327 lines
8.7 KiB
JavaScript
327 lines
8.7 KiB
JavaScript
|
// Copyright 2011 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
/**
|
||
|
* Constructs a Splay tree. A splay tree is a self-balancing binary
|
||
|
* search tree with the additional property that recently accessed
|
||
|
* elements are quick to access again. It performs basic operations
|
||
|
* such as insertion, look-up and removal in O(log(n)) amortized time.
|
||
|
*
|
||
|
* @constructor
|
||
|
*/
|
||
|
function SplayTree() {
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Pointer to the root node of the tree.
|
||
|
*
|
||
|
* @type {SplayTree.Node}
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.prototype.root_ = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {boolean} Whether the tree is empty.
|
||
|
*/
|
||
|
SplayTree.prototype.isEmpty = function() {
|
||
|
return !this.root_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Inserts a node into the tree with the specified key and value if
|
||
|
* the tree does not already contain a node with the specified key. If
|
||
|
* the value is inserted, it becomes the root of the tree.
|
||
|
*
|
||
|
* @param {number} key Key to insert into the tree.
|
||
|
* @param {*} value Value to insert into the tree.
|
||
|
*/
|
||
|
SplayTree.prototype.insert = function(key, value) {
|
||
|
if (this.isEmpty()) {
|
||
|
this.root_ = new SplayTree.Node(key, value);
|
||
|
return;
|
||
|
}
|
||
|
// Splay on the key to move the last node on the search path for
|
||
|
// the key to the root of the tree.
|
||
|
this.splay_(key);
|
||
|
if (this.root_.key == key) {
|
||
|
return;
|
||
|
}
|
||
|
var node = new SplayTree.Node(key, value);
|
||
|
if (key > this.root_.key) {
|
||
|
node.left = this.root_;
|
||
|
node.right = this.root_.right;
|
||
|
this.root_.right = null;
|
||
|
} else {
|
||
|
node.right = this.root_;
|
||
|
node.left = this.root_.left;
|
||
|
this.root_.left = null;
|
||
|
}
|
||
|
this.root_ = node;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Removes a node with the specified key from the tree if the tree
|
||
|
* contains a node with this key. The removed node is returned. If the
|
||
|
* key is not found, an exception is thrown.
|
||
|
*
|
||
|
* @param {number} key Key to find and remove from the tree.
|
||
|
* @return {SplayTree.Node} The removed node.
|
||
|
*/
|
||
|
SplayTree.prototype.remove = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
throw Error('Key not found: ' + key);
|
||
|
}
|
||
|
this.splay_(key);
|
||
|
if (this.root_.key != key) {
|
||
|
throw Error('Key not found: ' + key);
|
||
|
}
|
||
|
var removed = this.root_;
|
||
|
if (!this.root_.left) {
|
||
|
this.root_ = this.root_.right;
|
||
|
} else {
|
||
|
var right = this.root_.right;
|
||
|
this.root_ = this.root_.left;
|
||
|
// Splay to make sure that the new root has an empty right child.
|
||
|
this.splay_(key);
|
||
|
// Insert the original right child as the right child of the new
|
||
|
// root.
|
||
|
this.root_.right = right;
|
||
|
}
|
||
|
return removed;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the node having the specified key or null if the tree doesn't contain
|
||
|
* a node with the specified key.
|
||
|
*
|
||
|
* @param {number} key Key to find in the tree.
|
||
|
* @return {SplayTree.Node} Node having the specified key.
|
||
|
*/
|
||
|
SplayTree.prototype.find = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
this.splay_(key);
|
||
|
return this.root_.key == key ? this.root_ : null;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {SplayTree.Node} Node having the maximum key value.
|
||
|
*/
|
||
|
SplayTree.prototype.findMax = function(opt_startNode) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
var current = opt_startNode || this.root_;
|
||
|
while (current.right) {
|
||
|
current = current.right;
|
||
|
}
|
||
|
return current;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {SplayTree.Node} Node having the maximum key value that
|
||
|
* is less than the specified key value.
|
||
|
*/
|
||
|
SplayTree.prototype.findGreatestLessThan = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
// Splay on the key to move the node with the given key or the last
|
||
|
// node on the search path to the top of the tree.
|
||
|
this.splay_(key);
|
||
|
// Now the result is either the root node or the greatest node in
|
||
|
// the left subtree.
