v8/test/cctest/compiler/test-instruction.cc

368 lines
11 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "src/compiler/code-generator.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/instruction.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/lithium.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
typedef v8::internal::compiler::Instruction TestInstr;
typedef v8::internal::compiler::InstructionSequence TestInstrSeq;
// A testing helper for the register code abstraction.
class InstructionTester : public HandleAndZoneScope {
public: // We're all friends here.
InstructionTester()
: isolate(main_isolate()),
graph(zone()),
schedule(zone()),
info(static_cast<HydrogenCodeStub*>(NULL), main_isolate()),
linkage(zone(), &info),
common(zone()),
code(NULL) {}
~InstructionTester() { delete code; }
Isolate* isolate;
Graph graph;
Schedule schedule;
CompilationInfoWithZone info;
Linkage linkage;
CommonOperatorBuilder common;
MachineOperatorBuilder machine;
TestInstrSeq* code;
Zone* zone() { return main_zone(); }
void allocCode() {
if (schedule.rpo_order()->size() == 0) {
// Compute the RPO order.
ZonePool zone_pool(isolate);
Scheduler::ComputeSpecialRPO(&zone_pool, &schedule);
DCHECK(schedule.rpo_order()->size() > 0);
}
InstructionBlocks* instruction_blocks =
TestInstrSeq::InstructionBlocksFor(main_zone(), &schedule);
code = new TestInstrSeq(main_zone(), instruction_blocks);
}
Node* Int32Constant(int32_t val) {
Node* node = graph.NewNode(common.Int32Constant(val));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* Float64Constant(double val) {
Node* node = graph.NewNode(common.Float64Constant(val));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* Parameter(int32_t which) {
Node* node = graph.NewNode(common.Parameter(which));
schedule.AddNode(schedule.start(), node);
return node;
}
Node* NewNode(BasicBlock* block) {
Node* node = graph.NewNode(common.Int32Constant(111));
schedule.AddNode(block, node);
return node;
}
int NewInstr() {
InstructionCode opcode = static_cast<InstructionCode>(110);
TestInstr* instr = TestInstr::New(zone(), opcode);
return code->AddInstruction(instr);
}
UnallocatedOperand* NewUnallocated(int vreg) {
UnallocatedOperand* unallocated =
new (zone()) UnallocatedOperand(UnallocatedOperand::ANY);
unallocated->set_virtual_register(vreg);
return unallocated;
}
InstructionBlock* BlockAt(BasicBlock* block) {
return code->InstructionBlockAt(block->GetRpoNumber());
}
BasicBlock* GetBasicBlock(int instruction_index) {
const InstructionBlock* block =
code->GetInstructionBlock(instruction_index);
return schedule.rpo_order()->at(block->rpo_number().ToSize());
}
int first_instruction_index(BasicBlock* block) {
return BlockAt(block)->first_instruction_index();
}
int last_instruction_index(BasicBlock* block) {
return BlockAt(block)->last_instruction_index();
}
};
TEST(InstructionBasic) {
InstructionTester R;
for (int i = 0; i < 10; i++) {
R.Int32Constant(i); // Add some nodes to the graph.
}
BasicBlock* last = R.schedule.start();
for (int i = 0; i < 5; i++) {
BasicBlock* block = R.schedule.NewBasicBlock();
R.schedule.AddGoto(last, block);
last = block;
}
R.allocCode();
BasicBlockVector* blocks = R.schedule.rpo_order();
CHECK_EQ(static_cast<int>(blocks->size()), R.code->InstructionBlockCount());
int index = 0;
for (BasicBlockVectorIter i = blocks->begin(); i != blocks->end();
i++, index++) {
BasicBlock* block = *i;
CHECK_EQ(block->rpo_number(), R.BlockAt(block)->rpo_number().ToInt());
CHECK_EQ(block->id().ToInt(), R.BlockAt(block)->id().ToInt());
CHECK_EQ(-1, block->loop_end());
}
}
TEST(InstructionGetBasicBlock) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
BasicBlock* b1 = R.schedule.NewBasicBlock();
BasicBlock* b2 = R.schedule.NewBasicBlock();
BasicBlock* b3 = R.schedule.end();
R.schedule.AddGoto(b0, b1);
R.schedule.AddGoto(b1, b2);
R.schedule.AddGoto(b2, b3);
R.allocCode();
R.code->StartBlock(b0);
int i0 = R.NewInstr();
int i1 = R.NewInstr();
R.code->EndBlock(b0);
R.code->StartBlock(b1);
int i2 = R.NewInstr();
int i3 = R.NewInstr();
int i4 = R.NewInstr();
int i5 = R.NewInstr();
R.code->EndBlock(b1);
R.code->StartBlock(b2);
int i6 = R.NewInstr();
int i7 = R.NewInstr();
int i8 = R.NewInstr();
R.code->EndBlock(b2);
R.code->StartBlock(b3);
R.code->EndBlock(b3);
CHECK_EQ(b0, R.GetBasicBlock(i0));
CHECK_EQ(b0, R.GetBasicBlock(i1));
CHECK_EQ(b1, R.GetBasicBlock(i2));
CHECK_EQ(b1, R.GetBasicBlock(i3));
CHECK_EQ(b1, R.GetBasicBlock(i4));
CHECK_EQ(b1, R.GetBasicBlock(i5));
CHECK_EQ(b2, R.GetBasicBlock(i6));
CHECK_EQ(b2, R.GetBasicBlock(i7));
CHECK_EQ(b2, R.GetBasicBlock(i8));
