v8/src/compiler/wasm-compiler.cc

2030 lines
67 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/wasm-compiler.h"
#include "src/isolate-inl.h"
#include "src/base/platform/platform.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/change-lowering.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/diamond.h"
#include "src/compiler/graph.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/js-generic-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/simplified-lowering.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/source-position.h"
#include "src/compiler/typer.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
// TODO(titzer): pull WASM_64 up to a common header.
#if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64
#define WASM_64 1
#else
#define WASM_64 0
#endif
namespace v8 {
namespace internal {
namespace compiler {
namespace {
const Operator* UnsupportedOpcode(wasm::WasmOpcode opcode) {
if (wasm::WasmOpcodes::IsSupported(opcode)) {
V8_Fatal(__FILE__, __LINE__,
"Unsupported opcode #%d:%s reported as supported", opcode,
wasm::WasmOpcodes::OpcodeName(opcode));
}
V8_Fatal(__FILE__, __LINE__, "Unsupported opcode #%d:%s", opcode,
wasm::WasmOpcodes::OpcodeName(opcode));
return nullptr;
}
void MergeControlToEnd(JSGraph* jsgraph, Node* node) {
Graph* g = jsgraph->graph();
if (g->end()) {
NodeProperties::MergeControlToEnd(g, jsgraph->common(), node);
} else {
g->SetEnd(g->NewNode(jsgraph->common()->End(1), node));
}
}
enum TrapReason {
kTrapUnreachable,
kTrapMemOutOfBounds,
kTrapDivByZero,
kTrapDivUnrepresentable,
kTrapRemByZero,
kTrapFloatUnrepresentable,
kTrapFuncInvalid,
kTrapFuncSigMismatch,
kTrapCount
};
static const char* kTrapMessages[] = {
"unreachable", "memory access out of bounds",
"divide by zero", "divide result unrepresentable",
"remainder by zero", "integer result unrepresentable",
"invalid function", "function signature mismatch"};
} // namespace
// A helper that handles building graph fragments for trapping.
// To avoid generating a ton of redundant code that just calls the runtime
// to trap, we generate a per-trap-reason block of code that all trap sites
// in this function will branch to.
class WasmTrapHelper : public ZoneObject {
public:
explicit WasmTrapHelper(WasmGraphBuilder* builder)
: builder_(builder),
jsgraph_(builder->jsgraph()),
graph_(builder->jsgraph() ? builder->jsgraph()->graph() : nullptr) {
for (int i = 0; i < kTrapCount; i++) traps_[i] = nullptr;
}
// Make the current control path trap to unreachable.
void Unreachable() { ConnectTrap(kTrapUnreachable); }
// Add a check that traps if {node} is equal to {val}.
Node* TrapIfEq32(TrapReason reason, Node* node, int32_t val) {
Int32Matcher m(node);
if (m.HasValue() && !m.Is(val)) return graph()->start();
if (val == 0) {
AddTrapIfFalse(reason, node);
} else {
AddTrapIfTrue(reason,
graph()->NewNode(jsgraph()->machine()->Word32Equal(), node,
jsgraph()->Int32Constant(val)));
}
return builder_->Control();
}
// Add a check that traps if {node} is zero.
Node* ZeroCheck32(TrapReason reason, Node* node) {
return TrapIfEq32(reason, node, 0);
}
// Add a check that traps if {node} is equal to {val}.
Node* TrapIfEq64(TrapReason reason, Node* node, int64_t val) {
Int64Matcher m(node);
if (m.HasValue() && !m.Is(val)) return graph()->start();
AddTrapIfTrue(reason,
graph()->NewNode(jsgraph()->machine()->Word64Equal(), node,
jsgraph()->Int64Constant(val)));
return builder_->Control();
}
// Add a check that traps if {node} is zero.
Node* ZeroCheck64(TrapReason reason, Node* node) {
return TrapIfEq64(reason, node, 0);
}
// Add a trap if {cond} is true.
void AddTrapIfTrue(TrapReason reason, Node* cond) {
AddTrapIf(reason, cond, true);
}
// Add a trap if {cond} is false.
void AddTrapIfFalse(TrapReason reason, Node* cond) {
AddTrapIf(reason, cond, false);
}
// Add a trap if {cond} is true or false according to {iftrue}.
void AddTrapIf(TrapReason reason, Node* cond, bool iftrue) {
Node** effect_ptr = builder_->effect_;
Node** control_ptr = builder_->control_;
Node* before = *effect_ptr;
BranchHint hint = iftrue ? BranchHint::kFalse : BranchHint::kTrue;
Node* branch = graph()->NewNode(common()->Branch(hint), cond, *control_ptr);
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
*control_ptr = iftrue ? if_true : if_false;
ConnectTrap(reason);
*control_ptr = iftrue ? if_false : if_true;
*effect_ptr = before;
}
private:
WasmGraphBuilder* builder_;
JSGraph* jsgraph_;
Graph* graph_;
Node* traps_[kTrapCount];
Node* effects_[kTrapCount];
JSGraph* jsgraph() { return jsgraph_; }
Graph* graph() { return jsgraph_->graph(); }
CommonOperatorBuilder* common() { return jsgraph()->common(); }
void ConnectTrap(TrapReason reason) {
if (traps_[reason] == nullptr) {
// Create trap code for the first time this trap is used.
return BuildTrapCode(reason);
}
// Connect the current control and effect to the existing trap code.
builder_->AppendToMerge(traps_[reason], builder_->Control());
builder_->AppendToPhi(traps_[reason], effects_[reason], builder_->Effect());
}
void BuildTrapCode(TrapReason reason) {
Node* exception = builder_->String(kTrapMessages[reason]);
Node* end;
Node** control_ptr = builder_->control_;
Node** effect_ptr = builder_->effect_;
wasm::ModuleEnv* module = builder_->module_;
*control_ptr = traps_[reason] =
graph()->NewNode(common()->Merge(1), *control_ptr);
*effect_ptr = effects_[reason] =
graph()->NewNode(common()->EffectPhi(1), *effect_ptr, *control_ptr);
if (module && !module->context.is_null()) {
// Use the module context to call the runtime to throw an exception.
