v8/src/liveedit.cc

2011 lines
66 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "liveedit.h"
#include "code-stubs.h"
#include "compilation-cache.h"
#include "compiler.h"
#include "debug.h"
#include "deoptimizer.h"
#include "global-handles.h"
#include "messages.h"
#include "parser.h"
#include "scopeinfo.h"
#include "scopes.h"
#include "v8memory.h"
namespace v8 {
namespace internal {
#ifdef ENABLE_DEBUGGER_SUPPORT
void SetElementSloppy(Handle<JSObject> object,
uint32_t index,
Handle<Object> value) {
// Ignore return value from SetElement. It can only be a failure if there
// are element setters causing exceptions and the debugger context has none
// of these.
JSObject::SetElement(object, index, value, NONE, SLOPPY).Assert();
}
// A simple implementation of dynamic programming algorithm. It solves
// the problem of finding the difference of 2 arrays. It uses a table of results
// of subproblems. Each cell contains a number together with 2-bit flag
// that helps building the chunk list.
class Differencer {
public:
explicit Differencer(Comparator::Input* input)
: input_(input), len1_(input->GetLength1()), len2_(input->GetLength2()) {
buffer_ = NewArray<int>(len1_ * len2_);
}
~Differencer() {
DeleteArray(buffer_);
}
void Initialize() {
int array_size = len1_ * len2_;
for (int i = 0; i < array_size; i++) {
buffer_[i] = kEmptyCellValue;
}
}
// Makes sure that result for the full problem is calculated and stored
// in the table together with flags showing a path through subproblems.
void FillTable() {
CompareUpToTail(0, 0);
}
void SaveResult(Comparator::Output* chunk_writer) {
ResultWriter writer(chunk_writer);
int pos1 = 0;
int pos2 = 0;
while (true) {
if (pos1 < len1_) {
if (pos2 < len2_) {
Direction dir = get_direction(pos1, pos2);
switch (dir) {
case EQ:
writer.eq();
pos1++;
pos2++;
break;
case SKIP1:
writer.skip1(1);
pos1++;
break;
case SKIP2:
case SKIP_ANY:
writer.skip2(1);
pos2++;
break;
default:
UNREACHABLE();
}
} else {
writer.skip1(len1_ - pos1);
break;
}
} else {
if (len2_ != pos2) {
writer.skip2(len2_ - pos2);
}
break;
}
}
writer.close();
}
private:
Comparator::Input* input_;
int* buffer_;
int len1_;
int len2_;
enum Direction {
EQ = 0,
SKIP1,
SKIP2,
SKIP_ANY,
MAX_DIRECTION_FLAG_VALUE = SKIP_ANY
};
// Computes result for a subtask and optionally caches it in the buffer table.
// All results values are shifted to make space for flags in the lower bits.
int CompareUpToTail(int pos1, int pos2) {
if (pos1 < len1_) {
if (pos2 < len2_) {
int cached_res = get_value4(pos1, pos2);
if (cached_res == kEmptyCellValue) {
Direction dir;
int res;
if (input_->Equals(pos1, pos2)) {
res = CompareUpToTail(pos1 + 1, pos2 + 1);
dir = EQ;
} else {
int res1 = CompareUpToTail(pos1 + 1, pos2) +
(1 << kDirectionSizeBits);
int res2 = CompareUpToTail(pos1, pos2 + 1) +
(1 << kDirectionSizeBits);
if (res1 == res2) {
res = res1;
dir = SKIP_ANY;
} else if (res1 < res2) {
res = res1;
dir = SKIP1;
} else {
res = res2;
dir = SKIP2;
}
}
set_value4_and_dir(pos1, pos2, res, dir);
cached_res = res;
}
return cached_res;
} else {
return (len1_ - pos1) << kDirectionSizeBits;
}
} else {
return (len2_ - pos2) << kDirectionSizeBits;
}
}
inline int& get_cell(int i1, int i2) {
return buffer_[i1 + i2 * len1_];
}
// Each cell keeps a value plus direction. Value is multiplied by 4.
void set_value4_and_dir(int i1, int i2, int value4, Direction dir) {
ASSERT((value4 & kDirectionMask) == 0);
get_cell(i1, i2) = value4 | dir;
}
int get_value4(int i1, int i2) {
return get_cell(i1, i2) & (kMaxUInt32 ^ kDirectionMask);
}
Direction get_direction(int i1, int i2) {
return static_cast<Direction>(get_cell(i1, i2) & kDirectionMask);
}
static const int kDirectionSizeBits = 2;
static const int kDirectionMask = (1 << kDirectionSizeBits) - 1;
static const int kEmptyCellValue = -1 << kDirectionSizeBits;
// This method only holds static assert statement (unfortunately you cannot
// place one in class scope).
void StaticAssertHolder() {
STATIC_ASSERT(MAX_DIRECTION_FLAG_VALUE < (1 << kDirectionSizeBits));
}
class ResultWriter {
public:
explicit ResultWriter(Comparator::Output* chunk_writer)
: chunk_writer_(chunk_writer), pos1_(0), pos2_(0),
pos1_begin_(-1), pos2_begin_(-1), has_open_chunk_(false) {
}
void eq() {
FlushChunk();
pos1_++;
pos2_++;
}
void skip1(int len1) {
StartChunk();
pos1_ += len1;
}
void skip2(int len2) {
StartChunk();
pos2_ += len2;
}
void close() {
FlushChunk();
}
private:
Comparator::Output* chunk_writer_;
int pos1_;
int pos2_;
int pos1_begin_;
int pos2_begin_;
bool has_open_chunk_;
void StartChunk() {
if (!has_open_chunk_) {
pos1_begin_ = pos1_;
pos2_begin_ = pos2_;
has_open_chunk_ = true;
}
}
void FlushChunk() {
if (has_open_chunk_) {
chunk_writer_->AddChunk(pos1_begin_, pos2_begin_,
pos1_ - pos1_begin_, pos2_ - pos2_begin_);
has_open_chunk_ = false;
}
}
};
};
void Comparator::CalculateDifference(Comparator::Input* input,
Comparator::Output* result_writer) {
Differencer differencer(input);
differencer.Initialize();
differencer.FillTable();
differencer.SaveResult(result_writer);
}
static bool CompareSubstrings(Handle<String> s1, int pos1,
Handle<String> s2, int pos2, int len) {
for (int i = 0; i < len; i++) {
if (s1->Get(i + pos1) != s2->Get(i + pos2)) {
return false;
}
}
return true;
}
// Additional to Input interface. Lets switch Input range to subrange.
// More elegant way would be to wrap one Input as another Input object
// and translate positions there, but that would cost us additional virtual
// call per comparison.
class SubrangableInput : public Comparator::Input {
public:
virtual void SetSubrange1(int offset, int len) = 0;
virtual void SetSubrange2(int offset, int len) = 0;
};
class SubrangableOutput : public Comparator::Output {
public:
virtual void SetSubrange1(int offset, int len) = 0;
virtual void SetSubrange2(int offset, int len) = 0;
};
static int min(int a, int b) {
return a < b ? a : b;
}
// Finds common prefix and suffix in input. This parts shouldn't take space in
// linear programming table. Enable subranging in input and output.
static void NarrowDownInput(SubrangableInput* input,
SubrangableOutput* output) {
const int len1 = input->GetLength1();
const int len2 = input->GetLength2();
int common_prefix_len;
int common_suffix_len;
{
common_prefix_len = 0;
int prefix_limit = min(len1, len2);
while (common_prefix_len < prefix_limit &&
input->Equals(common_prefix_len, common_prefix_len)) {
common_prefix_len++;
}
common_suffix_len = 0;
int suffix_limit = min(len1 - common_prefix_len, len2 - common_prefix_len);
while (common_suffix_len < suffix_limit &&
input->Equals(len1 - common_suffix_len - 1,
len2 - common_suffix_len - 1)) {
common_suffix_len++;
}
}
if (common_prefix_len > 0 || common_suffix_len > 0) {
int new_len1 = len1 - common_suffix_len - common_prefix_len;
int new_len2 = len2 - common_suffix_len - common_prefix_len;
input->SetSubrange1(common_prefix_len, new_len1);
input->SetSubrange2(common_prefix_len, new_len2);
output->SetSubrange1(common_prefix_len, new_len1);
output->SetSubrange2(common_prefix_len, new_len2);
}
}
// A helper class that writes chunk numbers into JSArray.
