v8/test/unittests/interpreter/bytecode-array-builder-unittest.cc

669 lines
24 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/interpreter/bytecode-array-builder.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/interpreter/bytecode-register-allocator.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
class BytecodeArrayBuilderTest : public TestWithIsolateAndZone {
public:
BytecodeArrayBuilderTest() {}
~BytecodeArrayBuilderTest() override {}
};
TEST_F(BytecodeArrayBuilderTest, AllBytecodesGenerated) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 1, 131);
CHECK_EQ(builder.locals_count(), 131);
CHECK_EQ(builder.context_count(), 1);
CHECK_EQ(builder.fixed_register_count(), 132);
[runtime] Optimize and unify rest parameters. Replace the somewhat awkward RestParamAccessStub, which would always call into the runtime anyway with a proper FastNewRestParameterStub, which is basically based on the code that was already there for strict arguments object materialization. But for rest parameters we could optimize even further (leading to 8-10x improvements for functions with rest parameters), by fixing the internal formal parameter count: Every SharedFunctionInfo has a formal_parameter_count field, which specifies the number of formal parameters, and is used to decide whether we need to create an arguments adaptor frame when calling a function (i.e. if there's a mismatch between the actual and expected parameters). Previously the formal_parameter_count included the rest parameter, which was sort of unfortunate, as that meant that calling a function with only the non-rest parameters still required an arguments adaptor (plus some other oddities). Now with this CL we fix, so that we do no longer include the rest parameter in that count. Thereby checking for rest parameters is very efficient, as we only need to check whether there is an arguments adaptor frame, and if not create an empty array, otherwise check whether the arguments adaptor frame has more parameters than specified by the formal_parameter_count. The FastNewRestParameterStub is written in a way that it can be directly used by Ignition as well, and with some tweaks to the TurboFan backends and the CodeStubAssembler, we should be able to rewrite it as TurboFanCodeStub in the near future. Drive-by-fix: Refactor and unify the CreateArgumentsType which was different in TurboFan and Ignition; now we have a single enum class which is used in both TurboFan and Ignition. R=jarin@chromium.org, rmcilroy@chromium.org TBR=rossberg@chromium.org BUG=v8:2159 LOG=n Review URL: https://codereview.chromium.org/1676883002 Cr-Commit-Position: refs/heads/master@{#33809}
2016-02-08 10:08:21 +00:00
// Emit argument creation operations.
builder.CreateArguments(CreateArgumentsType::kMappedArguments)
.CreateArguments(CreateArgumentsType::kUnmappedArguments)
[runtime] Optimize and unify rest parameters. Replace the somewhat awkward RestParamAccessStub, which would always call into the runtime anyway with a proper FastNewRestParameterStub, which is basically based on the code that was already there for strict arguments object materialization. But for rest parameters we could optimize even further (leading to 8-10x improvements for functions with rest parameters), by fixing the internal formal parameter count: Every SharedFunctionInfo has a formal_parameter_count field, which specifies the number of formal parameters, and is used to decide whether we need to create an arguments adaptor frame when calling a function (i.e. if there's a mismatch between the actual and expected parameters). Previously the formal_parameter_count included the rest parameter, which was sort of unfortunate, as that meant that calling a function with only the non-rest parameters still required an arguments adaptor (plus some other oddities). Now with this CL we fix, so that we do no longer include the rest parameter in that count. Thereby checking for rest parameters is very efficient, as we only need to check whether there is an arguments adaptor frame, and if not create an empty array, otherwise check whether the arguments adaptor frame has more parameters than specified by the formal_parameter_count. The FastNewRestParameterStub is written in a way that it can be directly used by Ignition as well, and with some tweaks to the TurboFan backends and the CodeStubAssembler, we should be able to rewrite it as TurboFanCodeStub in the near future. Drive-by-fix: Refactor and unify the CreateArgumentsType which was different in TurboFan and Ignition; now we have a single enum class which is used in both TurboFan and Ignition. R=jarin@chromium.org, rmcilroy@chromium.org TBR=rossberg@chromium.org BUG=v8:2159 LOG=n Review URL: https://codereview.chromium.org/1676883002 Cr-Commit-Position: refs/heads/master@{#33809}
2016-02-08 10:08:21 +00:00
.CreateArguments(CreateArgumentsType::kRestParameter);
// Emit constant loads.