Runtime::FunctionId f = Runtime::kThrow;
const Runtime::Function* fun = Runtime::FunctionForId(f);
CallDescriptor* desc = Linkage::GetRuntimeCallDescriptor(
jsgraph()->zone(), f, fun->nargs, Operator::kNoProperties,
CallDescriptor::kNoFlags);
Node* inputs[] = {
jsgraph()->CEntryStubConstant(fun->result_size), // C entry
exception, // exception
jsgraph()->ExternalConstant(
ExternalReference(f, jsgraph()->isolate())), // ref
jsgraph()->Int32Constant(fun->nargs), // arity
jsgraph()->Constant(module->context), // context
*effect_ptr,
*control_ptr};
Node* node = graph()->NewNode(
common()->Call(desc), static_cast<int>(arraysize(inputs)), inputs);
*control_ptr = node;
*effect_ptr = node;
}
if (false) {
// End the control flow with a throw
Node* thrw =
graph()->NewNode(common()->Throw(), jsgraph()->ZeroConstant(),
*effect_ptr, *control_ptr);
end = thrw;
} else {
// End the control flow with returning 0xdeadbeef
Node* ret_value;
if (builder_->GetFunctionSignature()->return_count() > 0) {
switch (builder_->GetFunctionSignature()->GetReturn()) {
case wasm::kAstI32:
ret_value = jsgraph()->Int32Constant(0xdeadbeef);
break;
case wasm::kAstI64:
ret_value = jsgraph()->Int64Constant(0xdeadbeefdeadbeef);
break;
case wasm::kAstF32:
ret_value = jsgraph()->Float32Constant(bit_cast<float>(0xdeadbeef));
break;
case wasm::kAstF64:
ret_value = jsgraph()->Float64Constant(
bit_cast<double>(0xdeadbeefdeadbeef));
break;
default:
UNREACHABLE();
ret_value = nullptr;
}
} else {
ret_value = jsgraph()->Int32Constant(0xdeadbeef);
}
end = graph()->NewNode(jsgraph()->common()->Return(), ret_value,
*effect_ptr, *control_ptr);
}
MergeControlToEnd(jsgraph(), end);
}
};
WasmGraphBuilder::WasmGraphBuilder(Zone* zone, JSGraph* jsgraph,
wasm::FunctionSig* function_signature)
: zone_(zone),
jsgraph_(jsgraph),
module_(nullptr),
mem_buffer_(nullptr),
mem_size_(nullptr),
function_table_(nullptr),
control_(nullptr),
effect_(nullptr),
cur_buffer_(def_buffer_),
cur_bufsize_(kDefaultBufferSize),
trap_(new (zone) WasmTrapHelper(this)),
function_signature_(function_signature) {
DCHECK_NOT_NULL(jsgraph_);
}
Node* WasmGraphBuilder::Error() { return jsgraph()->Dead(); }
Node* WasmGraphBuilder::Start(unsigned params) {
Node* start = graph()->NewNode(jsgraph()->common()->Start(params));
graph()->SetStart(start);
return start;
}
Node* WasmGraphBuilder::Param(unsigned index, wasm::LocalType type) {
return graph()->NewNode(jsgraph()->common()->Parameter(index),
graph()->start());
}
Node* WasmGraphBuilder::Loop(Node* entry) {
return graph()->NewNode(jsgraph()->common()->Loop(1), entry);
}
Node* WasmGraphBuilder::Terminate(Node* effect, Node* control) {
Node* terminate =
graph()->NewNode(jsgraph()->common()->Terminate(), effect, control);
MergeControlToEnd(jsgraph(), terminate);
return terminate;
}
unsigned WasmGraphBuilder::InputCount(Node* node) {
return static_cast<unsigned>(node->InputCount());
}
bool WasmGraphBuilder::IsPhiWithMerge(Node* phi, Node* merge) {
return phi && IrOpcode::IsPhiOpcode(phi->opcode()) &&
NodeProperties::GetControlInput(phi) == merge;
}
void WasmGraphBuilder::AppendToMerge(Node* merge, Node* from) {
DCHECK(IrOpcode::IsMergeOpcode(merge->opcode()));
merge->AppendInput(jsgraph()->zone(), from);
int new_size = merge->InputCount();
NodeProperties::ChangeOp(
merge, jsgraph()->common()->ResizeMergeOrPhi(merge->op(), new_size));
}
void WasmGraphBuilder::AppendToPhi(Node* merge, Node* phi, Node* from) {
DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
DCHECK(IrOpcode::IsMergeOpcode(merge->opcode()));
int new_size = phi->InputCount();
phi->InsertInput(jsgraph()->zone(), phi->InputCount() - 1, from);
NodeProperties::ChangeOp(
phi, jsgraph()->common()->ResizeMergeOrPhi(phi->op(), new_size));
}
Node* WasmGraphBuilder::Merge(unsigned count, Node** controls) {
return graph()->NewNode(jsgraph()->common()->Merge(count), count, controls);
}
Node* WasmGraphBuilder::Phi(wasm::LocalType type, unsigned count, Node** vals,
Node* control) {
DCHECK(IrOpcode::IsMergeOpcode(control->opcode()));
Node** buf = Realloc(vals, count);
buf = Realloc(buf, count + 1);
buf[count] = control;
return graph()->NewNode(jsgraph()->common()->Phi(type, count), count + 1,
buf);
}
Node* WasmGraphBuilder::EffectPhi(unsigned count, Node** effects,
Node* control) {
DCHECK(IrOpcode::IsMergeOpcode(control->opcode()));
Node** buf = Realloc(effects, count);
buf = Realloc(buf, count + 1);
buf[count] = control;
return graph()->NewNode(jsgraph()->common()->EffectPhi(count), count + 1,
buf);
}
Node* WasmGraphBuilder::Int32Constant(int32_t value) {
return jsgraph()->Int32Constant(value);
}
Node* WasmGraphBuilder::Int64Constant(int64_t value) {
return jsgraph()->Int64Constant(value);
}
Node* WasmGraphBuilder::Binop(wasm::WasmOpcode opcode, Node* left,
Node* right) {
const Operator* op;
MachineOperatorBuilder* m = jsgraph()->machine();
switch (opcode) {
case wasm::kExprI32Add:
op = m->Int32Add();
break;
case wasm::kExprI32Sub:
op = m->Int32Sub();
break;
case wasm::kExprI32Mul:
op = m->Int32Mul();
break;
case wasm::kExprI32DivS: {
trap_->ZeroCheck32(kTrapDivByZero, right);
Node* before = *control_;
Node* denom_is_m1;
Node* denom_is_not_m1;
Branch(graph()->NewNode(jsgraph()->machine()->Word32Equal(), right,
jsgraph()->Int32Constant(-1)),
&denom_is_m1, &denom_is_not_m1);
*control_ = denom_is_m1;
trap_->TrapIfEq32(kTrapDivUnrepresentable, left, kMinInt);
if (*control_ != denom_is_m1) {
*control_ = graph()->NewNode(jsgraph()->common()->Merge(2),
denom_is_not_m1, *control_);
} else {
*control_ = before;
}
return graph()->NewNode(m->Int32Div(), left, right, *control_);
}
case wasm::kExprI32DivU:
op = m->Uint32Div();
return graph()->NewNode(op, left, right,
trap_->ZeroCheck32(kTrapDivByZero, right));
case wasm::kExprI32RemS: {
trap_->ZeroCheck32(kTrapRemByZero, right);
Diamond d(graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Word32Equal(), right,
jsgraph()->Int32Constant(-1)));
Node* rem = graph()->NewNode(m->Int32Mod(), left, right, d.if_false);
return d.Phi(MachineRepresentation::kWord32, jsgraph()->Int32Constant(0),
rem);
}
case wasm::kExprI32RemU:
op = m->Uint32Mod();
return graph()->NewNode(op, left, right,
trap_->ZeroCheck32(kTrapRemByZero, right));
case wasm::kExprI32And:
op = m->Word32And();
break;
case wasm::kExprI32Ior:
op = m->Word32Or();
break;
case wasm::kExprI32Xor:
op = m->Word32Xor();
break;
case wasm::kExprI32Shl:
op = m->Word32Shl();
break;
case wasm::kExprI32ShrU:
op = m->Word32Shr();
break;
case wasm::kExprI32ShrS:
op = m->Word32Sar();
break;
case wasm::kExprI32Eq:
op = m->Word32Equal();
break;
case wasm::kExprI32Ne:
return Invert(Binop(wasm::kExprI32Eq, left, right));
case wasm::kExprI32LtS:
op = m->Int32LessThan();
break;
case wasm::kExprI32LeS:
op = m->Int32LessThanOrEqual();
break;
case wasm::kExprI32LtU:
op = m->Uint32LessThan();
break;
case wasm::kExprI32LeU:
op = m->Uint32LessThanOrEqual();
break;
case wasm::kExprI32GtS:
op = m->Int32LessThan();
std::swap(left, right);
break;
case wasm::kExprI32GeS:
op = m->Int32LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI32GtU:
op = m->Uint32LessThan();
std::swap(left, right);
break;
case wasm::kExprI32GeU:
op = m->Uint32LessThanOrEqual();
std::swap(left, right);
break;
#if WASM_64
// Opcodes only supported on 64-bit platforms.
// TODO(titzer): query the machine operator builder here instead of #ifdef.