// Each chunk is stored as 3 array elements: (pos1_begin, pos1_end, pos2_end).
class CompareOutputArrayWriter {
public:
explicit CompareOutputArrayWriter(Isolate* isolate)
: array_(isolate->factory()->NewJSArray(10)), current_size_(0) {}
Handle<JSArray> GetResult() {
return array_;
}
void WriteChunk(int char_pos1, int char_pos2, int char_len1, int char_len2) {
Isolate* isolate = array_->GetIsolate();
SetElementSloppy(array_,
current_size_,
Handle<Object>(Smi::FromInt(char_pos1), isolate));
SetElementSloppy(array_,
current_size_ + 1,
Handle<Object>(Smi::FromInt(char_pos1 + char_len1),
isolate));
SetElementSloppy(array_,
current_size_ + 2,
Handle<Object>(Smi::FromInt(char_pos2 + char_len2),
isolate));
current_size_ += 3;
}
private:
Handle<JSArray> array_;
int current_size_;
};
// Represents 2 strings as 2 arrays of tokens.
// TODO(LiveEdit): Currently it's actually an array of charactres.
// Make array of tokens instead.
class TokensCompareInput : public Comparator::Input {
public:
TokensCompareInput(Handle<String> s1, int offset1, int len1,
Handle<String> s2, int offset2, int len2)
: s1_(s1), offset1_(offset1), len1_(len1),
s2_(s2), offset2_(offset2), len2_(len2) {
}
virtual int GetLength1() {
return len1_;
}
virtual int GetLength2() {
return len2_;
}
bool Equals(int index1, int index2) {
return s1_->Get(offset1_ + index1) == s2_->Get(offset2_ + index2);
}
private:
Handle<String> s1_;
int offset1_;
int len1_;
Handle<String> s2_;
int offset2_;
int len2_;
};
// Stores compare result in JSArray. Converts substring positions
// to absolute positions.
class TokensCompareOutput : public Comparator::Output {
public:
TokensCompareOutput(CompareOutputArrayWriter* array_writer,
int offset1, int offset2)
: array_writer_(array_writer), offset1_(offset1), offset2_(offset2) {
}
void AddChunk(int pos1, int pos2, int len1, int len2) {
array_writer_->WriteChunk(pos1 + offset1_, pos2 + offset2_, len1, len2);
}
private:
CompareOutputArrayWriter* array_writer_;
int offset1_;
int offset2_;
};
// Wraps raw n-elements line_ends array as a list of n+1 lines. The last line
// never has terminating new line character.
class LineEndsWrapper {
public:
explicit LineEndsWrapper(Handle<String> string)
: ends_array_(CalculateLineEnds(string, false)),
string_len_(string->length()) {
}
int length() {
return ends_array_->length() + 1;
}
// Returns start for any line including start of the imaginary line after
// the last line.
int GetLineStart(int index) {
if (index == 0) {
return 0;
} else {
return GetLineEnd(index - 1);
}
}
int GetLineEnd(int index) {
if (index == ends_array_->length()) {
// End of the last line is always an end of the whole string.
// If the string ends with a new line character, the last line is an
// empty string after this character.
return string_len_;
} else {
return GetPosAfterNewLine(index);
}
}
private:
Handle<FixedArray> ends_array_;
int string_len_;
int GetPosAfterNewLine(int index) {
return Smi::cast(ends_array_->get(index))->value() + 1;
}
};
// Represents 2 strings as 2 arrays of lines.
class LineArrayCompareInput : public SubrangableInput {
public:
LineArrayCompareInput(Handle<String> s1, Handle<String> s2,
LineEndsWrapper line_ends1, LineEndsWrapper line_ends2)
: s1_(s1), s2_(s2), line_ends1_(line_ends1),
line_ends2_(line_ends2),
subrange_offset1_(0), subrange_offset2_(0),
subrange_len1_(line_ends1_.length()),
subrange_len2_(line_ends2_.length()) {
}
int GetLength1() {
return subrange_len1_;
}
int GetLength2() {
return subrange_len2_;
}
bool Equals(int index1, int index2) {
index1 += subrange_offset1_;
index2 += subrange_offset2_;
int line_start1 = line_ends1_.GetLineStart(index1);
int line_start2 = line_ends2_.GetLineStart(index2);
int line_end1 = line_ends1_.GetLineEnd(index1);
int line_end2 = line_ends2_.GetLineEnd(index2);
int len1 = line_end1 - line_start1;
int len2 = line_end2 - line_start2;
if (len1 != len2) {
return false;
}
return CompareSubstrings(s1_, line_start1, s2_, line_start2,
len1);
}
void SetSubrange1(int offset, int len) {
subrange_offset1_ = offset;
subrange_len1_ = len;
}
void SetSubrange2(int offset, int len) {
subrange_offset2_ = offset;
subrange_len2_ = len;
}
private:
Handle<String> s1_;
Handle<String> s2_;
LineEndsWrapper line_ends1_;
LineEndsWrapper line_ends2_;
int subrange_offset1_;
int subrange_offset2_;
int subrange_len1_;
int subrange_len2_;
};
// Stores compare result in JSArray. For each chunk tries to conduct
// a fine-grained nested diff token-wise.
class TokenizingLineArrayCompareOutput : public SubrangableOutput {
public:
TokenizingLineArrayCompareOutput(LineEndsWrapper line_ends1,
LineEndsWrapper line_ends2,
Handle<String> s1, Handle<String> s2)
: array_writer_(s1->GetIsolate()),
line_ends1_(line_ends1), line_ends2_(line_ends2), s1_(s1), s2_(s2),
subrange_offset1_(0), subrange_offset2_(0) {
}
void AddChunk(int line_pos1, int line_pos2, int line_len1, int line_len2) {
line_pos1 += subrange_offset1_;
line_pos2 += subrange_offset2_;
int char_pos1 = line_ends1_.GetLineStart(line_pos1);
int char_pos2 = line_ends2_.GetLineStart(line_pos2);
int char_len1 = line_ends1_.GetLineStart(line_pos1 + line_len1) - char_pos1;
int char_len2 = line_ends2_.GetLineStart(line_pos2 + line_len2) - char_pos2;
if (char_len1 < CHUNK_LEN_LIMIT && char_len2 < CHUNK_LEN_LIMIT) {
// Chunk is small enough to conduct a nested token-level diff.
