v8/test/unittests/interpreter/bytecode-array-writer-unittest.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

375 lines
15 KiB
C++
Raw Normal View History

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/api.h"
#include "src/factory.h"
#include "src/interpreter/bytecode-array-writer.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-node.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecode-source-info.h"
#include "src/interpreter/constant-array-builder.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/source-position-table.h"
#include "src/utils.h"
#include "test/unittests/interpreter/bytecode-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
namespace bytecode_array_writer_unittest {
#define B(Name) static_cast<uint8_t>(Bytecode::k##Name)
#define R(i) static_cast<uint32_t>(Register(i).ToOperand())
class BytecodeArrayWriterUnittest : public TestWithIsolateAndZone {
public:
BytecodeArrayWriterUnittest()
: constant_array_builder_(zone()),
bytecode_array_writer_(
zone(), &constant_array_builder_,
SourcePositionTableBuilder::RECORD_SOURCE_POSITIONS) {}
~BytecodeArrayWriterUnittest() override {}
void Write(Bytecode bytecode, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, uint32_t operand3,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJump(Bytecode bytecode, BytecodeLabel* label,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJumpLoop(Bytecode bytecode, BytecodeLabel* label, int depth,
BytecodeSourceInfo info = BytecodeSourceInfo());
BytecodeArrayWriter* writer() { return &bytecode_array_writer_; }
ZoneVector<unsigned char>* bytecodes() { return writer()->bytecodes(); }
SourcePositionTableBuilder* source_position_table_builder() {
return writer()->source_position_table_builder();
}
private:
ConstantArrayBuilder constant_array_builder_;
BytecodeArrayWriter bytecode_array_writer_;
};
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
uint32_t operand3,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, operand3, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::WriteJump(Bytecode bytecode,
BytecodeLabel* label,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, info);
writer()->WriteJump(&node, label);
}
void BytecodeArrayWriterUnittest::WriteJumpLoop(Bytecode bytecode,
BytecodeLabel* label, int depth,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, depth, info);
writer()->WriteJump(&node, label);
}
TEST_F(BytecodeArrayWriterUnittest, SimpleExample) {
CHECK_EQ(bytecodes()->size(), 0u);
Write(Bytecode::kStackCheck, {10, false});
CHECK_EQ(bytecodes()->size(), 1u);
Write(Bytecode::kLdaSmi, 127, {55, true});
CHECK_EQ(bytecodes()->size(), 3u);
Write(Bytecode::kStar, Register(20).ToOperand());
CHECK_EQ(bytecodes()->size(), 5u);
Write(Bytecode::kLdar, Register(200).ToOperand());
CHECK_EQ(bytecodes()->size(), 9u);
Write(Bytecode::kReturn, {70, true});
CHECK_EQ(bytecodes()->size(), 10u);
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(LdaSmi), U8(127),
/* 3 */ B(Star), R8(20),
/* 5 */ B(Wide), B(Ldar), R16(200),
/* 9 70 S> */ B(Return),
// clang-format on
};
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(bytecodes()->at(i), expected_bytes[i]);
}
Handle<BytecodeArray> bytecode_array = writer()->ToBytecodeArray(
isolate(), 0, 0, factory()->empty_fixed_array());
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
PositionTableEntry expected_positions[] = {
{0, 10, false}, {1, 55, true}, {9, 70, true}};
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ComplexExample) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 30 E> */ B(StackCheck),
/* 1 42 S> */ B(LdaConstant), U8(0),
/* 3 42 E> */ B(Add), R8(1), U8(1),
/* 5 68 S> */ B(JumpIfUndefined), U8(39),
/* 7 */ B(JumpIfNull), U8(37),
/* 9 */ B(ToObject), R8(3),