builder.LoadLiteral(Smi::FromInt(0))
.LoadLiteral(Smi::FromInt(8))
.LoadLiteral(Smi::FromInt(10000000))
.LoadUndefined()
.LoadNull()
.LoadTheHole()
.LoadTrue()
.LoadFalse();
Register reg(0);
Register other(reg.index() + 1);
Register wide(128);
builder.LoadAccumulatorWithRegister(reg)
.LoadNull()
.StoreAccumulatorInRegister(reg);
// Emit register-register transfer.
builder.MoveRegister(reg, other);
builder.MoveRegister(reg, wide);
// Emit global load / store operations.
Factory* factory = isolate()->factory();
Handle<String> name = factory->NewStringFromStaticChars("var_name");
builder.LoadGlobal(name, 1, LanguageMode::SLOPPY,
TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(name, 1, LanguageMode::STRICT, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(name, 1, LanguageMode::SLOPPY, TypeofMode::INSIDE_TYPEOF)
.LoadGlobal(name, 1, LanguageMode::STRICT, TypeofMode::INSIDE_TYPEOF)
.StoreGlobal(name, 1, LanguageMode::SLOPPY)
.StoreGlobal(name, 1, LanguageMode::STRICT);
// Emit context operations.
builder.PushContext(reg)
.PopContext(reg)
.LoadContextSlot(reg, 1)
.StoreContextSlot(reg, 1);
// Emit load / store property operations.
builder.LoadNamedProperty(reg, name, 0, LanguageMode::SLOPPY)
.LoadKeyedProperty(reg, 0, LanguageMode::SLOPPY)
.StoreNamedProperty(reg, name, 0, LanguageMode::SLOPPY)
.StoreKeyedProperty(reg, reg, 0, LanguageMode::SLOPPY)
.LoadNamedProperty(reg, name, 0, LanguageMode::STRICT)
.LoadKeyedProperty(reg, 0, LanguageMode::STRICT)
.StoreNamedProperty(reg, name, 0, LanguageMode::STRICT)
.StoreKeyedProperty(reg, reg, 0, LanguageMode::STRICT);
// Emit load / store lookup slots.
builder.LoadLookupSlot(name, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadLookupSlot(name, TypeofMode::INSIDE_TYPEOF)
.StoreLookupSlot(name, LanguageMode::SLOPPY)
.StoreLookupSlot(name, LanguageMode::STRICT);
// Emit closure operations.
Handle<SharedFunctionInfo> shared_info = factory->NewSharedFunctionInfo(
factory->NewStringFromStaticChars("function_a"), MaybeHandle<Code>(),
false);
builder.CreateClosure(shared_info, NOT_TENURED);
// Emit literal creation operations.
builder.CreateRegExpLiteral(factory->NewStringFromStaticChars("a"), 0, 0)
.CreateArrayLiteral(factory->NewFixedArray(1), 0, 0)
.CreateObjectLiteral(factory->NewFixedArray(1), 0, 0);
// Call operations.
builder.Call(reg, other, 1, 0)
.Call(reg, wide, 1, 0)
.CallRuntime(Runtime::kIsArray, reg, 1)
.CallRuntime(Runtime::kIsArray, wide, 1)
.CallRuntimeForPair(Runtime::kLoadLookupSlot, reg, 1, other)
.CallRuntimeForPair(Runtime::kLoadLookupSlot, wide, 1, other)
.CallJSRuntime(Context::SPREAD_ITERABLE_INDEX, reg, 1)
.CallJSRuntime(Context::SPREAD_ITERABLE_INDEX, wide, 1);
// Emit binary operator invocations.