case wasm::kExprI64Add:
op = m->Int64Add();
break;
case wasm::kExprI64Sub:
op = m->Int64Sub();
break;
case wasm::kExprI64Mul:
op = m->Int64Mul();
break;
case wasm::kExprI64DivS: {
trap_->ZeroCheck64(kTrapDivByZero, right);
Node* before = *control_;
Node* denom_is_m1;
Node* denom_is_not_m1;
Branch(graph()->NewNode(jsgraph()->machine()->Word64Equal(), right,
jsgraph()->Int64Constant(-1)),
&denom_is_m1, &denom_is_not_m1);
*control_ = denom_is_m1;
trap_->TrapIfEq64(kTrapDivUnrepresentable, left,
std::numeric_limits<int64_t>::min());
if (*control_ != denom_is_m1) {
*control_ = graph()->NewNode(jsgraph()->common()->Merge(2),
denom_is_not_m1, *control_);
} else {
*control_ = before;
}
return graph()->NewNode(m->Int64Div(), left, right, *control_);
}
case wasm::kExprI64DivU:
op = m->Uint64Div();
return graph()->NewNode(op, left, right,
trap_->ZeroCheck64(kTrapDivByZero, right));
case wasm::kExprI64RemS: {
trap_->ZeroCheck64(kTrapRemByZero, right);
Diamond d(jsgraph()->graph(), jsgraph()->common(),
graph()->NewNode(jsgraph()->machine()->Word64Equal(), right,
jsgraph()->Int64Constant(-1)));
Node* rem = graph()->NewNode(m->Int64Mod(), left, right, d.if_false);
return d.Phi(MachineRepresentation::kWord64, jsgraph()->Int64Constant(0),
rem);
}
case wasm::kExprI64RemU:
op = m->Uint64Mod();
return graph()->NewNode(op, left, right,
trap_->ZeroCheck64(kTrapRemByZero, right));
case wasm::kExprI64And:
op = m->Word64And();
break;
case wasm::kExprI64Ior:
op = m->Word64Or();
break;
case wasm::kExprI64Xor:
op = m->Word64Xor();
break;
case wasm::kExprI64Shl:
op = m->Word64Shl();
break;
case wasm::kExprI64ShrU:
op = m->Word64Shr();
break;
case wasm::kExprI64ShrS:
op = m->Word64Sar();
break;
case wasm::kExprI64Eq:
op = m->Word64Equal();
break;
case wasm::kExprI64Ne:
return Invert(Binop(wasm::kExprI64Eq, left, right));
case wasm::kExprI64LtS:
op = m->Int64LessThan();
break;
case wasm::kExprI64LeS:
op = m->Int64LessThanOrEqual();
break;
case wasm::kExprI64LtU:
op = m->Uint64LessThan();
break;
case wasm::kExprI64LeU:
op = m->Uint64LessThanOrEqual();
break;
case wasm::kExprI64GtS:
op = m->Int64LessThan();
std::swap(left, right);
break;
case wasm::kExprI64GeS:
op = m->Int64LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprI64GtU:
op = m->Uint64LessThan();
std::swap(left, right);
break;
case wasm::kExprI64GeU:
op = m->Uint64LessThanOrEqual();
std::swap(left, right);
break;
#endif
case wasm::kExprF32CopySign:
return BuildF32CopySign(left, right);
case wasm::kExprF64CopySign:
return BuildF64CopySign(left, right);
case wasm::kExprF32Add:
op = m->Float32Add();
break;
case wasm::kExprF32Sub:
op = m->Float32Sub();
break;
case wasm::kExprF32Mul:
op = m->Float32Mul();
break;
case wasm::kExprF32Div:
op = m->Float32Div();
break;
case wasm::kExprF32Eq:
op = m->Float32Equal();
break;
case wasm::kExprF32Ne:
return Invert(Binop(wasm::kExprF32Eq, left, right));
case wasm::kExprF32Lt:
op = m->Float32LessThan();
break;
case wasm::kExprF32Ge:
op = m->Float32LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprF32Gt:
op = m->Float32LessThan();
std::swap(left, right);
break;
case wasm::kExprF32Le:
op = m->Float32LessThanOrEqual();
break;
case wasm::kExprF64Add:
op = m->Float64Add();
break;
case wasm::kExprF64Sub:
op = m->Float64Sub();
break;
case wasm::kExprF64Mul:
op = m->Float64Mul();
break;
case wasm::kExprF64Div:
op = m->Float64Div();
break;
case wasm::kExprF64Eq:
op = m->Float64Equal();
break;
case wasm::kExprF64Ne:
return Invert(Binop(wasm::kExprF64Eq, left, right));
case wasm::kExprF64Lt:
op = m->Float64LessThan();
break;
case wasm::kExprF64Le:
op = m->Float64LessThanOrEqual();
break;
case wasm::kExprF64Gt:
op = m->Float64LessThan();
std::swap(left, right);
break;
case wasm::kExprF64Ge:
op = m->Float64LessThanOrEqual();
std::swap(left, right);
break;
case wasm::kExprF32Min:
return BuildF32Min(left, right);
case wasm::kExprF64Min:
return BuildF64Min(left, right);
case wasm::kExprF32Max:
return BuildF32Max(left, right);
case wasm::kExprF64Max:
return BuildF64Max(left, right);
default:
op = UnsupportedOpcode(opcode);
}
return graph()->NewNode(op, left, right);
}
Node* WasmGraphBuilder::Unop(wasm::WasmOpcode opcode, Node* input) {
const Operator* op;
MachineOperatorBuilder* m = jsgraph()->machine();
switch (opcode) {
case wasm::kExprBoolNot:
op = m->Word32Equal();
return graph()->NewNode(op, input, jsgraph()->Int32Constant(0));
case wasm::kExprF32Abs:
op = m->Float32Abs();
break;
case wasm::kExprF32Neg:
return BuildF32Neg(input);
case wasm::kExprF32Sqrt:
op = m->Float32Sqrt();
break;
case wasm::kExprF64Abs:
op = m->Float64Abs();
break;
case wasm::kExprF64Neg:
return BuildF64Neg(input);
case wasm::kExprF64Sqrt:
op = m->Float64Sqrt();
break;
case wasm::kExprI32SConvertF64:
return BuildI32SConvertF64(input);
case wasm::kExprI32UConvertF64:
return BuildI32UConvertF64(input);
case wasm::kExprF32ConvertF64:
op = m->TruncateFloat64ToFloat32();
break;
case wasm::kExprF64SConvertI32:
op = m->ChangeInt32ToFloat64();
break;
case wasm::kExprF64UConvertI32:
op = m->ChangeUint32ToFloat64();
break;
case wasm::kExprF32SConvertI32:
op = m->ChangeInt32ToFloat64(); // TODO(titzer): two conversions
input = graph()->NewNode(op, input);
op = m->TruncateFloat64ToFloat32();
break;
case wasm::kExprF32UConvertI32:
op = m->ChangeUint32ToFloat64();
input = graph()->NewNode(op, input);
op = m->TruncateFloat64ToFloat32();
break;
case wasm::kExprI32SConvertF32:
return BuildI32SConvertF32(input);
case wasm::kExprI32UConvertF32:
return BuildI32UConvertF32(input);
case wasm::kExprF64ConvertF32:
op = m->ChangeFloat32ToFloat64();
break;
case wasm::kExprF32ReinterpretI32:
op = m->BitcastInt32ToFloat32();
break;
case wasm::kExprI32ReinterpretF32:
op = m->BitcastFloat32ToInt32();
break;
case wasm::kExprI32Clz:
op = m->Word32Clz();
break;
case wasm::kExprI32Ctz: {
if (m->Word32Ctz().IsSupported()) {
op = m->Word32Ctz().op();
break;
} else {
return BuildI32Ctz(input);
}
}
case wasm::kExprI32Popcnt: {
if (m->Word32Popcnt().IsSupported()) {
op = m->Word32Popcnt().op();
break;
} else {
return BuildI32Popcnt(input);
}
}
case wasm::kExprF32Floor: {
if (m->Float32RoundDown().IsSupported()) {
op = m->Float32RoundDown().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF32Ceil: {
if (m->Float32RoundUp().IsSupported()) {
op = m->Float32RoundUp().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF32Trunc: {
if (m->Float32RoundTruncate().IsSupported()) {
op = m->Float32RoundTruncate().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF32NearestInt: {
if (m->Float32RoundTiesEven().IsSupported()) {
op = m->Float32RoundTiesEven().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF64Floor: {
if (m->Float64RoundDown().IsSupported()) {
op = m->Float64RoundDown().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF64Ceil: {
if (m->Float64RoundUp().IsSupported()) {
op = m->Float64RoundUp().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF64Trunc: {
if (m->Float64RoundTruncate().IsSupported()) {
op = m->Float64RoundTruncate().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
case wasm::kExprF64NearestInt: {
if (m->Float64RoundTiesEven().IsSupported()) {
op = m->Float64RoundTiesEven().op();
break;
} else {
op = UnsupportedOpcode(opcode);
break;
}
}
#if WASM_64
// Opcodes only supported on 64-bit platforms.