[turbofan] Optimize fast enum cache driven for..in. This CL adds support to optimize for..in in fast enum-cache mode to the same degree that it was optimized in Crankshaft, without adding the same deoptimization loop that Crankshaft had with missing enum cache indices. That means code like for (var k in o) { var v = o[k]; // ... } and code like for (var k in o) { if (Object.prototype.hasOwnProperty.call(o, k)) { var v = o[k]; // ... } } which follows the https://eslint.org/docs/rules/guard-for-in linter rule, can now utilize the enum cache indices if o has only fast properties on the receiver, which speeds up the access o[k] significantly and reduces the pollution of the global megamorphic stub cache. For example the micro-benchmark in the tracking bug v8:6702 now runs faster than ever before: forIn: 1516 ms. forInHasOwnProperty: 1674 ms. forInHasOwnPropertySafe: 1595 ms. forInSum: 2051 ms. forInSumSafe: 2215 ms. Compared to numbers from V8 5.8 which is the last version running with Crankshaft forIn: 1641 ms. forInHasOwnProperty: 1719 ms. forInHasOwnPropertySafe: 1802 ms. forInSum: 2226 ms. forInSumSafe: 2409 ms. and V8 6.0 which is the current stable version with TurboFan: forIn: 1713 ms. forInHasOwnProperty: 5417 ms. forInHasOwnPropertySafe: 5324 ms. forInSum: 7556 ms. forInSumSafe: 11067 ms. It also improves the throughput on the string-fasta benchmark by around 7-10%, and there seems to be a ~5% improvement on the Speedometer/React benchmark locally. For this to work, the ForInPrepare bytecode was split into ForInEnumerate and ForInPrepare, which is very similar to how it was handled in Fullcodegen initially. In TurboFan we introduce a new operator LoadFieldByIndex that does the dynamic property load. This also removes the CheckMapValue operator again in favor of just using LoadField, ReferenceEqual and CheckIf, which work automatically with the EscapeAnalysis and the BranchConditionElimination. Bug: v8:6702 Change-Id: I91235413eea478ba77ace7bd14bb2f62e155dd9a Reviewed-on: https://chromium-review.googlesource.com/645949 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Cr-Commit-Position: refs/heads/master@{#47768}
2017-09-01 10:49:06 +00:00
/* 11 */ B(ForInPrepare), R8(3), U8(4),
/* 14 */ B(LdaZero),
/* 15 */ B(Star), R8(7),
/* 17 63 S> */ B(ForInContinue), R8(7), R8(6),
/* 20 */ B(JumpIfFalse), U8(24),
/* 22 */ B(ForInNext), R8(3), R8(7), R8(4), U8(1),
/* 27 */ B(JumpIfUndefined), U8(10),
/* 29 */ B(Star), R8(0),
/* 31 54 E> */ B(StackCheck),
/* 32 */ B(Ldar), R8(0),
/* 34 */ B(Star), R8(2),
/* 36 85 S> */ B(Return),
/* 37 */ B(ForInStep), R8(7),
/* 39 */ B(Star), R8(7),
/* 41 */ B(JumpLoop), U8(24), U8(0),
/* 44 */ B(LdaUndefined),
/* 45 85 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 30, false}, {1, 42, true}, {3, 42, false}, {6, 68, true},
{18, 63, true}, {32, 54, false}, {37, 85, true}, {46, 85, true}};
BytecodeLabel back_jump, jump_for_in, jump_end_1, jump_end_2, jump_end_3;
Write(Bytecode::kStackCheck, {30, false});
Write(Bytecode::kLdaConstant, U8(0), {42, true});
Write(Bytecode::kAdd, R(1), U8(1), {42, false});
WriteJump(Bytecode::kJumpIfUndefined, &jump_end_1, {68, true});
WriteJump(Bytecode::kJumpIfNull, &jump_end_2);
Write(Bytecode::kToObject, R(3));
[turbofan] Optimize fast enum cache driven for..in. This CL adds support to optimize for..in in fast enum-cache mode to the same degree that it was optimized in Crankshaft, without adding the same deoptimization loop that Crankshaft had with missing enum cache indices. That means code like for (var k in o) { var v = o[k]; // ... } and code like for (var k in o) { if (Object.prototype.hasOwnProperty.call(o, k)) { var v = o[k]; // ... } } which follows the https://eslint.org/docs/rules/guard-for-in linter rule, can now utilize the enum cache indices if o has only fast properties on the receiver, which speeds up the access o[k] significantly and reduces the pollution of the global megamorphic stub cache. For example the micro-benchmark in the tracking bug v8:6702 now runs faster than ever before: forIn: 1516 ms. forInHasOwnProperty: 1674 ms. forInHasOwnPropertySafe: 1595 ms. forInSum: 2051 ms. forInSumSafe: 2215 ms. Compared to numbers from V8 5.8 which is the last version running with Crankshaft forIn: 1641 ms. forInHasOwnProperty: 1719 ms. forInHasOwnPropertySafe: 1802 ms. forInSum: 2226 ms. forInSumSafe: 2409 ms. and V8 6.0 which is the current stable version with TurboFan: forIn: 1713 ms. forInHasOwnProperty: 5417 ms. forInHasOwnPropertySafe: 5324 ms. forInSum: 7556 ms. forInSumSafe: 11067 ms. It also improves the throughput on the string-fasta benchmark by around 7-10%, and there seems to be a ~5% improvement on the Speedometer/React benchmark locally. For this to work, the ForInPrepare bytecode was split into ForInEnumerate and ForInPrepare, which is very similar to how it was handled in Fullcodegen initially. In TurboFan we introduce a new operator LoadFieldByIndex that does the dynamic property load. This also removes the CheckMapValue operator again in favor of just using LoadField, ReferenceEqual and CheckIf, which work automatically with the EscapeAnalysis and the BranchConditionElimination. Bug: v8:6702 Change-Id: I91235413eea478ba77ace7bd14bb2f62e155dd9a Reviewed-on: https://chromium-review.googlesource.com/645949 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Cr-Commit-Position: refs/heads/master@{#47768}