HandleScope subTaskScope(s1_->GetIsolate());
TokensCompareInput tokens_input(s1_, char_pos1, char_len1,
s2_, char_pos2, char_len2);
TokensCompareOutput tokens_output(&array_writer_, char_pos1,
char_pos2);
Comparator::CalculateDifference(&tokens_input, &tokens_output);
} else {
array_writer_.WriteChunk(char_pos1, char_pos2, char_len1, char_len2);
}
}
void SetSubrange1(int offset, int len) {
subrange_offset1_ = offset;
}
void SetSubrange2(int offset, int len) {
subrange_offset2_ = offset;
}
Handle<JSArray> GetResult() {
return array_writer_.GetResult();
}
private:
static const int CHUNK_LEN_LIMIT = 800;
CompareOutputArrayWriter array_writer_;
LineEndsWrapper line_ends1_;
LineEndsWrapper line_ends2_;
Handle<String> s1_;
Handle<String> s2_;
int subrange_offset1_;
int subrange_offset2_;
};
Handle<JSArray> LiveEdit::CompareStrings(Handle<String> s1,
Handle<String> s2) {
s1 = FlattenGetString(s1);
s2 = FlattenGetString(s2);
LineEndsWrapper line_ends1(s1);
LineEndsWrapper line_ends2(s2);
LineArrayCompareInput input(s1, s2, line_ends1, line_ends2);
TokenizingLineArrayCompareOutput output(line_ends1, line_ends2, s1, s2);
NarrowDownInput(&input, &output);
Comparator::CalculateDifference(&input, &output);
return output.GetResult();
}
// Unwraps JSValue object, returning its field "value"
static Handle<Object> UnwrapJSValue(Handle<JSValue> jsValue) {
return Handle<Object>(jsValue->value(), jsValue->GetIsolate());
}
// Wraps any object into a OpaqueReference, that will hide the object
// from JavaScript.
static Handle<JSValue> WrapInJSValue(Handle<HeapObject> object) {
Isolate* isolate = object->GetIsolate();
Handle<JSFunction> constructor = isolate->opaque_reference_function();
Handle<JSValue> result =
Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
result->set_value(*object);
return result;
}
static Handle<SharedFunctionInfo> UnwrapSharedFunctionInfoFromJSValue(
Handle<JSValue> jsValue) {
Object* shared = jsValue->value();
CHECK(shared->IsSharedFunctionInfo());
return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(shared));
}
static int GetArrayLength(Handle<JSArray> array) {
Object* length = array->length();
CHECK(length->IsSmi());
return Smi::cast(length)->value();
}
void FunctionInfoWrapper::SetInitialProperties(Handle<String> name,
int start_position,
int end_position,
int param_num,
int literal_count,
int parent_index) {
HandleScope scope(isolate());
this->SetField(kFunctionNameOffset_, name);
this->SetSmiValueField(kStartPositionOffset_, start_position);
this->SetSmiValueField(kEndPositionOffset_, end_position);
this->SetSmiValueField(kParamNumOffset_, param_num);
this->SetSmiValueField(kLiteralNumOffset_, literal_count);
this->SetSmiValueField(kParentIndexOffset_, parent_index);
}
void FunctionInfoWrapper::SetFunctionCode(Handle<Code> function_code,
Handle<HeapObject> code_scope_info) {
Handle<JSValue> code_wrapper = WrapInJSValue(function_code);
this->SetField(kCodeOffset_, code_wrapper);
Handle<JSValue> scope_wrapper = WrapInJSValue(code_scope_info);
this->SetField(kCodeScopeInfoOffset_, scope_wrapper);
}
void FunctionInfoWrapper::SetSharedFunctionInfo(
Handle<SharedFunctionInfo> info) {
Handle<JSValue> info_holder = WrapInJSValue(info);
this->SetField(kSharedFunctionInfoOffset_, info_holder);
}
Handle<Code> FunctionInfoWrapper::GetFunctionCode() {
Handle<Object> element = this->GetField(kCodeOffset_);
Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element);
Handle<Object> raw_result = UnwrapJSValue(value_wrapper);
CHECK(raw_result->IsCode());
return Handle<Code>::cast(raw_result);
}
Handle<Object> FunctionInfoWrapper::GetCodeScopeInfo() {
Handle<Object> element = this->GetField(kCodeScopeInfoOffset_);
return UnwrapJSValue(Handle<JSValue>::cast(element));
}
void SharedInfoWrapper::SetProperties(Handle<String> name,
int start_position,
int end_position,
Handle<SharedFunctionInfo> info) {
HandleScope scope(isolate());
this->SetField(kFunctionNameOffset_, name);
Handle<JSValue> info_holder = WrapInJSValue(info);
this->SetField(kSharedInfoOffset_, info_holder);
this->SetSmiValueField(kStartPositionOffset_, start_position);
this->SetSmiValueField(kEndPositionOffset_, end_position);
}
Handle<SharedFunctionInfo> SharedInfoWrapper::GetInfo() {
Handle<Object> element = this->GetField(kSharedInfoOffset_);
Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element);
return UnwrapSharedFunctionInfoFromJSValue(value_wrapper);
}
class FunctionInfoListener {
public:
explicit FunctionInfoListener(Isolate* isolate) {
current_parent_index_ = -1;
len_ = 0;
result_ = isolate->factory()->NewJSArray(10);
}
void FunctionStarted(FunctionLiteral* fun) {
HandleScope scope(isolate());
FunctionInfoWrapper info = FunctionInfoWrapper::Create(isolate());
info.SetInitialProperties(fun->name(), fun->start_position(),
fun->end_position(), fun->parameter_count(),
fun->materialized_literal_count(),
current_parent_index_);
current_parent_index_ = len_;
SetElementSloppy(result_, len_, info.GetJSArray());
len_++;
}
void FunctionDone() {
HandleScope scope(isolate());
FunctionInfoWrapper info =
FunctionInfoWrapper::cast(
*Object::GetElementNoExceptionThrown(
isolate(), result_, current_parent_index_));
current_parent_index_ = info.GetParentIndex();
}
// Saves only function code, because for a script function we
// may never create a SharedFunctionInfo object.
void FunctionCode(Handle<Code> function_code) {
FunctionInfoWrapper info =
FunctionInfoWrapper::cast(
*Object::GetElementNoExceptionThrown(
isolate(), result_, current_parent_index_));
info.SetFunctionCode(function_code,
Handle<HeapObject>(isolate()->heap()->null_value()));
}
// Saves full information about a function: its code, its scope info
// and a SharedFunctionInfo object.
void FunctionInfo(Handle<SharedFunctionInfo> shared, Scope* scope,
Zone* zone) {
if (!shared->IsSharedFunctionInfo()) {
return;
}
FunctionInfoWrapper info =
FunctionInfoWrapper::cast(
*Object::GetElementNoExceptionThrown(
isolate(), result_, current_parent_index_));
info.SetFunctionCode(Handle<Code>(shared->code()),
Handle<HeapObject>(shared->scope_info()));
info.SetSharedFunctionInfo(shared);
Handle<Object> scope_info_list = SerializeFunctionScope(scope, zone);
info.SetFunctionScopeInfo(scope_info_list);
}
Handle<JSArray> GetResult() { return result_; }
private:
Isolate* isolate() const { return result_->GetIsolate(); }
Handle<Object> SerializeFunctionScope(Scope* scope, Zone* zone) {
Handle<JSArray> scope_info_list = isolate()->factory()->NewJSArray(10);
int scope_info_length = 0;
// Saves some description of scope. It stores name and indexes of
// variables in the whole scope chain. Null-named slots delimit
// scopes of this chain.
Scope* current_scope = scope;
while (current_scope != NULL) {
HandleScope handle_scope(isolate());
ZoneList<Variable*> stack_list(current_scope->StackLocalCount(), zone);
ZoneList<Variable*> context_list(
current_scope->ContextLocalCount(), zone);
current_scope->CollectStackAndContextLocals(&stack_list, &context_list);
context_list.Sort(&Variable::CompareIndex);
for (int i = 0; i < context_list.length(); i++) {
SetElementSloppy(scope_info_list,
scope_info_length,
context_list[i]->name());
scope_info_length++;
SetElementSloppy(
scope_info_list,
scope_info_length,
Handle<Smi>(Smi::FromInt(context_list[i]->index()), isolate()));
scope_info_length++;
}
SetElementSloppy(scope_info_list,
scope_info_length,
Handle<Object>(isolate()->heap()->null_value(),
isolate()));
scope_info_length++;
current_scope = current_scope->outer_scope();
}
return scope_info_list;
}
Handle<JSArray> result_;
int len_;
int current_parent_index_;
};
MaybeHandle<JSArray> LiveEdit::GatherCompileInfo(Handle<Script> script,
Handle<String> source) {
Isolate* isolate = script->GetIsolate();
FunctionInfoListener listener(isolate);
Handle<Object> original_source =
Handle<Object>(script->source(), isolate);
script->set_source(*source);
isolate->set_active_function_info_listener(&listener);
{
// Creating verbose TryCatch from public API is currently the only way to
// force code save location. We do not use this the object directly.
v8::TryCatch try_catch;
try_catch.SetVerbose(true);
// A logical 'try' section.