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.BinaryOperation(Token::Value::SUB, reg, Strength::WEAK)
.BinaryOperation(Token::Value::MUL, reg, Strength::WEAK)
.BinaryOperation(Token::Value::DIV, reg, Strength::WEAK)
.BinaryOperation(Token::Value::MOD, reg, Strength::WEAK);
// Emit bitwise operator invocations
builder.BinaryOperation(Token::Value::BIT_OR, reg, Strength::WEAK)
.BinaryOperation(Token::Value::BIT_XOR, reg, Strength::WEAK)
.BinaryOperation(Token::Value::BIT_AND, reg, Strength::WEAK);
// Emit shift operator invocations
builder.BinaryOperation(Token::Value::SHL, reg, Strength::WEAK)
.BinaryOperation(Token::Value::SAR, reg, Strength::WEAK)
.BinaryOperation(Token::Value::SHR, reg, Strength::WEAK);
// Emit count operatior invocations
builder.CountOperation(Token::Value::ADD, Strength::WEAK)
.CountOperation(Token::Value::SUB, Strength::WEAK);
// Emit unary operator invocations.
builder.LogicalNot().TypeOf();
// Emit delete
builder.Delete(reg, LanguageMode::SLOPPY)
.Delete(reg, LanguageMode::STRICT)
.DeleteLookupSlot();
// Emit new.
builder.New(reg, reg, 0);
builder.New(wide, wide, 0);
// Emit test operator invocations.
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.CompareOperation(Token::Value::NE, reg, Strength::WEAK)
.CompareOperation(Token::Value::EQ_STRICT, reg, Strength::WEAK)
.CompareOperation(Token::Value::NE_STRICT, reg, Strength::WEAK)
.CompareOperation(Token::Value::LT, reg, Strength::WEAK)
.CompareOperation(Token::Value::GT, reg, Strength::WEAK)
.CompareOperation(Token::Value::LTE, reg, Strength::WEAK)
.CompareOperation(Token::Value::GTE, reg, Strength::WEAK)
.CompareOperation(Token::Value::INSTANCEOF, reg, Strength::WEAK)
.CompareOperation(Token::Value::IN, reg, Strength::WEAK);
// Emit cast operator invocations.
builder.CastAccumulatorToNumber()
.CastAccumulatorToJSObject()
.CastAccumulatorToName();
// Emit control flow. Return must be the last instruction.
BytecodeLabel start;
builder.Bind(&start);
// Short jumps with Imm8 operands
builder.Jump(&start)
.JumpIfNull(&start)
.JumpIfUndefined(&start)
.JumpIfHole(&start)
.JumpIfNotHole(&start);
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&start);
// Insert dummy ops to force longer jumps
for (int i = 0; i < 128; i++) {
builder.LoadTrue();
}
// Longer jumps requiring Constant operand
builder.Jump(&start).JumpIfNull(&start).JumpIfUndefined(&start);
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&start);
// Emit stack check bytecode.
builder.StackCheck();
// Emit throw and re-throw in it's own basic block so that the rest of the
// code isn't omitted due to being dead.
BytecodeLabel after_throw;
builder.Jump(&after_throw).Throw().Bind(&after_throw);
BytecodeLabel after_rethrow;
builder.Jump(&after_rethrow).ReThrow().Bind(&after_rethrow);
builder.ForInPrepare(reg)
.ForInDone(reg, reg)
.ForInNext(reg, reg, reg)
.ForInStep(reg);
builder.ForInPrepare(wide)
.ForInDone(reg, other)
.ForInNext(wide, wide, wide)
.ForInStep(reg);
// Wide constant pool loads
for (int i = 0; i < 256; i++) {
// Emit junk in constant pool to force wide constant pool index.
