93 lines
3.5 KiB
JavaScript
93 lines
3.5 KiB
JavaScript
|
// Copyright 2019 the V8 project authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
// Tier-up behavior differs between slow and fast paths in functional
|
||
|
// RegExp.prototype.replace.
|
||
|
// Flags: --regexp-tier-up --allow-natives-syntax --no-force-slow-path
|
||
|
|
||
|
const kLatin1 = true;
|
||
|
const kUnicode = false;
|
||
|
|
||
|
function CheckRegexpNotYetCompiled(regexp) {
|
||
|
assertFalse(%RegexpHasBytecode(regexp, kLatin1) &&
|
||
|
%RegexpHasNativeCode(regexp, kLatin1));
|
||
|
assertFalse(%RegexpHasBytecode(regexp, kUnicode) &&
|
||
|
%RegexpHasNativeCode(regexp, kUnicode));
|
||
|
}
|
||
|
|
||
|
// Testing RegExp.test method which calls into Runtime_RegExpExec.
|
||
|
let re = new RegExp('^.$');
|
||
|
CheckRegexpNotYetCompiled(re);
|
||
|
|
||
|
// Testing first execution of regexp with one-byte string subject.
|
||
|
re.test("a");
|
||
|
assertTrue(%RegexpHasBytecode(re, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re, kUnicode));
|
||
|
// Testing second execution of regexp now with a two-byte string subject.
|
||
|
// This will compile to native code because we have a single tick counter
|
||
|
// for both string representations.
|
||
|
re.test("π");
|
||
|
assertTrue(%RegexpHasBytecode(re, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
%RegexpHasNativeCode(re,kUnicode));
|
||
|
// Testing tier-up when we're back to executing the regexp with a one byte
|
||
|
// string.
|
||
|
re.test("6");
|
||
|
assertTrue(!%RegexpHasBytecode(re, kLatin1) &&
|
||
|
%RegexpHasNativeCode(re,kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
%RegexpHasNativeCode(re,kUnicode));
|
||
|
re.test("7");
|
||
|
assertTrue(!%RegexpHasBytecode(re, kLatin1) &&
|
||
|
%RegexpHasNativeCode(re,kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
%RegexpHasNativeCode(re,kUnicode));
|
||
|
|
||
|
// Testing String.replace method for non-global regexps.
|
||
|
var subject = "a11";
|
||
|
re = /\w1/;
|
||
|
CheckRegexpNotYetCompiled(re);
|
||
|
|
||
|
subject.replace(re, "x");
|
||
|
assertTrue(%RegexpHasBytecode(re, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re, kUnicode));
|
||
|
subject.replace(re, "x");
|
||
|
assertTrue(!%RegexpHasBytecode(re, kLatin1) &&
|
||
|
%RegexpHasNativeCode(re, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re, kUnicode));
|
||
|
|
||
|
// Testing String.replace method for global regexps.
|
||
|
let re_g = /\w111/g;
|
||
|
CheckRegexpNotYetCompiled(re_g);
|
||
|
// This regexp will not match, so it will only execute the bytecode once,
|
||
|
// without tiering-up and recompiling to native code.
|
||
|
subject.replace(re_g, "x");
|
||
|
assertTrue(%RegexpHasBytecode(re_g, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re_g, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re_g, kUnicode));
|
||
|
|
||
|
// This regexp will match, so it will execute twice, and tier-up.
|
||
|
re_g = /\w1/g;
|
||
|
CheckRegexpNotYetCompiled(re_g);
|
||
|
subject.replace(re_g, "x");
|
||
|
assertTrue(!%RegexpHasBytecode(re_g, kLatin1) &&
|
||
|
%RegexpHasNativeCode(re_g, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re_g, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re_g, kUnicode));
|
||
|
|
||
|
// Testing String.replace method for global regexps with a function as a
|
||
|
// parameter. This will tier-up eagerly and compile to native code right
|
||
|
// away, even though the regexp is only executed once.
|
||
|
function f() { return "x"; }
|
||
|
re_g = /\w2/g;
|
||
|
CheckRegexpNotYetCompiled(re_g);
|
||
|
subject.replace(re_g, f);
|
||
|
assertTrue(!%RegexpHasBytecode(re_g, kLatin1) &&
|
||
|
%RegexpHasNativeCode(re_g, kLatin1));
|
||
|
assertTrue(!%RegexpHasBytecode(re_g, kUnicode) &&
|
||
|
!%RegexpHasNativeCode(re_g, kUnicode));
|