// TODO(titzer): query the machine operator builder here instead of #ifdef.
case wasm::kExprI32ConvertI64:
op = m->TruncateInt64ToInt32();
break;
case wasm::kExprI64SConvertI32:
op = m->ChangeInt32ToInt64();
break;
case wasm::kExprI64UConvertI32:
op = m->ChangeUint32ToUint64();
break;
case wasm::kExprF32SConvertI64:
op = m->RoundInt64ToFloat32();
break;
case wasm::kExprF32UConvertI64:
op = m->RoundUint64ToFloat32();
break;
case wasm::kExprF64SConvertI64:
op = m->RoundInt64ToFloat64();
break;
case wasm::kExprF64UConvertI64:
op = m->RoundUint64ToFloat64();
break;
case wasm::kExprI64SConvertF32: {
Node* trunc = graph()->NewNode(m->TryTruncateFloat32ToInt64(), input);
Node* result =
graph()->NewNode(jsgraph()->common()->Projection(0), trunc);
Node* overflow =
graph()->NewNode(jsgraph()->common()->Projection(1), trunc);
trap_->ZeroCheck64(kTrapFloatUnrepresentable, overflow);
return result;
}
case wasm::kExprI64SConvertF64: {
Node* trunc = graph()->NewNode(m->TryTruncateFloat64ToInt64(), input);
Node* result =
graph()->NewNode(jsgraph()->common()->Projection(0), trunc);
Node* overflow =
graph()->NewNode(jsgraph()->common()->Projection(1), trunc);
trap_->ZeroCheck64(kTrapFloatUnrepresentable, overflow);
return result;
}
case wasm::kExprI64UConvertF32: {
Node* trunc = graph()->NewNode(m->TryTruncateFloat32ToUint64(), input);
Node* result =
graph()->NewNode(jsgraph()->common()->Projection(0), trunc);
Node* overflow =
graph()->NewNode(jsgraph()->common()->Projection(1), trunc);
trap_->ZeroCheck64(kTrapFloatUnrepresentable, overflow);
return result;
}
case wasm::kExprI64UConvertF64: {
Node* trunc = graph()->NewNode(m->TryTruncateFloat64ToUint64(), input);
Node* result =
graph()->NewNode(jsgraph()->common()->Projection(0), trunc);
Node* overflow =
graph()->NewNode(jsgraph()->common()->Projection(1), trunc);
trap_->ZeroCheck64(kTrapFloatUnrepresentable, overflow);
return result;
}
case wasm::kExprF64ReinterpretI64:
op = m->BitcastInt64ToFloat64();
break;
case wasm::kExprI64ReinterpretF64:
op = m->BitcastFloat64ToInt64();
break;
case wasm::kExprI64Clz:
op = m->Word64Clz();
break;
case wasm::kExprI64Ctz: {
if (m->Word64Ctz().IsSupported()) {
op = m->Word64Ctz().op();
break;
} else {
return BuildI64Ctz(input);
}
}
case wasm::kExprI64Popcnt: {
if (m->Word64Popcnt().IsSupported()) {
op = m->Word64Popcnt().op();
break;
} else {
return BuildI64Popcnt(input);
}
}
#endif
default:
op = UnsupportedOpcode(opcode);
}
return graph()->NewNode(op, input);
}
Node* WasmGraphBuilder::Float32Constant(float value) {
return jsgraph()->Float32Constant(value);
}
Node* WasmGraphBuilder::Float64Constant(double value) {
return jsgraph()->Float64Constant(value);
}
Node* WasmGraphBuilder::Constant(Handle<Object> value) {
return jsgraph()->Constant(value);
}
Node* WasmGraphBuilder::Branch(Node* cond, Node** true_node,
Node** false_node) {
DCHECK_NOT_NULL(cond);
DCHECK_NOT_NULL(*control_);
Node* branch =
graph()->NewNode(jsgraph()->common()->Branch(), cond, *control_);
*true_node = graph()->NewNode(jsgraph()->common()->IfTrue(), branch);
*false_node = graph()->NewNode(jsgraph()->common()->IfFalse(), branch);
return branch;
}
Node* WasmGraphBuilder::Switch(unsigned count, Node* key) {
return graph()->NewNode(jsgraph()->common()->Switch(count), key, *control_);
}
Node* WasmGraphBuilder::IfValue(int32_t value, Node* sw) {
DCHECK_EQ(IrOpcode::kSwitch, sw->opcode());
return graph()->NewNode(jsgraph()->common()->IfValue(value), sw);
}
Node* WasmGraphBuilder::IfDefault(Node* sw) {
DCHECK_EQ(IrOpcode::kSwitch, sw->opcode());
return graph()->NewNode(jsgraph()->common()->IfDefault(), sw);
}
Node* WasmGraphBuilder::Return(unsigned count, Node** vals) {
DCHECK_NOT_NULL(*control_);
DCHECK_NOT_NULL(*effect_);
if (count == 0) {
// Handle a return of void.
vals[0] = jsgraph()->Int32Constant(0);
count = 1;
}
Node** buf = Realloc(vals, count);
buf = Realloc(buf, count + 2);
buf[count] = *effect_;
buf[count + 1] = *control_;
Node* ret = graph()->NewNode(jsgraph()->common()->Return(), count + 2, vals);
MergeControlToEnd(jsgraph(), ret);
return ret;
}
Node* WasmGraphBuilder::ReturnVoid() { return Return(0, Buffer(0)); }
Node* WasmGraphBuilder::Unreachable() {
trap_->Unreachable();
return nullptr;
}
Node* WasmGraphBuilder::BuildF32Neg(Node* input) {
Node* result =
Unop(wasm::kExprF32ReinterpretI32,
Binop(wasm::kExprI32Xor, Unop(wasm::kExprI32ReinterpretF32, input),
jsgraph()->Int32Constant(0x80000000)));
return result;
}
Node* WasmGraphBuilder::BuildF64Neg(Node* input) {
#if WASM_64
Node* result =
Unop(wasm::kExprF64ReinterpretI64,
Binop(wasm::kExprI64Xor, Unop(wasm::kExprI64ReinterpretF64, input),
jsgraph()->Int64Constant(0x8000000000000000)));
return result;
#else
MachineOperatorBuilder* m = jsgraph()->machine();
Node* old_high_word = graph()->NewNode(m->Float64ExtractHighWord32(), input);
Node* new_high_word = Binop(wasm::kExprI32Xor, old_high_word,
jsgraph()->Int32Constant(0x80000000));
return graph()->NewNode(m->Float64InsertHighWord32(), input, new_high_word);
#endif
}
Node* WasmGraphBuilder::BuildF32CopySign(Node* left, Node* right) {
Node* result = Unop(
wasm::kExprF32ReinterpretI32,
Binop(wasm::kExprI32Ior,
Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, left),
jsgraph()->Int32Constant(0x7fffffff)),
Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, right),
jsgraph()->Int32Constant(0x80000000))));
return result;
}
Node* WasmGraphBuilder::BuildF64CopySign(Node* left, Node* right) {
#if WASM_64
Node* result = Unop(
wasm::kExprF64ReinterpretI64,
Binop(wasm::kExprI64Ior,
Binop(wasm::kExprI64And, Unop(wasm::kExprI64ReinterpretF64, left),
jsgraph()->Int64Constant(0x7fffffffffffffff)),
Binop(wasm::kExprI64And, Unop(wasm::kExprI64ReinterpretF64, right),
jsgraph()->Int64Constant(0x8000000000000000))));
return result;
#else
MachineOperatorBuilder* m = jsgraph()->machine();
Node* high_word_left = graph()->NewNode(m->Float64ExtractHighWord32(), left);
Node* high_word_right =
graph()->NewNode(m->Float64ExtractHighWord32(), right);
Node* new_high_word =
Binop(wasm::kExprI32Ior, Binop(wasm::kExprI32And, high_word_left,
jsgraph()->Int32Constant(0x7fffffff)),
Binop(wasm::kExprI32And, high_word_right,
jsgraph()->Int32Constant(0x80000000)));
return graph()->NewNode(m->Float64InsertHighWord32(), left, new_high_word);
#endif
}
Node* WasmGraphBuilder::BuildF32Min(Node* left, Node* right) {
Diamond left_le_right(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Le, left, right));
Diamond right_lt_left(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Lt, right, left));
Diamond left_is_not_nan(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Eq, left, left));
return left_le_right.Phi(
wasm::kAstF32, left,
right_lt_left.Phi(wasm::kAstF32, right,
left_is_not_nan.Phi(wasm::kAstF32, right, left)));
}
Node* WasmGraphBuilder::BuildF32Max(Node* left, Node* right) {
Diamond left_ge_right(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Ge, left, right));
Diamond right_gt_left(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Gt, right, left));
Diamond left_is_not_nan(graph(), jsgraph()->common(),
Binop(wasm::kExprF32Eq, left, left));
return left_ge_right.Phi(
wasm::kAstF32, left,
right_gt_left.Phi(wasm::kAstF32, right,
left_is_not_nan.Phi(wasm::kAstF32, right, left)));
}
Node* WasmGraphBuilder::BuildF64Min(Node* left, Node* right) {
Diamond left_le_right(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Le, left, right));
Diamond right_lt_left(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Lt, right, left));
Diamond left_is_not_nan(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Eq, left, left));
return left_le_right.Phi(
wasm::kAstF64, left,
right_lt_left.Phi(wasm::kAstF64, right,
left_is_not_nan.Phi(wasm::kAstF64, right, left)));
}
Node* WasmGraphBuilder::BuildF64Max(Node* left, Node* right) {
Diamond left_ge_right(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Ge, left, right));
Diamond right_gt_left(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Lt, right, left));
Diamond left_is_not_nan(graph(), jsgraph()->common(),
Binop(wasm::kExprF64Eq, left, left));
return left_ge_right.Phi(
wasm::kAstF64, left,
right_gt_left.Phi(wasm::kAstF64, right,
left_is_not_nan.Phi(wasm::kAstF64, right, left)));
}
Node* WasmGraphBuilder::BuildI32SConvertF32(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// Truncation of the input value is needed for the overflow check later.
