));
if (sample.pc != NULL) {
if (sample.has_external_callback) {
// Don't use PC when in external callback code, as it can point
// inside callback's code, and we will erroneously report
// that a callback calls itself.
*entry++ = code_map_.FindEntry(sample.external_callback);
} else {
Address start;
CodeEntry* pc_entry = code_map_.FindEntry(sample.pc, &start);
// If pc is in the function code before it set up stack frame or after the
// frame was destroyed SafeStackFrameIterator incorrectly thinks that
// ebp contains return address of the current function and skips caller's
// frame. Check for this case and just skip such samples.
if (pc_entry) {
List<OffsetRange>* ranges = pc_entry->no_frame_ranges();
if (ranges) {
Code* code = Code::cast(HeapObject::FromAddress(start));
int pc_offset = static_cast<int>(
sample.pc - code->instruction_start());
for (int i = 0; i < ranges->length(); i++) {
OffsetRange& range = ranges->at(i);
if (range.from <= pc_offset && pc_offset < range.to) {
return;
}
}
}
*entry++ = pc_entry;
if (pc_entry->builtin_id() == Builtins::kFunctionCall) {
// When current function is FunctionCall builtin tos is sometimes
// address of the function that invoked it but sometimes it's one
// of the arguments. We simply replace the frame with 'unknown' entry.
*entry++ = unresolved_entry_;
}
}
}
for (const Address* stack_pos = sample.stack,
*stack_end = stack_pos + sample.frames_count;
stack_pos != stack_end;
++stack_pos) {
*entry++ = code_map_.FindEntry(*stack_pos);
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (CodeEntry** e = entries.start(); e != entry; ++e) {
if (*e != NULL) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
*entry++ = EntryForVMState(sample.state);
}
}
profiles_->AddPathToCurrentProfiles(entries);
}
} } // namespace v8::internal