builder.LoadLiteral(factory->NewNumber(2.5321 + i));
}
builder.LoadLiteral(Smi::FromInt(20000000));
Handle<String> wide_name = factory->NewStringFromStaticChars("var_wide_name");
// Emit wide global load / store operations.
builder.LoadGlobal(name, 1024, LanguageMode::SLOPPY,
TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(wide_name, 1, LanguageMode::STRICT,
TypeofMode::NOT_INSIDE_TYPEOF)
.LoadGlobal(name, 1024, LanguageMode::SLOPPY, TypeofMode::INSIDE_TYPEOF)
.LoadGlobal(wide_name, 1, LanguageMode::STRICT, TypeofMode::INSIDE_TYPEOF)
.StoreGlobal(name, 1024, LanguageMode::SLOPPY)
.StoreGlobal(wide_name, 1, LanguageMode::STRICT);
// Emit wide load / store property operations.
builder.LoadNamedProperty(reg, wide_name, 0, LanguageMode::SLOPPY)
.LoadKeyedProperty(reg, 2056, LanguageMode::SLOPPY)
.StoreNamedProperty(reg, wide_name, 0, LanguageMode::SLOPPY)
.StoreKeyedProperty(reg, reg, 2056, LanguageMode::SLOPPY)
.LoadNamedProperty(reg, wide_name, 0, LanguageMode::STRICT)
.LoadKeyedProperty(reg, 2056, LanguageMode::STRICT)
.StoreNamedProperty(reg, wide_name, 0, LanguageMode::STRICT)
.StoreKeyedProperty(reg, reg, 2056, LanguageMode::STRICT);
// Emit wide context operations.
builder.LoadContextSlot(reg, 1024).StoreContextSlot(reg, 1024);
// Emit wide load / store lookup slots.
builder.LoadLookupSlot(wide_name, TypeofMode::NOT_INSIDE_TYPEOF)
.LoadLookupSlot(wide_name, TypeofMode::INSIDE_TYPEOF)
.StoreLookupSlot(wide_name, LanguageMode::SLOPPY)
.StoreLookupSlot(wide_name, LanguageMode::STRICT);
// CreateClosureWide
Handle<SharedFunctionInfo> shared_info2 = factory->NewSharedFunctionInfo(
factory->NewStringFromStaticChars("function_b"), MaybeHandle<Code>(),
false);
builder.CreateClosure(shared_info2, NOT_TENURED);
// Emit wide variant of literal creation operations.
builder.CreateRegExpLiteral(factory->NewStringFromStaticChars("wide_literal"),
0, 0)
.CreateArrayLiteral(factory->NewFixedArray(2), 0, 0)
.CreateObjectLiteral(factory->NewFixedArray(2), 0, 0);
// Longer jumps requiring ConstantWide operand
builder.Jump(&start).JumpIfNull(&start).JumpIfUndefined(&start);
// Perform an operation that returns boolean value to
// generate JumpIfTrue/False
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&start)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&start);
// Perform an operation that returns a non-boolean operation to
// generate JumpIfToBooleanTrue/False.
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&start)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&start);
builder.Debugger();
builder.Return();
// Generate BytecodeArray.
Handle<BytecodeArray> the_array = builder.ToBytecodeArray();
CHECK_EQ(the_array->frame_size(),
(builder.fixed_and_temporary_register_count() +
builder.translation_register_count()) *
kPointerSize);
// Build scorecard of bytecodes encountered in the BytecodeArray.
std::vector<int> scorecard(Bytecodes::ToByte(Bytecode::kLast) + 1);
Bytecode final_bytecode = Bytecode::kLdaZero;
int i = 0;
while (i < the_array->length()) {
uint8_t code = the_array->get(i);
scorecard[code] += 1;
final_bytecode = Bytecodes::FromByte(code);
i += Bytecodes::Size(Bytecodes::FromByte(code));
}
// Check return occurs at the end and only once in the BytecodeArray.