Node* trunc = Unop(wasm::kExprF32Trunc, input);
// TODO(titzer): two conversions
Node* f64_trunc = graph()->NewNode(m->ChangeFloat32ToFloat64(), trunc);
Node* result = graph()->NewNode(m->ChangeFloat64ToInt32(), f64_trunc);
// Convert the result back to f64. If we end up at a different value than the
// truncated input value, then there has been an overflow and we trap.
Node* check = Unop(wasm::kExprF64SConvertI32, result);
Node* overflow = Binop(wasm::kExprF64Ne, f64_trunc, check);
trap_->AddTrapIfTrue(kTrapFloatUnrepresentable, overflow);
return result;
}
Node* WasmGraphBuilder::BuildI32SConvertF64(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// Truncation of the input value is needed for the overflow check later.
Node* trunc = Unop(wasm::kExprF64Trunc, input);
Node* result = graph()->NewNode(m->ChangeFloat64ToInt32(), trunc);
// Convert the result back to f64. If we end up at a different value than the
// truncated input value, then there has been an overflow and we trap.
Node* check = Unop(wasm::kExprF64SConvertI32, result);
Node* overflow = Binop(wasm::kExprF64Ne, trunc, check);
trap_->AddTrapIfTrue(kTrapFloatUnrepresentable, overflow);
return result;
}
Node* WasmGraphBuilder::BuildI32UConvertF32(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// Truncation of the input value is needed for the overflow check later.
Node* trunc = Unop(wasm::kExprF32Trunc, input);
// TODO(titzer): two conversions
Node* f64_trunc = graph()->NewNode(m->ChangeFloat32ToFloat64(), trunc);
Node* result = graph()->NewNode(m->ChangeFloat64ToUint32(), f64_trunc);
// Convert the result back to f64. If we end up at a different value than the
// truncated input value, then there has been an overflow and we trap.
Node* check = Unop(wasm::kExprF64UConvertI32, result);
Node* overflow = Binop(wasm::kExprF64Ne, f64_trunc, check);
trap_->AddTrapIfTrue(kTrapFloatUnrepresentable, overflow);
return result;
}
Node* WasmGraphBuilder::BuildI32UConvertF64(Node* input) {
MachineOperatorBuilder* m = jsgraph()->machine();
// Truncation of the input value is needed for the overflow check later.
Node* trunc = Unop(wasm::kExprF64Trunc, input);
Node* result = graph()->NewNode(m->ChangeFloat64ToUint32(), trunc);
// Convert the result back to f64. If we end up at a different value than the
// truncated input value, then there has been an overflow and we trap.
Node* check = Unop(wasm::kExprF64UConvertI32, result);
Node* overflow = Binop(wasm::kExprF64Ne, trunc, check);
trap_->AddTrapIfTrue(kTrapFloatUnrepresentable, overflow);
return result;
}
Node* WasmGraphBuilder::BuildI32Ctz(Node* input) {
//// Implement the following code as TF graph.
// value = value | (value << 1);
// value = value | (value << 2);
// value = value | (value << 4);
// value = value | (value << 8);
// value = value | (value << 16);
// return CountPopulation32(0xffffffff XOR value);
Node* result =
Binop(wasm::kExprI32Ior, input,
Binop(wasm::kExprI32Shl, input, jsgraph()->Int32Constant(1)));
result = Binop(wasm::kExprI32Ior, result,
Binop(wasm::kExprI32Shl, result, jsgraph()->Int32Constant(2)));
result = Binop(wasm::kExprI32Ior, result,
Binop(wasm::kExprI32Shl, result, jsgraph()->Int32Constant(4)));
result = Binop(wasm::kExprI32Ior, result,
Binop(wasm::kExprI32Shl, result, jsgraph()->Int32Constant(8)));
result =
Binop(wasm::kExprI32Ior, result,
Binop(wasm::kExprI32Shl, result, jsgraph()->Int32Constant(16)));
result = BuildI32Popcnt(
Binop(wasm::kExprI32Xor, jsgraph()->Int32Constant(0xffffffff), result));
return result;
}
Node* WasmGraphBuilder::BuildI64Ctz(Node* input) {
//// Implement the following code as TF graph.
// value = value | (value << 1);
// value = value | (value << 2);
// value = value | (value << 4);
// value = value | (value << 8);
// value = value | (value << 16);
// value = value | (value << 32);
// return CountPopulation64(0xffffffffffffffff XOR value);
Node* result =
Binop(wasm::kExprI64Ior, input,
Binop(wasm::kExprI64Shl, input, jsgraph()->Int64Constant(1)));
result = Binop(wasm::kExprI64Ior, result,
Binop(wasm::kExprI64Shl, result, jsgraph()->Int64Constant(2)));
result = Binop(wasm::kExprI64Ior, result,
Binop(wasm::kExprI64Shl, result, jsgraph()->Int64Constant(4)));
result = Binop(wasm::kExprI64Ior, result,
Binop(wasm::kExprI64Shl, result, jsgraph()->Int64Constant(8)));
result =
Binop(wasm::kExprI64Ior, result,
Binop(wasm::kExprI64Shl, result, jsgraph()->Int64Constant(16)));
result =
Binop(wasm::kExprI64Ior, result,
Binop(wasm::kExprI64Shl, result, jsgraph()->Int64Constant(32)));
result = BuildI64Popcnt(Binop(
wasm::kExprI64Xor, jsgraph()->Int64Constant(0xffffffffffffffff), result));
return result;
}
Node* WasmGraphBuilder::BuildI32Popcnt(Node* input) {
//// Implement the following code as a TF graph.
// value = ((value >> 1) & 0x55555555) + (value & 0x55555555);
// value = ((value >> 2) & 0x33333333) + (value & 0x33333333);
// value = ((value >> 4) & 0x0f0f0f0f) + (value & 0x0f0f0f0f);
// value = ((value >> 8) & 0x00ff00ff) + (value & 0x00ff00ff);
// value = ((value >> 16) & 0x0000ffff) + (value & 0x0000ffff);
Node* result = Binop(
wasm::kExprI32Add,
Binop(wasm::kExprI32And,
Binop(wasm::kExprI32ShrU, input, jsgraph()->Int32Constant(1)),
jsgraph()->Int32Constant(0x55555555)),
Binop(wasm::kExprI32And, input, jsgraph()->Int32Constant(0x55555555)));
result = Binop(
wasm::kExprI32Add,
Binop(wasm::kExprI32And,
Binop(wasm::kExprI32ShrU, result, jsgraph()->Int32Constant(2)),
jsgraph()->Int32Constant(0x33333333)),
Binop(wasm::kExprI32And, result, jsgraph()->Int32Constant(0x33333333)));
result = Binop(
wasm::kExprI32Add,
Binop(wasm::kExprI32And,
Binop(wasm::kExprI32ShrU, result, jsgraph()->Int32Constant(4)),
jsgraph()->Int32Constant(0x0f0f0f0f)),
Binop(wasm::kExprI32And, result, jsgraph()->Int32Constant(0x0f0f0f0f)));
result = Binop(
wasm::kExprI32Add,
Binop(wasm::kExprI32And,
Binop(wasm::kExprI32ShrU, result, jsgraph()->Int32Constant(8)),
jsgraph()->Int32Constant(0x00ff00ff)),
Binop(wasm::kExprI32And, result, jsgraph()->Int32Constant(0x00ff00ff)));
result = Binop(
wasm::kExprI32Add,
Binop(wasm::kExprI32And,
Binop(wasm::kExprI32ShrU, result, jsgraph()->Int32Constant(16)),
jsgraph()->Int32Constant(0x0000ffff)),
Binop(wasm::kExprI32And, result, jsgraph()->Int32Constant(0x0000ffff)));
return result;
}
Node* WasmGraphBuilder::BuildI64Popcnt(Node* input) {
//// Implement the following code as a TF graph.