Compiler::CompileForLiveEdit(script);
}
// A logical 'catch' section.
Handle<JSObject> rethrow_exception;
if (isolate->has_pending_exception()) {
Handle<Object> exception(isolate->pending_exception(), isolate);
MessageLocation message_location = isolate->GetMessageLocation();
isolate->clear_pending_message();
isolate->clear_pending_exception();
// If possible, copy positions from message object to exception object.
if (exception->IsJSObject() && !message_location.script().is_null()) {
rethrow_exception = Handle<JSObject>::cast(exception);
Factory* factory = isolate->factory();
Handle<String> start_pos_key = factory->InternalizeOneByteString(
STATIC_ASCII_VECTOR("startPosition"));
Handle<String> end_pos_key = factory->InternalizeOneByteString(
STATIC_ASCII_VECTOR("endPosition"));
Handle<String> script_obj_key = factory->InternalizeOneByteString(
STATIC_ASCII_VECTOR("scriptObject"));
Handle<Smi> start_pos(
Smi::FromInt(message_location.start_pos()), isolate);
Handle<Smi> end_pos(Smi::FromInt(message_location.end_pos()), isolate);
Handle<JSValue> script_obj = GetScriptWrapper(message_location.script());
JSReceiver::SetProperty(
rethrow_exception, start_pos_key, start_pos, NONE, SLOPPY).Assert();
JSReceiver::SetProperty(
rethrow_exception, end_pos_key, end_pos, NONE, SLOPPY).Assert();
JSReceiver::SetProperty(
rethrow_exception, script_obj_key, script_obj, NONE, SLOPPY).Assert();
}
}
// A logical 'finally' section.
isolate->set_active_function_info_listener(NULL);
script->set_source(*original_source);
if (rethrow_exception.is_null()) {
return listener.GetResult();
} else {
return isolate->Throw<JSArray>(rethrow_exception);
}
}
void LiveEdit::WrapSharedFunctionInfos(Handle<JSArray> array) {
Isolate* isolate = array->GetIsolate();
HandleScope scope(isolate);
int len = GetArrayLength(array);
for (int i = 0; i < len; i++) {
Handle<SharedFunctionInfo> info(
SharedFunctionInfo::cast(
*Object::GetElementNoExceptionThrown(isolate, array, i)));
SharedInfoWrapper info_wrapper = SharedInfoWrapper::Create(isolate);
Handle<String> name_handle(String::cast(info->name()));
info_wrapper.SetProperties(name_handle, info->start_position(),
info->end_position(), info);
SetElementSloppy(array, i, info_wrapper.GetJSArray());
}
}
// Visitor that finds all references to a particular code object,
// including "CODE_TARGET" references in other code objects and replaces
// them on the fly.
class ReplacingVisitor : public ObjectVisitor {
public:
explicit ReplacingVisitor(Code* original, Code* substitution)
: original_(original), substitution_(substitution) {
}
virtual void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
if (*p == original_) {
*p = substitution_;
}
}
}
virtual void VisitCodeEntry(Address entry) {
if (Code::GetObjectFromEntryAddress(entry) == original_) {
Address substitution_entry = substitution_->instruction_start();
Memory::Address_at(entry) = substitution_entry;
}
}
virtual void VisitCodeTarget(RelocInfo* rinfo) {
if (RelocInfo::IsCodeTarget(rinfo->rmode()) &&
Code::GetCodeFromTargetAddress(rinfo->target_address()) == original_) {
Address substitution_entry = substitution_->instruction_start();
rinfo->set_target_address(substitution_entry);
}
}
virtual void VisitDebugTarget(RelocInfo* rinfo) {
VisitCodeTarget(rinfo);
}
private:
Code* original_;
Code* substitution_;
};
// Finds all references to original and replaces them with substitution.
static void ReplaceCodeObject(Handle<Code> original,
Handle<Code> substitution) {
// Perform a full GC in order to ensure that we are not in the middle of an
// incremental marking phase when we are replacing the code object.
// Since we are not in an incremental marking phase we can write pointers
// to code objects (that are never in new space) without worrying about
// write barriers.
Heap* heap = original->GetHeap();
heap->CollectAllGarbage(Heap::kMakeHeapIterableMask,
"liveedit.cc ReplaceCodeObject");
ASSERT(!heap->InNewSpace(*substitution));
DisallowHeapAllocation no_allocation;
ReplacingVisitor visitor(*original, *substitution);
// Iterate over all roots. Stack frames may have pointer into original code,
// so temporary replace the pointers with offset numbers
// in prologue/epilogue.
heap->IterateRoots(&visitor, VISIT_ALL);
// Now iterate over all pointers of all objects, including code_target
// implicit pointers.
HeapIterator iterator(heap);
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
obj->Iterate(&visitor);
}
}
// Patch function literals.
// Name 'literals' is a misnomer. Rather it's a cache for complex object
// boilerplates and for a native context. We must clean cached values.
// Additionally we may need to allocate a new array if number of literals
// changed.
class LiteralFixer {
public:
static void PatchLiterals(FunctionInfoWrapper* compile_info_wrapper,
Handle<SharedFunctionInfo> shared_info,
Isolate* isolate) {
int new_literal_count = compile_info_wrapper->GetLiteralCount();
if (new_literal_count > 0) {
new_literal_count += JSFunction::kLiteralsPrefixSize;
}
int old_literal_count = shared_info->num_literals();
if (old_literal_count == new_literal_count) {
// If literal count didn't change, simply go over all functions
// and clear literal arrays.
ClearValuesVisitor visitor;
IterateJSFunctions(*shared_info, &visitor);
} else {
// When literal count changes, we have to create new array instances.
// Since we cannot create instances when iterating heap, we should first
// collect all functions and fix their literal arrays.
Handle<FixedArray> function_instances =
CollectJSFunctions(shared_info, isolate);
for (int i = 0; i < function_instances->length(); i++) {
Handle<JSFunction> fun(JSFunction::cast(function_instances->get(i)));
Handle<FixedArray> old_literals(fun->literals());
Handle<FixedArray> new_literals =
isolate->factory()->NewFixedArray(new_literal_count);
if (new_literal_count > 0) {
Handle<Context> native_context;
if (old_literals->length() >
JSFunction::kLiteralNativeContextIndex) {
native_context = Handle<Context>(
JSFunction::NativeContextFromLiterals(fun->literals()));
} else {
native_context = Handle<Context>(fun->context()->native_context());
}
new_literals->set(JSFunction::kLiteralNativeContextIndex,
*native_context);
}
fun->set_literals(*new_literals);
}
shared_info->set_num_literals(new_literal_count);
}
}
private:
// Iterates all function instances in the HEAP that refers to the
// provided shared_info.
template<typename Visitor>
static void IterateJSFunctions(SharedFunctionInfo* shared_info,
Visitor* visitor) {
DisallowHeapAllocation no_allocation;
HeapIterator iterator(shared_info->GetHeap());
for (HeapObject* obj = iterator.next(); obj != NULL;
obj = iterator.next()) {
if (obj->IsJSFunction()) {
JSFunction* function = JSFunction::cast(obj);
if (function->shared() == shared_info) {
visitor->visit(function);
}
}
}
}
// Finds all instances of JSFunction that refers to the provided shared_info
// and returns array with them.