CHECK_EQ(final_bytecode, Bytecode::kReturn);
CHECK_EQ(scorecard[Bytecodes::ToByte(final_bytecode)], 1);
#define CHECK_BYTECODE_PRESENT(Name, ...) \
/* Check Bytecode is marked in scorecard */ \
CHECK_GE(scorecard[Bytecodes::ToByte(Bytecode::k##Name)], 1);
BYTECODE_LIST(CHECK_BYTECODE_PRESENT)
#undef CHECK_BYTECODE_PRESENT
}
TEST_F(BytecodeArrayBuilderTest, FrameSizesLookGood) {
for (int locals = 0; locals < 5; locals++) {
for (int contexts = 0; contexts < 4; contexts++) {
for (int temps = 0; temps < 3; temps++) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, contexts, locals);
BytecodeRegisterAllocator temporaries(
zone(), builder.temporary_register_allocator());
for (int i = 0; i < temps; i++) {
builder.StoreAccumulatorInRegister(temporaries.NewRegister());
}
builder.Return();
Handle<BytecodeArray> the_array = builder.ToBytecodeArray();
int total_registers = locals + contexts + temps;
CHECK_EQ(the_array->frame_size(), total_registers * kPointerSize);
}
}
}
}
TEST_F(BytecodeArrayBuilderTest, RegisterValues) {
int index = 1;
uint8_t operand = static_cast<uint8_t>(-index);
Register the_register(index);
CHECK_EQ(the_register.index(), index);
int actual_operand = the_register.ToOperand();
CHECK_EQ(actual_operand, operand);
int actual_index = Register::FromOperand(actual_operand).index();
CHECK_EQ(actual_index, index);
}
TEST_F(BytecodeArrayBuilderTest, Parameters) {
BytecodeArrayBuilder builder(isolate(), zone(), 10, 0, 0);
Register param0(builder.Parameter(0));
Register param9(builder.Parameter(9));
CHECK_EQ(param9.index() - param0.index(), 9);
}
TEST_F(BytecodeArrayBuilderTest, RegisterType) {
BytecodeArrayBuilder builder(isolate(), zone(), 10, 0, 3);
BytecodeRegisterAllocator register_allocator(
zone(), builder.temporary_register_allocator());
Register temp0 = register_allocator.NewRegister();
Register param0(builder.Parameter(0));
Register param9(builder.Parameter(9));
Register temp1 = register_allocator.NewRegister();
Register reg0(0);
Register reg1(1);
Register reg2(2);
Register temp2 = register_allocator.NewRegister();
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp0), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp1), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(temp2), false);
CHECK_EQ(builder.RegisterIsParameterOrLocal(param0), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(param9), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg0), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg1), true);
CHECK_EQ(builder.RegisterIsParameterOrLocal(reg2), true);
}
TEST_F(BytecodeArrayBuilderTest, Constants) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
Factory* factory = isolate()->factory();
Handle<HeapObject> heap_num_1 = factory->NewHeapNumber(3.14);
Handle<HeapObject> heap_num_2 = factory->NewHeapNumber(5.2);
Handle<Object> large_smi(Smi::FromInt(0x12345678), isolate());
Handle<HeapObject> heap_num_2_copy(*heap_num_2);
builder.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_2)
.LoadLiteral(large_smi)
.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_1)
.LoadLiteral(heap_num_2_copy);
Handle<BytecodeArray> array = builder.ToBytecodeArray();
// Should only have one entry for each identical constant.