// value = ((value >> 1) & 0x5555555555555555) + (value & 0x5555555555555555);
// value = ((value >> 2) & 0x3333333333333333) + (value & 0x3333333333333333);
// value = ((value >> 4) & 0x0f0f0f0f0f0f0f0f) + (value & 0x0f0f0f0f0f0f0f0f);
// value = ((value >> 8) & 0x00ff00ff00ff00ff) + (value & 0x00ff00ff00ff00ff);
// value = ((value >> 16) & 0x0000ffff0000ffff) + (value &
// 0x0000ffff0000ffff);
// value = ((value >> 32) & 0x00000000ffffffff) + (value &
// 0x00000000ffffffff);
Node* result =
Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And,
Binop(wasm::kExprI64ShrU, input, jsgraph()->Int64Constant(1)),
jsgraph()->Int64Constant(0x5555555555555555)),
Binop(wasm::kExprI64And, input,
jsgraph()->Int64Constant(0x5555555555555555)));
result = Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And, Binop(wasm::kExprI64ShrU, result,
jsgraph()->Int64Constant(2)),
jsgraph()->Int64Constant(0x3333333333333333)),
Binop(wasm::kExprI64And, result,
jsgraph()->Int64Constant(0x3333333333333333)));
result = Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And, Binop(wasm::kExprI64ShrU, result,
jsgraph()->Int64Constant(4)),
jsgraph()->Int64Constant(0x0f0f0f0f0f0f0f0f)),
Binop(wasm::kExprI64And, result,
jsgraph()->Int64Constant(0x0f0f0f0f0f0f0f0f)));
result = Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And, Binop(wasm::kExprI64ShrU, result,
jsgraph()->Int64Constant(8)),
jsgraph()->Int64Constant(0x00ff00ff00ff00ff)),
Binop(wasm::kExprI64And, result,
jsgraph()->Int64Constant(0x00ff00ff00ff00ff)));
result = Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And, Binop(wasm::kExprI64ShrU, result,
jsgraph()->Int64Constant(16)),
jsgraph()->Int64Constant(0x0000ffff0000ffff)),
Binop(wasm::kExprI64And, result,
jsgraph()->Int64Constant(0x0000ffff0000ffff)));
result = Binop(wasm::kExprI64Add,
Binop(wasm::kExprI64And, Binop(wasm::kExprI64ShrU, result,
jsgraph()->Int64Constant(32)),
jsgraph()->Int64Constant(0x00000000ffffffff)),
Binop(wasm::kExprI64And, result,
jsgraph()->Int64Constant(0x00000000ffffffff)));
return result;
}
Node* WasmGraphBuilder::BuildWasmCall(wasm::FunctionSig* sig, Node** args) {
const size_t params = sig->parameter_count();
const size_t extra = 2; // effect and control inputs.
const size_t count = 1 + params + extra;
// Reallocate the buffer to make space for extra inputs.
args = Realloc(args, count);
// Add effect and control inputs.
args[params + 1] = *effect_;
args[params + 2] = *control_;
const Operator* op = jsgraph()->common()->Call(
module_->GetWasmCallDescriptor(jsgraph()->zone(), sig));
Node* call = graph()->NewNode(op, static_cast<int>(count), args);
*effect_ = call;
return call;
}
Node* WasmGraphBuilder::CallDirect(uint32_t index, Node** args) {
DCHECK_NULL(args[0]);
// Add code object as constant.
args[0] = Constant(module_->GetFunctionCode(index));
wasm::FunctionSig* sig = module_->GetFunctionSignature(index);
return BuildWasmCall(sig, args);
}
Node* WasmGraphBuilder::CallIndirect(uint32_t index, Node** args) {
DCHECK_NOT_NULL(args[0]);
MachineOperatorBuilder* machine = jsgraph()->machine();
// Compute the code object by loading it from the function table.
Node* key = args[0];
Node* table = FunctionTable();
// Bounds check the index.
int table_size = static_cast<int>(module_->FunctionTableSize());
{
Node* size = Int32Constant(static_cast<int>(table_size));
Node* in_bounds = graph()->NewNode(machine->Uint32LessThan(), key, size);
trap_->AddTrapIfFalse(kTrapFuncInvalid, in_bounds);
}
// Load signature from the table and check.
// The table is a FixedArray; signatures are encoded as SMIs.
// [sig1, sig2, sig3, ...., code1, code2, code3 ...]
ElementAccess access = AccessBuilder::ForFixedArrayElement();
const int fixed_offset = access.header_size - access.tag();
{
Node* load_sig = graph()->NewNode(
machine->Load(MachineType::AnyTagged()), table,
graph()->NewNode(machine->Int32Add(),
graph()->NewNode(machine->Word32Shl(), key,
Int32Constant(kPointerSizeLog2)),
Int32Constant(fixed_offset)),
*effect_, *control_);
Node* sig_match = graph()->NewNode(machine->WordEqual(), load_sig,
jsgraph()->SmiConstant(index));
trap_->AddTrapIfFalse(kTrapFuncSigMismatch, sig_match);
}
// Load code object from the table.
int offset = fixed_offset + kPointerSize * table_size;
Node* load_code = graph()->NewNode(
machine->Load(MachineType::AnyTagged()), table,
graph()->NewNode(machine->Int32Add(),
graph()->NewNode(machine->Word32Shl(), key,
Int32Constant(kPointerSizeLog2)),
Int32Constant(offset)),
*effect_, *control_);
args[0] = load_code;
wasm::FunctionSig* sig = module_->GetSignature(index);
return BuildWasmCall(sig, args);
}
Node* WasmGraphBuilder::ToJS(Node* node, Node* context, wasm::LocalType type) {
SimplifiedOperatorBuilder simplified(jsgraph()->zone());
switch (type) {
case wasm::kAstI32:
return graph()->NewNode(simplified.ChangeInt32ToTagged(), node);
case wasm::kAstI64:
// TODO(titzer): i64->JS has no good solution right now. Using lower 32
// bits.
node =
graph()->NewNode(jsgraph()->machine()->TruncateInt64ToInt32(), node);
return graph()->NewNode(simplified.ChangeInt32ToTagged(), node);
case wasm::kAstF32:
node = graph()->NewNode(jsgraph()->machine()->ChangeFloat32ToFloat64(),
node);
return graph()->NewNode(simplified.ChangeFloat64ToTagged(), node);
case wasm::kAstF64:
return graph()->NewNode(simplified.ChangeFloat64ToTagged(), node);
case wasm::kAstStmt:
return jsgraph()->UndefinedConstant();
default:
UNREACHABLE();
return nullptr;
}
}
Node* WasmGraphBuilder::FromJS(Node* node, Node* context,
wasm::LocalType type) {
// Do a JavaScript ToNumber.
Node* num =
graph()->NewNode(jsgraph()->javascript()->ToNumber(), node, context,
jsgraph()->EmptyFrameState(), *effect_, *control_);
*control_ = num;
*effect_ = num;
// Change representation.
SimplifiedOperatorBuilder simplified(jsgraph()->zone());
num = graph()->NewNode(simplified.ChangeTaggedToFloat64(), num);
switch (type) {
case wasm::kAstI32: {
num = graph()->NewNode(jsgraph()->machine()->TruncateFloat64ToInt32(
TruncationMode::kJavaScript),
num);
break;
}
case wasm::kAstI64:
// TODO(titzer): JS->i64 has no good solution right now. Using 32 bits.
num = graph()->NewNode(jsgraph()->machine()->TruncateFloat64ToInt32(
TruncationMode::kJavaScript),
num);
num = graph()->NewNode(jsgraph()->machine()->ChangeInt32ToInt64(), num);
break;
case wasm::kAstF32:
num = graph()->NewNode(jsgraph()->machine()->TruncateFloat64ToFloat32(),
num);
break;
case wasm::kAstF64:
break;
case wasm::kAstStmt:
num = jsgraph()->Int32Constant(0);
break;
default:
UNREACHABLE();
return nullptr;
}
return num;
}
Node* WasmGraphBuilder::Invert(Node* node) {
return Unop(wasm::kExprBoolNot, node);
}
void WasmGraphBuilder::BuildJSToWasmWrapper(Handle<Code> wasm_code,
wasm::FunctionSig* sig) {
int params = static_cast<int>(sig->parameter_count());
int count = params + 3;
Node** args = Buffer(count);
// Build the start and the JS parameter nodes.
Node* start = Start(params + 3);
*control_ = start;
*effect_ = start;
// JS context is the last parameter.