static Handle<FixedArray> CollectJSFunctions(
Handle<SharedFunctionInfo> shared_info, Isolate* isolate) {
CountVisitor count_visitor;
count_visitor.count = 0;
IterateJSFunctions(*shared_info, &count_visitor);
int size = count_visitor.count;
Handle<FixedArray> result = isolate->factory()->NewFixedArray(size);
if (size > 0) {
CollectVisitor collect_visitor(result);
IterateJSFunctions(*shared_info, &collect_visitor);
}
return result;
}
class ClearValuesVisitor {
public:
void visit(JSFunction* fun) {
FixedArray* literals = fun->literals();
int len = literals->length();
for (int j = JSFunction::kLiteralsPrefixSize; j < len; j++) {
literals->set_undefined(j);
}
}
};
class CountVisitor {
public:
void visit(JSFunction* fun) {
count++;
}
int count;
};
class CollectVisitor {
public:
explicit CollectVisitor(Handle<FixedArray> output)
: m_output(output), m_pos(0) {}
void visit(JSFunction* fun) {
m_output->set(m_pos, fun);
m_pos++;
}
private:
Handle<FixedArray> m_output;
int m_pos;
};
};
// Check whether the code is natural function code (not a lazy-compile stub
// code).
static bool IsJSFunctionCode(Code* code) {
return code->kind() == Code::FUNCTION;
}
// Returns true if an instance of candidate were inlined into function's code.
static bool IsInlined(JSFunction* function, SharedFunctionInfo* candidate) {
DisallowHeapAllocation no_gc;
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION) return false;
DeoptimizationInputData* data =
DeoptimizationInputData::cast(function->code()->deoptimization_data());
if (data == function->GetIsolate()->heap()->empty_fixed_array()) {
return false;
}
FixedArray* literals = data->LiteralArray();
int inlined_count = data->InlinedFunctionCount()->value();
for (int i = 0; i < inlined_count; ++i) {
JSFunction* inlined = JSFunction::cast(literals->get(i));
if (inlined->shared() == candidate) return true;
}
return false;
}
// Marks code that shares the same shared function info or has inlined
// code that shares the same function info.
class DependentFunctionMarker: public OptimizedFunctionVisitor {
public:
SharedFunctionInfo* shared_info_;
bool found_;
explicit DependentFunctionMarker(SharedFunctionInfo* shared_info)
: shared_info_(shared_info), found_(false) { }
virtual void EnterContext(Context* context) { } // Don't care.
virtual void LeaveContext(Context* context) { } // Don't care.
virtual void VisitFunction(JSFunction* function) {
// It should be guaranteed by the iterator that everything is optimized.
ASSERT(function->code()->kind() == Code::OPTIMIZED_FUNCTION);
if (shared_info_ == function->shared() ||
IsInlined(function, shared_info_)) {
// Mark the code for deoptimization.
function->code()->set_marked_for_deoptimization(true);
found_ = true;
}
}
};
static void DeoptimizeDependentFunctions(SharedFunctionInfo* function_info) {
DisallowHeapAllocation no_allocation;
DependentFunctionMarker marker(function_info);
// TODO(titzer): need to traverse all optimized code to find OSR code here.
Deoptimizer::VisitAllOptimizedFunctions(function_info->GetIsolate(), &marker);
if (marker.found_) {
// Only go through with the deoptimization if something was found.
Deoptimizer::DeoptimizeMarkedCode(function_info->GetIsolate());
}
}
void LiveEdit::ReplaceFunctionCode(
Handle<JSArray> new_compile_info_array,
Handle<JSArray> shared_info_array) {
Isolate* isolate = new_compile_info_array->GetIsolate();
FunctionInfoWrapper compile_info_wrapper(new_compile_info_array);
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo();
isolate->heap()->EnsureHeapIsIterable();
if (IsJSFunctionCode(shared_info->code())) {
Handle<Code> code = compile_info_wrapper.GetFunctionCode();
ReplaceCodeObject(Handle<Code>(shared_info->code()), code);
Handle<Object> code_scope_info = compile_info_wrapper.GetCodeScopeInfo();
if (code_scope_info->IsFixedArray()) {
shared_info->set_scope_info(ScopeInfo::cast(*code_scope_info));
}
shared_info->DisableOptimization(kLiveEdit);
}
if (shared_info->debug_info()->IsDebugInfo()) {
Handle<DebugInfo> debug_info(DebugInfo::cast(shared_info->debug_info()));
Handle<Code> new_original_code =
isolate->factory()->CopyCode(compile_info_wrapper.GetFunctionCode());
debug_info->set_original_code(*new_original_code);
}
int start_position = compile_info_wrapper.GetStartPosition();
int end_position = compile_info_wrapper.GetEndPosition();
shared_info->set_start_position(start_position);
shared_info->set_end_position(end_position);
LiteralFixer::PatchLiterals(&compile_info_wrapper, shared_info, isolate);
shared_info->set_construct_stub(
isolate->builtins()->builtin(Builtins::kJSConstructStubGeneric));
DeoptimizeDependentFunctions(*shared_info);
isolate->compilation_cache()->Remove(shared_info);
}
void LiveEdit::FunctionSourceUpdated(Handle<JSArray> shared_info_array) {
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo();
DeoptimizeDependentFunctions(*shared_info);
shared_info_array->GetIsolate()->compilation_cache()->Remove(shared_info);
}
void LiveEdit::SetFunctionScript(Handle<JSValue> function_wrapper,
Handle<Object> script_handle) {
Handle<SharedFunctionInfo> shared_info =
UnwrapSharedFunctionInfoFromJSValue(function_wrapper);
CHECK(script_handle->IsScript() || script_handle->IsUndefined());
shared_info->set_script(*script_handle);
function_wrapper->GetIsolate()->compilation_cache()->Remove(shared_info);
}
// For a script text change (defined as position_change_array), translates
// position in unchanged text to position in changed text.
// Text change is a set of non-overlapping regions in text, that have changed
// their contents and length. It is specified as array of groups of 3 numbers:
// (change_begin, change_end, change_end_new_position).
// Each group describes a change in text; groups are sorted by change_begin.
// Only position in text beyond any changes may be successfully translated.
// If a positions is inside some region that changed, result is currently
// undefined.
static int TranslatePosition(int original_position,
Handle<JSArray> position_change_array) {
int position_diff = 0;
int array_len = GetArrayLength(position_change_array);
Isolate* isolate = position_change_array->GetIsolate();
// TODO(635): binary search may be used here
for (int i = 0; i < array_len; i += 3) {
HandleScope scope(isolate);
Handle<Object> element = Object::GetElementNoExceptionThrown(
isolate, position_change_array, i);
CHECK(element->IsSmi());
int chunk_start = Handle<Smi>::cast(element)->value();
if (original_position < chunk_start) {
break;
}
element = Object::GetElementNoExceptionThrown(
isolate, position_change_array, i + 1);
CHECK(element->IsSmi());
int chunk_end = Handle<Smi>::cast(element)->value();
// Position mustn't be inside a chunk.
ASSERT(original_position >= chunk_end);
element = Object::GetElementNoExceptionThrown(
isolate, position_change_array, i + 2);
CHECK(element->IsSmi());
int chunk_changed_end = Handle<Smi>::cast(element)->value();
position_diff = chunk_changed_end - chunk_end;
}
return original_position + position_diff;
}
// Auto-growing buffer for writing relocation info code section. This buffer
// is a simplified version of buffer from Assembler. Unlike Assembler, this
// class is platform-independent and it works without dealing with instructions.
// As specified by RelocInfo format, the buffer is filled in reversed order:
// from upper to lower addresses.