CHECK_EQ(array->constant_pool()->length(), 3);
}
TEST_F(BytecodeArrayBuilderTest, ForwardJumps) {
static const int kFarJumpDistance = 256;
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 1);
Register reg(0);
BytecodeLabel far0, far1, far2, far3, far4;
BytecodeLabel near0, near1, near2, near3, near4;
builder.Jump(&near0)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&near1)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&near2)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&near3)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&near4)
.Bind(&near0)
.Bind(&near1)
.Bind(&near2)
.Bind(&near3)
.Bind(&near4)
.Jump(&far0)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&far1)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&far2)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&far3)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&far4);
for (int i = 0; i < kFarJumpDistance - 18; i++) {
builder.LoadUndefined();
}
builder.Bind(&far0).Bind(&far1).Bind(&far2).Bind(&far3).Bind(&far4);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
DCHECK_EQ(array->length(), 36 + kFarJumpDistance - 18 + 1);
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 18);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrue);
CHECK_EQ(iterator.GetImmediateOperand(0), 14);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalse);
CHECK_EQ(iterator.GetImmediateOperand(0), 10);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.GetImmediateOperand(0), 6);
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrueConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 4));
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalseConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 8));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrueConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 12));
iterator.Advance();
// Ignore add operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
Bytecode::kJumpIfToBooleanFalseConstant);
CHECK_EQ(*iterator.GetConstantForIndexOperand(0),
Smi::FromInt(kFarJumpDistance - 16));
iterator.Advance();
}
TEST_F(BytecodeArrayBuilderTest, BackwardJumps) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 1);
Register reg(0);
BytecodeLabel label0, label1, label2, label3, label4;
builder.Bind(&label0)
.Jump(&label0)
.Bind(&label1)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&label1)
.Bind(&label2)
.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&label2)
.Bind(&label3)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&label3)
.Bind(&label4)
.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&label4);
for (int i = 0; i < 63; i++) {
builder.Jump(&label4);
}
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfFalse(&label4);
builder.BinaryOperation(Token::Value::ADD, reg, Strength::WEAK)
.JumpIfTrue(&label3);
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfFalse(&label2);
builder.CompareOperation(Token::Value::EQ, reg, Strength::WEAK)
.JumpIfTrue(&label1);
builder.Jump(&label0);
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrue);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalse);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrue);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanFalse);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
for (int i = 0; i < 63; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), -i * 2 - 4);
iterator.Advance();
}
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(),
Bytecode::kJumpIfToBooleanFalseConstant);
CHECK_EQ(Smi::cast(*iterator.GetConstantForIndexOperand(0))->value(), -132);
iterator.Advance();
// Ignore binary operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfToBooleanTrueConstant);
CHECK_EQ(Smi::cast(*iterator.GetConstantForIndexOperand(0))->value(), -140);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfFalseConstant);
CHECK_EQ(Smi::cast(*iterator.GetConstantForIndexOperand(0))->value(), -148);
iterator.Advance();
// Ignore compare operation.
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpIfTrueConstant);
CHECK_EQ(Smi::cast(*iterator.GetConstantForIndexOperand(0))->value(), -156);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJumpConstant);
CHECK_EQ(Smi::cast(*iterator.GetConstantForIndexOperand(0))->value(), -160);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, LabelReuse) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
// Labels can only have 1 forward reference, but
// can be referred to mulitple times once bound.
BytecodeLabel label;
builder.Jump(&label).Bind(&label).Jump(&label).Jump(&label).Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
TEST_F(BytecodeArrayBuilderTest, LabelAddressReuse) {
static const int kRepeats = 3;
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
for (int i = 0; i < kRepeats; i++) {
BytecodeLabel label;
builder.Jump(&label).Bind(&label).Jump(&label).Jump(&label);
}
builder.Return();
Handle<BytecodeArray> array = builder.ToBytecodeArray();
BytecodeArrayIterator iterator(array);
for (int i = 0; i < kRepeats; i++) {
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 2);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), 0);
iterator.Advance();
CHECK_EQ(iterator.current_bytecode(), Bytecode::kJump);
CHECK_EQ(iterator.GetImmediateOperand(0), -2);
iterator.Advance();
}
CHECK_EQ(iterator.current_bytecode(), Bytecode::kReturn);
iterator.Advance();
CHECK(iterator.done());
}
} // namespace interpreter
} // namespace internal
} // namespace v8