Node* context = graph()->NewNode(
jsgraph()->common()->Parameter(params + 1, "context"), start);
int pos = 0;
args[pos++] = Constant(wasm_code);
// Convert JS parameters to WASM numbers.
for (int i = 0; i < params; i++) {
Node* param = graph()->NewNode(jsgraph()->common()->Parameter(i), start);
args[pos++] = FromJS(param, context, sig->GetParam(i));
}
args[pos++] = *effect_;
args[pos++] = *control_;
// Call the WASM code.
CallDescriptor* desc = module_->GetWasmCallDescriptor(jsgraph()->zone(), sig);
Node* call = graph()->NewNode(jsgraph()->common()->Call(desc), count, args);
Node* jsval =
ToJS(call, context,
sig->return_count() == 0 ? wasm::kAstStmt : sig->GetReturn());
Node* ret =
graph()->NewNode(jsgraph()->common()->Return(), jsval, call, start);
MergeControlToEnd(jsgraph(), ret);
}
void WasmGraphBuilder::BuildWasmToJSWrapper(Handle<JSFunction> function,
wasm::FunctionSig* sig) {
int js_count = function->shared()->internal_formal_parameter_count();
int wasm_count = static_cast<int>(sig->parameter_count());
// Build the start and the parameter nodes.
Isolate* isolate = jsgraph()->isolate();
CallDescriptor* desc;
Node* start = Start(wasm_count + 3);
*effect_ = start;
*control_ = start;
// JS context is the last parameter.
Node* context = Constant(Handle<Context>(function->context(), isolate));
Node** args = Buffer(wasm_count + 7);
bool arg_count_before_args = false;
bool add_new_target_undefined = false;
int pos = 0;
if (js_count == wasm_count) {
// exact arity match, just call the function directly.
desc = Linkage::GetJSCallDescriptor(graph()->zone(), false, wasm_count + 1,
CallDescriptor::kNoFlags);
arg_count_before_args = false;
add_new_target_undefined = true;
} else {
// Use the Call builtin.
Callable callable = CodeFactory::Call(isolate);
args[pos++] = jsgraph()->HeapConstant(callable.code());
desc = Linkage::GetStubCallDescriptor(isolate, graph()->zone(),
callable.descriptor(), wasm_count + 1,
CallDescriptor::kNoFlags);
arg_count_before_args = true;
}
args[pos++] = jsgraph()->Constant(function); // JS function.
if (arg_count_before_args) {
args[pos++] = jsgraph()->Int32Constant(wasm_count); // argument count
}
args[pos++] = jsgraph()->UndefinedConstant(); // JS receiver.
// Convert WASM numbers to JS values.
for (int i = 0; i < wasm_count; i++) {
Node* param = graph()->NewNode(jsgraph()->common()->Parameter(i), start);
args[pos++] = ToJS(param, context, sig->GetParam(i));
}
if (add_new_target_undefined) {
args[pos++] = jsgraph()->UndefinedConstant(); // new target
}
if (!arg_count_before_args) {
args[pos++] = jsgraph()->Int32Constant(wasm_count); // argument count
}
args[pos++] = context;
args[pos++] = *effect_;
args[pos++] = *control_;
Node* call = graph()->NewNode(jsgraph()->common()->Call(desc), pos, args);
// Convert the return value back.
Node* val =
FromJS(call, context,
sig->return_count() == 0 ? wasm::kAstStmt : sig->GetReturn());
Node* ret = graph()->NewNode(jsgraph()->common()->Return(), val, call, start);
MergeControlToEnd(jsgraph(), ret);
}
Node* WasmGraphBuilder::MemBuffer(uint32_t offset) {
if (offset == 0) {
if (!mem_buffer_)
mem_buffer_ = jsgraph()->IntPtrConstant(module_->mem_start);
return mem_buffer_;
} else {
return jsgraph()->IntPtrConstant(module_->mem_start + offset);
}
}
Node* WasmGraphBuilder::MemSize(uint32_t offset) {
int32_t size = static_cast<int>(module_->mem_end - module_->mem_start);
if (offset == 0) {
if (!mem_size_) mem_size_ = jsgraph()->Int32Constant(size);
return mem_size_;
} else {
return jsgraph()->Int32Constant(size + offset);
}
}
Node* WasmGraphBuilder::FunctionTable() {
if (!function_table_) {
DCHECK(!module_->function_table.is_null());
function_table_ = jsgraph()->Constant(module_->function_table);
}
return function_table_;
}
Node* WasmGraphBuilder::LoadGlobal(uint32_t index) {
MachineType mem_type = module_->GetGlobalType(index);
Node* addr = jsgraph()->IntPtrConstant(
module_->globals_area + module_->module->globals->at(index).offset);
const Operator* op = jsgraph()->machine()->Load(mem_type);
Node* node = graph()->NewNode(op, addr, jsgraph()->Int32Constant(0), *effect_,
*control_);
*effect_ = node;
return node;
}
Node* WasmGraphBuilder::StoreGlobal(uint32_t index, Node* val) {
MachineType mem_type = module_->GetGlobalType(index);
Node* addr = jsgraph()->IntPtrConstant(
module_->globals_area + module_->module->globals->at(index).offset);
const Operator* op = jsgraph()->machine()->Store(
StoreRepresentation(mem_type.representation(), kNoWriteBarrier));
Node* node = graph()->NewNode(op, addr, jsgraph()->Int32Constant(0), val,
*effect_, *control_);
*effect_ = node;
return node;
}
void WasmGraphBuilder::BoundsCheckMem(MachineType memtype, Node* index,
uint32_t offset) {
// TODO(turbofan): fold bounds checks for constant indexes.
CHECK_GE(module_->mem_end, module_->mem_start);
ptrdiff_t size = module_->mem_end - module_->mem_start;
byte memsize = wasm::WasmOpcodes::MemSize(memtype);
Node* cond;
if (static_cast<ptrdiff_t>(offset) >= size ||
static_cast<ptrdiff_t>(offset + memsize) > size) {
// The access will always throw.
cond = jsgraph()->Int32Constant(0);
} else {
// Check against the limit.
size_t limit = size - offset - memsize;
CHECK(limit <= kMaxUInt32);
cond = graph()->NewNode(
jsgraph()->machine()->Uint32LessThanOrEqual(), index,
jsgraph()->Int32Constant(static_cast<uint32_t>(limit)));
}
trap_->AddTrapIfFalse(kTrapMemOutOfBounds, cond);
}
Node* WasmGraphBuilder::LoadMem(wasm::LocalType type, MachineType memtype,
Node* index, uint32_t offset) {
Node* load;
if (module_ && module_->asm_js) {
// asm.js semantics use CheckedLoad (i.e. OOB reads return 0ish).
DCHECK_EQ(0, offset);
const Operator* op = jsgraph()->machine()->CheckedLoad(memtype);
load = graph()->NewNode(op, MemBuffer(0), index, MemSize(0), *effect_,
*control_);
} else {
// WASM semantics throw on OOB. Introduce explicit bounds check.
BoundsCheckMem(memtype, index, offset);
load = graph()->NewNode(jsgraph()->machine()->Load(memtype),
MemBuffer(offset), index, *effect_, *control_);
}
*effect_ = load;
if (type == wasm::kAstI64 &&
ElementSizeLog2Of(memtype.representation()) < 3) {
// TODO(titzer): TF zeroes the upper bits of 64-bit loads for subword sizes.
if (memtype.IsSigned()) {
// sign extend
load = graph()->NewNode(jsgraph()->machine()->ChangeInt32ToInt64(), load);
} else {
// zero extend
load =
graph()->NewNode(jsgraph()->machine()->ChangeUint32ToUint64(), load);
}
}
return load;
}
Node* WasmGraphBuilder::StoreMem(MachineType memtype, Node* index,
uint32_t offset, Node* val) {
Node* store;
if (module_ && module_->asm_js) {
// asm.js semantics use CheckedStore (i.e. ignore OOB writes).
DCHECK_EQ(0, offset);
const Operator* op =
jsgraph()->machine()->CheckedStore(memtype.representation());
store = graph()->NewNode(op, MemBuffer(0), index, MemSize(0), val, *effect_,
*control_);
} else {
// WASM semantics throw on OOB. Introduce explicit bounds check.