// It uses NewArray/DeleteArray for memory management.
class RelocInfoBuffer {
public:
RelocInfoBuffer(int buffer_initial_capicity, byte* pc) {
buffer_size_ = buffer_initial_capicity + kBufferGap;
buffer_ = NewArray<byte>(buffer_size_);
reloc_info_writer_.Reposition(buffer_ + buffer_size_, pc);
}
~RelocInfoBuffer() {
DeleteArray(buffer_);
}
// As specified by RelocInfo format, the buffer is filled in reversed order:
// from upper to lower addresses.
void Write(const RelocInfo* rinfo) {
if (buffer_ + kBufferGap >= reloc_info_writer_.pos()) {
Grow();
}
reloc_info_writer_.Write(rinfo);
}
Vector<byte> GetResult() {
// Return the bytes from pos up to end of buffer.
int result_size =
static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer_.pos());
return Vector<byte>(reloc_info_writer_.pos(), result_size);
}
private:
void Grow() {
// Compute new buffer size.
int new_buffer_size;
if (buffer_size_ < 2 * KB) {
new_buffer_size = 4 * KB;
} else {
new_buffer_size = 2 * buffer_size_;
}
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if (new_buffer_size > kMaximalBufferSize) {
V8::FatalProcessOutOfMemory("RelocInfoBuffer::GrowBuffer");
}
// Set up new buffer.
byte* new_buffer = NewArray<byte>(new_buffer_size);
// Copy the data.
int curently_used_size =
static_cast<int>(buffer_ + buffer_size_ - reloc_info_writer_.pos());
OS::MemMove(new_buffer + new_buffer_size - curently_used_size,
reloc_info_writer_.pos(), curently_used_size);
reloc_info_writer_.Reposition(
new_buffer + new_buffer_size - curently_used_size,
reloc_info_writer_.last_pc());
DeleteArray(buffer_);
buffer_ = new_buffer;
buffer_size_ = new_buffer_size;
}
RelocInfoWriter reloc_info_writer_;
byte* buffer_;
int buffer_size_;
static const int kBufferGap = RelocInfoWriter::kMaxSize;
static const int kMaximalBufferSize = 512*MB;
};
// Patch positions in code (changes relocation info section) and possibly
// returns new instance of code.
static Handle<Code> PatchPositionsInCode(
Handle<Code> code,
Handle<JSArray> position_change_array) {
Isolate* isolate = code->GetIsolate();
RelocInfoBuffer buffer_writer(code->relocation_size(),
code->instruction_start());
{
for (RelocIterator it(*code); !it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
if (RelocInfo::IsPosition(rinfo->rmode())) {
int position = static_cast<int>(rinfo->data());
int new_position = TranslatePosition(position,
position_change_array);
if (position != new_position) {
RelocInfo info_copy(rinfo->pc(), rinfo->rmode(), new_position, NULL);
buffer_writer.Write(&info_copy);
continue;
}
}
if (RelocInfo::IsRealRelocMode(rinfo->rmode())) {
buffer_writer.Write(it.rinfo());
}
}
}
Vector<byte> buffer = buffer_writer.GetResult();
if (buffer.length() == code->relocation_size()) {
// Simply patch relocation area of code.
OS::MemCopy(code->relocation_start(), buffer.start(), buffer.length());
return code;
} else {
// Relocation info section now has different size. We cannot simply
// rewrite it inside code object. Instead we have to create a new
// code object.
Handle<Code> result(isolate->factory()->CopyCode(code, buffer));
return result;
}
}
void LiveEdit::PatchFunctionPositions(Handle<JSArray> shared_info_array,
Handle<JSArray> position_change_array) {
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> info = shared_info_wrapper.GetInfo();
int old_function_start = info->start_position();
int new_function_start = TranslatePosition(old_function_start,
position_change_array);
int new_function_end = TranslatePosition(info->end_position(),
position_change_array);
int new_function_token_pos =
TranslatePosition(info->function_token_position(), position_change_array);
info->set_start_position(new_function_start);
info->set_end_position(new_function_end);
info->set_function_token_position(new_function_token_pos);
info->GetIsolate()->heap()->EnsureHeapIsIterable();
if (IsJSFunctionCode(info->code())) {
// Patch relocation info section of the code.
Handle<Code> patched_code = PatchPositionsInCode(Handle<Code>(info->code()),
position_change_array);
if (*patched_code != info->code()) {
// Replace all references to the code across the heap. In particular,
// some stubs may refer to this code and this code may be being executed
// on stack (it is safe to substitute the code object on stack, because
// we only change the structure of rinfo and leave instructions
// untouched).
ReplaceCodeObject(Handle<Code>(info->code()), patched_code);
}
}
}
static Handle<Script> CreateScriptCopy(Handle<Script> original) {
Isolate* isolate = original->GetIsolate();
Handle<String> original_source(String::cast(original->source()));
Handle<Script> copy = isolate->factory()->NewScript(original_source);
copy->set_name(original->name());
copy->set_line_offset(original->line_offset());
copy->set_column_offset(original->column_offset());
copy->set_type(original->type());
copy->set_context_data(original->context_data());
copy->set_eval_from_shared(original->eval_from_shared());
copy->set_eval_from_instructions_offset(
original->eval_from_instructions_offset());
// Copy all the flags, but clear compilation state.
copy->set_flags(original->flags());
copy->set_compilation_state(Script::COMPILATION_STATE_INITIAL);
return copy;
}
Handle<Object> LiveEdit::ChangeScriptSource(Handle<Script> original_script,
Handle<String> new_source,
Handle<Object> old_script_name) {
Isolate* isolate = original_script->GetIsolate();
Handle<Object> old_script_object;
if (old_script_name->IsString()) {
Handle<Script> old_script = CreateScriptCopy(original_script);
old_script->set_name(String::cast(*old_script_name));
old_script_object = old_script;
isolate->debugger()->OnAfterCompile(
old_script, Debugger::SEND_WHEN_DEBUGGING);
} else {
old_script_object = isolate->factory()->null_value();
}
original_script->set_source(*new_source);
// Drop line ends so that they will be recalculated.
original_script->set_line_ends(isolate->heap()->undefined_value());
return old_script_object;
}
void LiveEdit::ReplaceRefToNestedFunction(
Handle<JSValue> parent_function_wrapper,
Handle<JSValue> orig_function_wrapper,
Handle<JSValue> subst_function_wrapper) {
Handle<SharedFunctionInfo> parent_shared =
UnwrapSharedFunctionInfoFromJSValue(parent_function_wrapper);
Handle<SharedFunctionInfo> orig_shared =
UnwrapSharedFunctionInfoFromJSValue(orig_function_wrapper);
Handle<SharedFunctionInfo> subst_shared =
UnwrapSharedFunctionInfoFromJSValue(subst_function_wrapper);
for (RelocIterator it(parent_shared->code()); !it.done(); it.next()) {
if (it.rinfo()->rmode() == RelocInfo::EMBEDDED_OBJECT) {
if (it.rinfo()->target_object() == *orig_shared) {
it.rinfo()->set_target_object(*subst_shared);
}
}
}
}
// Check an activation against list of functions. If there is a function
// that matches, its status in result array is changed to status argument value.
static bool CheckActivation(Handle<JSArray> shared_info_array,
Handle<JSArray> result,
StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
if (!frame->is_java_script()) return false;
Handle<JSFunction> function(JavaScriptFrame::cast(frame)->function());
Isolate* isolate = shared_info_array->GetIsolate();
int len = GetArrayLength(shared_info_array);
for (int i = 0; i < len; i++) {
HandleScope scope(isolate);
Handle<Object> element =
Object::GetElementNoExceptionThrown(isolate, shared_info_array, i);
Handle<JSValue> jsvalue = Handle<JSValue>::cast(element);
Handle<SharedFunctionInfo> shared =
UnwrapSharedFunctionInfoFromJSValue(jsvalue);
if (function->shared() == *shared || IsInlined(*function, *shared)) {
SetElementSloppy(result, i, Handle<Smi>(Smi::FromInt(status), isolate));
return true;
}
}
return false;
}
// Iterates over handler chain and removes all elements that are inside
// frames being dropped.
static bool FixTryCatchHandler(StackFrame* top_frame,
StackFrame* bottom_frame) {
Address* pointer_address =
&Memory::Address_at(top_frame->isolate()->get_address_from_id(
Isolate::kHandlerAddress));
while (*pointer_address < top_frame->sp()) {
pointer_address = &Memory::Address_at(*pointer_address);
}
Address* above_frame_address = pointer_address;
while (*pointer_address < bottom_frame->fp()) {
pointer_address = &Memory::Address_at(*pointer_address);
}
bool change = *above_frame_address != *pointer_address;
*above_frame_address = *pointer_address;
return change;
}
// Removes specified range of frames from stack. There may be 1 or more
// frames in range. Anyway the bottom frame is restarted rather than dropped,
// and therefore has to be a JavaScript frame.