CHECK_EQ(b0, R.GetBasicBlock(R.first_instruction_index(b0)));
CHECK_EQ(b0, R.GetBasicBlock(R.last_instruction_index(b0)));
CHECK_EQ(b1, R.GetBasicBlock(R.first_instruction_index(b1)));
CHECK_EQ(b1, R.GetBasicBlock(R.last_instruction_index(b1)));
CHECK_EQ(b2, R.GetBasicBlock(R.first_instruction_index(b2)));
CHECK_EQ(b2, R.GetBasicBlock(R.last_instruction_index(b2)));
CHECK_EQ(b3, R.GetBasicBlock(R.first_instruction_index(b3)));
CHECK_EQ(b3, R.GetBasicBlock(R.last_instruction_index(b3)));
}
TEST(InstructionIsGapAt) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
R.schedule.AddReturn(b0, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl();
R.code->StartBlock(b0);
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(b0);
CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart());
CHECK_EQ(true, R.code->IsGapAt(0)); // Label
CHECK_EQ(true, R.code->IsGapAt(1)); // Gap
CHECK_EQ(false, R.code->IsGapAt(2)); // i0
CHECK_EQ(true, R.code->IsGapAt(3)); // Gap
CHECK_EQ(true, R.code->IsGapAt(4)); // Gap
CHECK_EQ(false, R.code->IsGapAt(5)); // g
}
TEST(InstructionIsGapAt2) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
BasicBlock* b1 = R.schedule.end();
R.schedule.AddGoto(b0, b1);
R.schedule.AddReturn(b1, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl();
R.code->StartBlock(b0);
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(b0);
TestInstr* i1 = TestInstr::New(R.zone(), 102);
TestInstr* g1 = TestInstr::New(R.zone(), 104)->MarkAsControl();
R.code->StartBlock(b1);
R.code->AddInstruction(i1);
R.code->AddInstruction(g1);
R.code->EndBlock(b1);
CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart());
CHECK_EQ(true, R.code->IsGapAt(0)); // Label
CHECK_EQ(true, R.code->IsGapAt(1)); // Gap
CHECK_EQ(false, R.code->IsGapAt(2)); // i0
CHECK_EQ(true, R.code->IsGapAt(3)); // Gap
CHECK_EQ(true, R.code->IsGapAt(4)); // Gap
CHECK_EQ(false, R.code->IsGapAt(5)); // g
CHECK_EQ(true, R.code->InstructionAt(6)->IsBlockStart());
CHECK_EQ(true, R.code->IsGapAt(6)); // Label
CHECK_EQ(true, R.code->IsGapAt(7)); // Gap
CHECK_EQ(false, R.code->IsGapAt(8)); // i1
CHECK_EQ(true, R.code->IsGapAt(9)); // Gap
CHECK_EQ(true, R.code->IsGapAt(10)); // Gap
CHECK_EQ(false, R.code->IsGapAt(11)); // g1
}
TEST(InstructionAddGapMove) {
InstructionTester R;
BasicBlock* b0 = R.schedule.start();
R.schedule.AddReturn(b0, R.Int32Constant(1));
R.allocCode();
TestInstr* i0 = TestInstr::New(R.zone(), 100);
TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl();
R.code->StartBlock(b0);
R.code->AddInstruction(i0);
R.code->AddInstruction(g);
R.code->EndBlock(b0);
CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart());
CHECK_EQ(true, R.code->IsGapAt(0)); // Label
CHECK_EQ(true, R.code->IsGapAt(1)); // Gap
CHECK_EQ(false, R.code->IsGapAt(2)); // i0
CHECK_EQ(true, R.code->IsGapAt(3)); // Gap
CHECK_EQ(true, R.code->IsGapAt(4)); // Gap
CHECK_EQ(false, R.code->IsGapAt(5)); // g
int indexes[] = {0, 1, 3, 4, -1};
for (int i = 0; indexes[i] >= 0; i++) {
int index = indexes[i];
UnallocatedOperand* op1 = R.NewUnallocated(index + 6);
UnallocatedOperand* op2 = R.NewUnallocated(index + 12);
R.code->AddGapMove(index, op1, op2);
GapInstruction* gap = R.code->GapAt(index);
ParallelMove* move = gap->GetParallelMove(GapInstruction::START);
CHECK_NE(NULL, move);
const ZoneList<MoveOperands>* move_operands = move->move_operands();
CHECK_EQ(1, move_operands->length());
MoveOperands* cur = &move_operands->at(0);
CHECK_EQ(op1, cur->source());
CHECK_EQ(op2, cur->destination());
}
}
TEST(InstructionOperands) {
Zone zone(CcTest::InitIsolateOnce());
{
TestInstr* i = TestInstr::New(&zone, 101);
CHECK_EQ(0, static_cast<int>(i->OutputCount()));
CHECK_EQ(0, static_cast<int>(i->InputCount()));
CHECK_EQ(0, static_cast<int>(i->TempCount()));
}
InstructionOperand* outputs[] = {
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)};
InstructionOperand* inputs[] = {
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)};
InstructionOperand* temps[] = {
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER),
new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)};
for (size_t i = 0; i < arraysize(outputs); i++) {
for (size_t j = 0; j < arraysize(inputs); j++) {
for (size_t k = 0; k < arraysize(temps); k++) {
TestInstr* m =
TestInstr::New(&zone, 101, i, outputs, j, inputs, k, temps);
CHECK(i == m->OutputCount());
CHECK(j == m->InputCount());
CHECK(k == m->TempCount());
for (size_t z = 0; z < i; z++) {
CHECK_EQ(outputs[z], m->OutputAt(z));
}
for (size_t z = 0; z < j; z++) {
CHECK_EQ(inputs[z], m->InputAt(z));
}
for (size_t z = 0; z < k; z++) {
CHECK_EQ(temps[z], m->TempAt(z));
}
}
}
}
}