BoundsCheckMem(memtype, index, offset);
StoreRepresentation rep(memtype.representation(), kNoWriteBarrier);
store =
graph()->NewNode(jsgraph()->machine()->Store(rep), MemBuffer(offset),
index, val, *effect_, *control_);
}
*effect_ = store;
return store;
}
void WasmGraphBuilder::PrintDebugName(Node* node) {
PrintF("#%d:%s", node->id(), node->op()->mnemonic());
}
Node* WasmGraphBuilder::String(const char* string) {
return jsgraph()->Constant(
jsgraph()->isolate()->factory()->NewStringFromAsciiChecked(string));
}
Graph* WasmGraphBuilder::graph() { return jsgraph()->graph(); }
Handle<JSFunction> CompileJSToWasmWrapper(
Isolate* isolate, wasm::ModuleEnv* module, Handle<String> name,
Handle<Code> wasm_code, Handle<JSObject> module_object, uint32_t index) {
wasm::WasmFunction* func = &module->module->functions->at(index);
//----------------------------------------------------------------------------
// Create the JSFunction object.
//----------------------------------------------------------------------------
Handle<SharedFunctionInfo> shared =
isolate->factory()->NewSharedFunctionInfo(name, wasm_code, false);
int params = static_cast<int>(func->sig->parameter_count());
shared->set_length(params);
shared->set_internal_formal_parameter_count(1 + params);
Handle<JSFunction> function = isolate->factory()->NewFunction(
isolate->wasm_function_map(), name, MaybeHandle<Code>());
function->SetInternalField(0, *module_object);
function->set_shared(*shared);
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone;
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
JSOperatorBuilder javascript(&zone);
MachineOperatorBuilder machine(&zone);
JSGraph jsgraph(isolate, &graph, &common, &javascript, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
WasmGraphBuilder builder(&zone, &jsgraph, func->sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.set_module(module);
builder.BuildJSToWasmWrapper(wasm_code, func->sig);
//----------------------------------------------------------------------------
// Run the compilation pipeline.
//----------------------------------------------------------------------------
{
// Changes lowering requires types.
Typer typer(isolate, &graph);
NodeVector roots(&zone);
jsgraph.GetCachedNodes(&roots);
typer.Run(roots);
// Run generic and change lowering.
JSGenericLowering generic(true, &jsgraph);
ChangeLowering changes(&jsgraph);
GraphReducer graph_reducer(&zone, &graph, jsgraph.Dead());
graph_reducer.AddReducer(&changes);
graph_reducer.AddReducer(&generic);
graph_reducer.ReduceGraph();
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Graph after change lowering -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
int params = static_cast<int>(
module->GetFunctionSignature(index)->parameter_count());
CallDescriptor* incoming = Linkage::GetJSCallDescriptor(
&zone, false, params + 1, CallDescriptor::kNoFlags);
CompilationInfo info("js-to-wasm", isolate, &zone);
// TODO(titzer): this is technically a WASM wrapper, not a wasm function.
info.set_output_code_kind(Code::WASM_FUNCTION);
Handle<Code> code =
Pipeline::GenerateCodeForTesting(&info, incoming, &graph, nullptr);
#ifdef ENABLE_DISASSEMBLER
// Disassemble the wrapper code for debugging.
if (!code.is_null() && FLAG_print_opt_code) {
Vector<char> buffer;
const char* name = "";
if (func->name_offset > 0) {
const byte* ptr = module->module->module_start + func->name_offset;
name = reinterpret_cast<const char*>(ptr);
}
SNPrintF(buffer, "JS->WASM function wrapper #%d:%s", index, name);
OFStream os(stdout);
code->Disassemble(buffer.start(), os);
}
#endif
// Set the JSFunction's machine code.
function->set_code(*code);
}
return function;
}
Handle<Code> CompileWasmToJSWrapper(Isolate* isolate, wasm::ModuleEnv* module,
Handle<JSFunction> function,
uint32_t index) {
wasm::WasmFunction* func = &module->module->functions->at(index);
//----------------------------------------------------------------------------
// Create the Graph
//----------------------------------------------------------------------------
Zone zone;
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
JSOperatorBuilder javascript(&zone);
MachineOperatorBuilder machine(&zone);
JSGraph jsgraph(isolate, &graph, &common, &javascript, nullptr, &machine);
Node* control = nullptr;
Node* effect = nullptr;
WasmGraphBuilder builder(&zone, &jsgraph, func->sig);
builder.set_control_ptr(&control);
builder.set_effect_ptr(&effect);
builder.set_module(module);
builder.BuildWasmToJSWrapper(function, func->sig);
Handle<Code> code = Handle<Code>::null();
{
// Changes lowering requires types.
Typer typer(isolate, &graph);
NodeVector roots(&zone);
jsgraph.GetCachedNodes(&roots);
typer.Run(roots);
// Run generic and change lowering.
JSGenericLowering generic(true, &jsgraph);
ChangeLowering changes(&jsgraph);
GraphReducer graph_reducer(&zone, &graph, jsgraph.Dead());
graph_reducer.AddReducer(&changes);
graph_reducer.AddReducer(&generic);
graph_reducer.ReduceGraph();
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
OFStream os(stdout);
os << "-- Graph after change lowering -- " << std::endl;
os << AsRPO(graph);
}
// Schedule and compile to machine code.
CallDescriptor* incoming = module->GetWasmCallDescriptor(&zone, func->sig);
CompilationInfo info("wasm-to-js", isolate, &zone);
// TODO(titzer): this is technically a WASM wrapper, not a wasm function.
info.set_output_code_kind(Code::WASM_FUNCTION);
code = Pipeline::GenerateCodeForTesting(&info, incoming, &graph, nullptr);
#ifdef ENABLE_DISASSEMBLER
// Disassemble the wrapper code for debugging.
if (!code.is_null() && FLAG_print_opt_code) {
Vector<char> buffer;
const char* name = "";
if (func->name_offset > 0) {
const byte* ptr = module->module->module_start + func->name_offset;
name = reinterpret_cast<const char*>(ptr);
}
SNPrintF(buffer, "WASM->JS function wrapper #%d:%s", index, name);
OFStream os(stdout);
code->Disassemble(buffer.start(), os);
}
#endif
}
return code;
}
// Helper function to compile a single function.
Handle<Code> CompileWasmFunction(wasm::ErrorThrower& thrower, Isolate* isolate,
wasm::ModuleEnv* module_env,
const wasm::WasmFunction& function,
int index) {
if (FLAG_trace_wasm_compiler || FLAG_trace_wasm_decode_time) {
// TODO(titzer): clean me up a bit.
OFStream os(stdout);
os << "Compiling WASM function #" << index << ":";
if (function.name_offset > 0) {
os << module_env->module->GetName(function.name_offset);
}
os << std::endl;
}
// Initialize the function environment for decoding.
wasm::FunctionEnv env;
env.module = module_env;
env.sig = function.sig;
env.local_int32_count = function.local_int32_count;
env.local_int64_count = function.local_int64_count;
env.local_float32_count = function.local_float32_count;
env.local_float64_count = function.local_float64_count;
env.SumLocals();
// Create a TF graph during decoding.
Zone zone;
Graph graph(&zone);
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(
&zone, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
WasmGraphBuilder builder(&zone, &jsgraph, function.sig);
wasm::TreeResult result = wasm::BuildTFGraph(
&builder, &env, // --
module_env->module->module_start, // --
module_env->module->module_start + function.code_start_offset, // --
module_env->module->module_start + function.code_end_offset); // --
if (result.failed()) {
if (FLAG_trace_wasm_compiler) {
OFStream os(stdout);
os << "Compilation failed: " << result << std::endl;
}
// Add the function as another context for the exception
Vector<char> buffer;
SNPrintF(buffer, "Compiling WASM function #%d:%s failed:", index,
module_env->module->GetName(function.name_offset));
thrower.Failed(buffer.start(), result);
return Handle<Code>::null();
}
// Run the compiler pipeline to generate machine code.
CallDescriptor* descriptor = const_cast<CallDescriptor*>(
module_env->GetWasmCallDescriptor(&zone, function.sig));
CompilationInfo info("wasm", isolate, &zone);
info.set_output_code_kind(Code::WASM_FUNCTION);
Handle<Code> code =
Pipeline::GenerateCodeForTesting(&info, descriptor, &graph);
#ifdef ENABLE_DISASSEMBLER
// Disassemble the code for debugging.
if (!code.is_null() && FLAG_print_opt_code) {
Vector<char> buffer;
const char* name = "";
if (function.name_offset > 0) {
const byte* ptr = module_env->module->module_start + function.name_offset;
name = reinterpret_cast<const char*>(ptr);
}
SNPrintF(buffer, "WASM function #%d:%s", index, name);
OFStream os(stdout);
code->Disassemble(buffer.start(), os);
}
#endif
return code;
}
} // namespace compiler
} // namespace internal
} // namespace v8