// Returns error message or NULL.
static const char* DropFrames(Vector<StackFrame*> frames,
int top_frame_index,
int bottom_js_frame_index,
Debug::FrameDropMode* mode,
Object*** restarter_frame_function_pointer) {
if (!Debug::kFrameDropperSupported) {
return "Stack manipulations are not supported in this architecture.";
}
StackFrame* pre_top_frame = frames[top_frame_index - 1];
StackFrame* top_frame = frames[top_frame_index];
StackFrame* bottom_js_frame = frames[bottom_js_frame_index];
ASSERT(bottom_js_frame->is_java_script());
// Check the nature of the top frame.
Isolate* isolate = bottom_js_frame->isolate();
Code* pre_top_frame_code = pre_top_frame->LookupCode();
bool frame_has_padding;
if (pre_top_frame_code->is_inline_cache_stub() &&
pre_top_frame_code->is_debug_stub()) {
// OK, we can drop inline cache calls.
*mode = Debug::FRAME_DROPPED_IN_IC_CALL;
frame_has_padding = Debug::FramePaddingLayout::kIsSupported;
} else if (pre_top_frame_code ==
isolate->debug()->debug_break_slot()) {
// OK, we can drop debug break slot.
*mode = Debug::FRAME_DROPPED_IN_DEBUG_SLOT_CALL;
frame_has_padding = Debug::FramePaddingLayout::kIsSupported;
} else if (pre_top_frame_code ==
isolate->builtins()->builtin(
Builtins::kFrameDropper_LiveEdit)) {
// OK, we can drop our own code.
pre_top_frame = frames[top_frame_index - 2];
top_frame = frames[top_frame_index - 1];
*mode = Debug::CURRENTLY_SET_MODE;
frame_has_padding = false;
} else if (pre_top_frame_code ==
isolate->builtins()->builtin(Builtins::kReturn_DebugBreak)) {
*mode = Debug::FRAME_DROPPED_IN_RETURN_CALL;
frame_has_padding = Debug::FramePaddingLayout::kIsSupported;
} else if (pre_top_frame_code->kind() == Code::STUB &&
pre_top_frame_code->major_key() == CodeStub::CEntry) {
// Entry from our unit tests on 'debugger' statement.
// It's fine, we support this case.
*mode = Debug::FRAME_DROPPED_IN_DIRECT_CALL;
// We don't have a padding from 'debugger' statement call.
// Here the stub is CEntry, it's not debug-only and can't be padded.
// If anyone would complain, a proxy padded stub could be added.
frame_has_padding = false;
} else if (pre_top_frame->type() == StackFrame::ARGUMENTS_ADAPTOR) {
// This must be adaptor that remain from the frame dropping that
// is still on stack. A frame dropper frame must be above it.
ASSERT(frames[top_frame_index - 2]->LookupCode() ==
isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit));
pre_top_frame = frames[top_frame_index - 3];
top_frame = frames[top_frame_index - 2];
*mode = Debug::CURRENTLY_SET_MODE;
frame_has_padding = false;
} else {
return "Unknown structure of stack above changing function";
}
Address unused_stack_top = top_frame->sp();
Address unused_stack_bottom = bottom_js_frame->fp()
- Debug::kFrameDropperFrameSize * kPointerSize // Size of the new frame.
+ kPointerSize; // Bigger address end is exclusive.
Address* top_frame_pc_address = top_frame->pc_address();
// top_frame may be damaged below this point. Do not used it.
ASSERT(!(top_frame = NULL));
if (unused_stack_top > unused_stack_bottom) {
if (frame_has_padding) {
int shortage_bytes =
static_cast<int>(unused_stack_top - unused_stack_bottom);
Address padding_start = pre_top_frame->fp() -
Debug::FramePaddingLayout::kFrameBaseSize * kPointerSize;
Address padding_pointer = padding_start;
Smi* padding_object =
Smi::FromInt(Debug::FramePaddingLayout::kPaddingValue);
while (Memory::Object_at(padding_pointer) == padding_object) {
padding_pointer -= kPointerSize;
}
int padding_counter =
Smi::cast(Memory::Object_at(padding_pointer))->value();
if (padding_counter * kPointerSize < shortage_bytes) {
return "Not enough space for frame dropper frame "
"(even with padding frame)";
}
Memory::Object_at(padding_pointer) =
Smi::FromInt(padding_counter - shortage_bytes / kPointerSize);
StackFrame* pre_pre_frame = frames[top_frame_index - 2];
OS::MemMove(padding_start + kPointerSize - shortage_bytes,
padding_start + kPointerSize,
Debug::FramePaddingLayout::kFrameBaseSize * kPointerSize);
pre_top_frame->UpdateFp(pre_top_frame->fp() - shortage_bytes);
pre_pre_frame->SetCallerFp(pre_top_frame->fp());
unused_stack_top -= shortage_bytes;
STATIC_ASSERT(sizeof(Address) == kPointerSize);
top_frame_pc_address -= shortage_bytes / kPointerSize;
} else {
return "Not enough space for frame dropper frame";
}
}
// Committing now. After this point we should return only NULL value.
FixTryCatchHandler(pre_top_frame, bottom_js_frame);
// Make sure FixTryCatchHandler is idempotent.
ASSERT(!FixTryCatchHandler(pre_top_frame, bottom_js_frame));
Handle<Code> code = isolate->builtins()->FrameDropper_LiveEdit();
*top_frame_pc_address = code->entry();
pre_top_frame->SetCallerFp(bottom_js_frame->fp());
*restarter_frame_function_pointer =
Debug::SetUpFrameDropperFrame(bottom_js_frame, code);
ASSERT((**restarter_frame_function_pointer)->IsJSFunction());
for (Address a = unused_stack_top;
a < unused_stack_bottom;
a += kPointerSize) {
Memory::Object_at(a) = Smi::FromInt(0);
}
return NULL;
}
static bool IsDropableFrame(StackFrame* frame) {
return !frame->is_exit();
}
// Describes a set of call frames that execute any of listed functions.
// Finding no such frames does not mean error.
class MultipleFunctionTarget {
public:
MultipleFunctionTarget(Handle<JSArray> shared_info_array,
Handle<JSArray> result)
: m_shared_info_array(shared_info_array),
m_result(result) {}
bool MatchActivation(StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
return CheckActivation(m_shared_info_array, m_result, frame, status);
}
const char* GetNotFoundMessage() {
return NULL;
}
private:
Handle<JSArray> m_shared_info_array;
Handle<JSArray> m_result;
};
// Drops all call frame matched by target and all frames above them.
template<typename TARGET>
static const char* DropActivationsInActiveThreadImpl(
Isolate* isolate, TARGET& target, bool do_drop) {
Debug* debug = isolate->debug();
Zone zone(isolate);
Vector<StackFrame*> frames = CreateStackMap(isolate, &zone);
int top_frame_index = -1;
int frame_index = 0;
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (frame->id() == debug->break_frame_id()) {
top_frame_index = frame_index;
break;
}
if (target.MatchActivation(
frame, LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE)) {
// We are still above break_frame. It is not a target frame,
// it is a problem.
return "Debugger mark-up on stack is not found";
}
}
if (top_frame_index == -1) {
// We haven't found break frame, but no function is blocking us anyway.
return target.GetNotFoundMessage();
}
bool target_frame_found = false;
int bottom_js_frame_index = top_frame_index;
bool c_code_found = false;
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (!IsDropableFrame(frame)) {
c_code_found = true;
break;
}
if (target.MatchActivation(
frame, LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) {
target_frame_found = true;
bottom_js_frame_index = frame_index;
}
}
if (c_code_found) {
// There is a C frames on stack. Check that there are no target frames
// below them.