2017-09-01 10:49:06 +00:00
Write(Bytecode::kForInPrepare, R(3), U8(4));
Write(Bytecode::kLdaZero);
Write(Bytecode::kStar, R(7));
writer()->BindLabel(&back_jump);
Write(Bytecode::kForInContinue, R(7), R(6), {63, true});
WriteJump(Bytecode::kJumpIfFalse, &jump_end_3);
Write(Bytecode::kForInNext, R(3), R(7), R(4), U8(1));
WriteJump(Bytecode::kJumpIfUndefined, &jump_for_in);
Write(Bytecode::kStar, R(0));
Write(Bytecode::kStackCheck, {54, false});
Write(Bytecode::kLdar, R(0));
Write(Bytecode::kStar, R(2));
Write(Bytecode::kReturn, {85, true});
writer()->BindLabel(&jump_for_in);
Write(Bytecode::kForInStep, R(7));
Write(Bytecode::kStar, R(7));
WriteJumpLoop(Bytecode::kJumpLoop, &back_jump, 0);
writer()->BindLabel(&jump_end_1);
writer()->BindLabel(&jump_end_2);
writer()->BindLabel(&jump_end_3);
Write(Bytecode::kLdaUndefined);
Write(Bytecode::kReturn, {85, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array = writer()->ToBytecodeArray(
isolate(), 0, 0, factory()->empty_fixed_array());
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ElideNoneffectfulBytecodes) {
if (!i::FLAG_ignition_elide_noneffectful_bytecodes) return;
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(Ldar), R8(20),
/* 3 */ B(Star), R8(20),
/* 5 */ B(CreateMappedArguments),
/* 6 60 S> */ B(LdaSmi), U8(127),
/* 8 70 S> */ B(Ldar), R8(20),
/* 10 75 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {{0, 10, false},
{1, 55, true},
{6, 60, false},
{8, 70, true},
{10, 75, true}};
Write(Bytecode::kStackCheck, {10, false});
Write(Bytecode::kLdaSmi, 127, {55, true}); // Should be elided.
Write(Bytecode::kLdar, Register(20).ToOperand());
Write(Bytecode::kStar, Register(20).ToOperand());
Write(Bytecode::kLdar, Register(20).ToOperand()); // Should be elided.
Write(Bytecode::kCreateMappedArguments);
Write(Bytecode::kLdaSmi, 127, {60, false}); // Not elided due to source info.
Write(Bytecode::kLdar, Register(20).ToOperand(), {70, true});
Write(Bytecode::kReturn, {75, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array = writer()->ToBytecodeArray(
isolate(), 0, 0, factory()->empty_fixed_array());
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, DeadcodeElimination) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 10 E> */ B(StackCheck),
/* 1 55 S> */ B(LdaSmi), U8(127),
/* 3 */ B(Jump), U8(2),
/* 5 65 S> */ B(LdaSmi), U8(127),
/* 7 */ B(JumpIfFalse), U8(3),
/* 9 75 S> */ B(Return),
/* 10 */ B(JumpIfFalse), U8(3),
/* 12 */ B(Throw),
/* 13 */ B(JumpIfFalse), U8(3),
/* 15 */ B(ReThrow),
/* 16 */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 10, false}, {1, 55, true}, {5, 65, true}, {9, 75, true}};
BytecodeLabel after_jump, after_conditional_jump, after_return, after_throw,
after_rethrow;
Write(Bytecode::kStackCheck, {10, false});
Write(Bytecode::kLdaSmi, 127, {55, true});
WriteJump(Bytecode::kJump, &after_jump);
Write(Bytecode::kLdaSmi, 127); // Dead code.
WriteJump(Bytecode::kJumpIfFalse, &after_conditional_jump); // Dead code.
writer()->BindLabel(&after_jump);
writer()->BindLabel(&after_conditional_jump);
Write(Bytecode::kLdaSmi, 127, {65, true});
WriteJump(Bytecode::kJumpIfFalse, &after_return);
Write(Bytecode::kReturn, {75, true});
Write(Bytecode::kLdaSmi, 127, {100, true}); // Dead code.
writer()->BindLabel(&after_return);
WriteJump(Bytecode::kJumpIfFalse, &after_throw);
Write(Bytecode::kThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_throw);
WriteJump(Bytecode::kJumpIfFalse, &after_rethrow);
Write(Bytecode::kReThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_rethrow);
Write(Bytecode::kReturn);
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array = writer()->ToBytecodeArray(
isolate(), 0, 0, factory()->empty_fixed_array());
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
#undef B
#undef R
} // namespace bytecode_array_writer_unittest
} // namespace interpreter
} // namespace internal
} // namespace v8