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (frame->is_java_script()) {
if (target.MatchActivation(
frame, LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE)) {
// Cannot drop frame under C frames.
return NULL;
}
}
}
}
if (!do_drop) {
// We are in check-only mode.
return NULL;
}
if (!target_frame_found) {
// Nothing to drop.
return target.GetNotFoundMessage();
}
Debug::FrameDropMode drop_mode = Debug::FRAMES_UNTOUCHED;
Object** restarter_frame_function_pointer = NULL;
const char* error_message = DropFrames(frames, top_frame_index,
bottom_js_frame_index, &drop_mode,
&restarter_frame_function_pointer);
if (error_message != NULL) {
return error_message;
}
// Adjust break_frame after some frames has been dropped.
StackFrame::Id new_id = StackFrame::NO_ID;
for (int i = bottom_js_frame_index + 1; i < frames.length(); i++) {
if (frames[i]->type() == StackFrame::JAVA_SCRIPT) {
new_id = frames[i]->id();
break;
}
}
debug->FramesHaveBeenDropped(new_id, drop_mode,
restarter_frame_function_pointer);
return NULL;
}
// Fills result array with statuses of functions. Modifies the stack
// removing all listed function if possible and if do_drop is true.
static const char* DropActivationsInActiveThread(
Handle<JSArray> shared_info_array, Handle<JSArray> result, bool do_drop) {
MultipleFunctionTarget target(shared_info_array, result);
const char* message = DropActivationsInActiveThreadImpl(
shared_info_array->GetIsolate(), target, do_drop);
if (message) {
return message;
}
Isolate* isolate = shared_info_array->GetIsolate();
int array_len = GetArrayLength(shared_info_array);
// Replace "blocked on active" with "replaced on active" status.
for (int i = 0; i < array_len; i++) {
Handle<Object> obj =
Object::GetElementNoExceptionThrown(isolate, result, i);
if (*obj == Smi::FromInt(LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) {
Handle<Object> replaced(
Smi::FromInt(LiveEdit::FUNCTION_REPLACED_ON_ACTIVE_STACK), isolate);
SetElementSloppy(result, i, replaced);
}
}
return NULL;
}
class InactiveThreadActivationsChecker : public ThreadVisitor {
public:
InactiveThreadActivationsChecker(Handle<JSArray> shared_info_array,
Handle<JSArray> result)
: shared_info_array_(shared_info_array), result_(result),
has_blocked_functions_(false) {
}
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
has_blocked_functions_ |= CheckActivation(
shared_info_array_, result_, it.frame(),
LiveEdit::FUNCTION_BLOCKED_ON_OTHER_STACK);
}
}
bool HasBlockedFunctions() {
return has_blocked_functions_;
}
private:
Handle<JSArray> shared_info_array_;
Handle<JSArray> result_;
bool has_blocked_functions_;
};
Handle<JSArray> LiveEdit::CheckAndDropActivations(
Handle<JSArray> shared_info_array, bool do_drop) {
Isolate* isolate = shared_info_array->GetIsolate();
int len = GetArrayLength(shared_info_array);
Handle<JSArray> result = isolate->factory()->NewJSArray(len);
// Fill the default values.
for (int i = 0; i < len; i++) {
SetElementSloppy(
result,
i,
Handle<Smi>(Smi::FromInt(FUNCTION_AVAILABLE_FOR_PATCH), isolate));
}
// First check inactive threads. Fail if some functions are blocked there.
InactiveThreadActivationsChecker inactive_threads_checker(shared_info_array,
result);
isolate->thread_manager()->IterateArchivedThreads(
&inactive_threads_checker);
if (inactive_threads_checker.HasBlockedFunctions()) {
return result;
}
// Try to drop activations from the current stack.
const char* error_message =
DropActivationsInActiveThread(shared_info_array, result, do_drop);
if (error_message != NULL) {
// Add error message as an array extra element.
Handle<String> str = isolate->factory()->NewStringFromAscii(
CStrVector(error_message));
SetElementSloppy(result, len, str);
}
return result;
}
// Describes a single callframe a target. Not finding this frame
// means an error.
class SingleFrameTarget {
public:
explicit SingleFrameTarget(JavaScriptFrame* frame)
: m_frame(frame),
m_saved_status(LiveEdit::FUNCTION_AVAILABLE_FOR_PATCH) {}
bool MatchActivation(StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
if (frame->fp() == m_frame->fp()) {
m_saved_status = status;
return true;
}
return false;
}
const char* GetNotFoundMessage() {
return "Failed to found requested frame";
}
LiveEdit::FunctionPatchabilityStatus saved_status() {
return m_saved_status;
}
private:
JavaScriptFrame* m_frame;
LiveEdit::FunctionPatchabilityStatus m_saved_status;
};
// Finds a drops required frame and all frames above.
// Returns error message or NULL.
const char* LiveEdit::RestartFrame(JavaScriptFrame* frame) {
SingleFrameTarget target(frame);
const char* result = DropActivationsInActiveThreadImpl(
frame->isolate(), target, true);
if (result != NULL) {
return result;
}
if (target.saved_status() == LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE) {
return "Function is blocked under native code";
}
return NULL;
}
LiveEditFunctionTracker::LiveEditFunctionTracker(Isolate* isolate,
FunctionLiteral* fun)
: isolate_(isolate) {
if (isolate_->active_function_info_listener() != NULL) {
isolate_->active_function_info_listener()->FunctionStarted(fun);
}
}
LiveEditFunctionTracker::~LiveEditFunctionTracker() {
if (isolate_->active_function_info_listener() != NULL) {
isolate_->active_function_info_listener()->FunctionDone();
}
}
void LiveEditFunctionTracker::RecordFunctionInfo(
Handle<SharedFunctionInfo> info, FunctionLiteral* lit,
Zone* zone) {
if (isolate_->active_function_info_listener() != NULL) {
isolate_->active_function_info_listener()->FunctionInfo(info, lit->scope(),
zone);
}
}
void LiveEditFunctionTracker::RecordRootFunctionInfo(Handle<Code> code) {
isolate_->active_function_info_listener()->FunctionCode(code);
}
bool LiveEditFunctionTracker::IsActive(Isolate* isolate) {
return isolate->active_function_info_listener() != NULL;
}
#else // ENABLE_DEBUGGER_SUPPORT
// This ifdef-else-endif section provides working or stub implementation of
// LiveEditFunctionTracker.
LiveEditFunctionTracker::LiveEditFunctionTracker(Isolate* isolate,
FunctionLiteral* fun) {
}
LiveEditFunctionTracker::~LiveEditFunctionTracker() {
}
void LiveEditFunctionTracker::RecordFunctionInfo(
Handle<SharedFunctionInfo> info, FunctionLiteral* lit,
Zone* zone) {
}
void LiveEditFunctionTracker::RecordRootFunctionInfo(Handle<Code> code) {
}
bool LiveEditFunctionTracker::IsActive(Isolate* isolate) {
return false;
}
#endif // ENABLE_DEBUGGER_SUPPORT
} } // namespace v8::internal