|
||
|
if (this.root_.key < key) {
|
||
|
return this.root_;
|
||
|
} else if (this.root_.left) {
|
||
|
return this.findMax(this.root_.left);
|
||
|
} else {
|
||
|
return null;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {Array<*>} An array containing all the keys of tree's nodes.
|
||
|
*/
|
||
|
SplayTree.prototype.exportKeys = function() {
|
||
|
var result = [];
|
||
|
if (!this.isEmpty()) {
|
||
|
this.root_.traverse_(function(node) { result.push(node.key); });
|
||
|
}
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Perform the splay operation for the given key. Moves the node with
|
||
|
* the given key to the top of the tree. If no node has the given
|
||
|
* key, the last node on the search path is moved to the top of the
|
||
|
* tree. This is the simplified top-down splaying algorithm from:
|
||
|
* "Self-adjusting Binary Search Trees" by Sleator and Tarjan
|
||
|
*
|
||
|
* @param {number} key Key to splay the tree on.
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.prototype.splay_ = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return;
|
||
|
}
|
||
|
// Create a dummy node. The use of the dummy node is a bit
|
||
|
// counter-intuitive: The right child of the dummy node will hold
|
||
|
// the L tree of the algorithm. The left child of the dummy node
|
||
|
// will hold the R tree of the algorithm. Using a dummy node, left
|
||
|
// and right will always be nodes and we avoid special cases.
|
||
|
var dummy, left, right;
|
||
|
dummy = left = right = new SplayTree.Node(null, null);
|
||
|
var current = this.root_;
|
||
|
while (true) {
|
||
|
if (key < current.key) {
|
||
|
if (!current.left) {
|
||
|
break;
|
||
|
}
|
||
|
if (key < current.left.key) {
|
||
|
// Rotate right.
|
||
|
var tmp = current.left;
|
||
|
current.left = tmp.right;
|
||
|
tmp.right = current;
|
||
|
current = tmp;
|
||
|
if (!current.left) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Link right.
|
||
|
right.left = current;
|
||
|
right = current;
|
||
|
current = current.left;
|
||
|
} else if (key > current.key) {
|
||
|
if (!current.right) {
|
||
|
break;
|
||
|
}
|
||
|
if (key > current.right.key) {
|
||
|
// Rotate left.
|
||
|
var tmp = current.right;
|
||
|
current.right = tmp.left;
|
||
|
tmp.left = current;
|
||
|
current = tmp;
|
||
|
if (!current.right) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Link left.
|
||
|
left.right = current;
|
||
|
left = current;
|
||
|
current = current.right;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Assemble.
|
||
|
left.right = current.left;
|
||
|
right.left = current.right;
|
||
|
current.left = dummy.right;
|
||
|
current.right = dummy.left;
|
||
|
this.root_ = current;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Constructs a Splay tree node.
|
||
|
*
|
||
|
* @param {number} key Key.
|
||
|
* @param {*} value Value.
|
||
|
*/
|
||
|
SplayTree.Node = function(key, value) {
|
||
|
this.key = key;
|
||
|
this.value = value;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @type {SplayTree.Node}
|
||
|
*/
|
||
|
SplayTree.Node.prototype.left = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @type {SplayTree.Node}
|
||
|
*/
|
||
|
SplayTree.Node.prototype.right = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Performs an ordered traversal of the subtree starting at
|
||
|
* this SplayTree.Node.
|
||
|
*
|
||
|
* @param {function(SplayTree.Node)} f Visitor function.
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.Node.prototype.traverse_ = function(f) {
|
||
|
var current = this;
|
||
|
while (current) {
|
||
|
var left = current.left;
|
||
|
if (left) left.traverse_(f);
|
||
|
f(current);
|
||
|
current = current.right;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
SplayTree.prototype.traverseBreadthFirst = function (f) {
|
||
|
if (f(this.root_.value)) return;
|
||
|
|
||
|
var stack = [this.root_];
|
||
|
var length = 1;
|
||
|
|
||
|
while (length > 0) {
|
||
|
var new_stack = new Array(stack.length * 2);
|
||
|
var new_length = 0;
|
||
|
for (var i = 0; i < length; i++) {
|
||
|
var n = stack[i];
|
||
|
var l = n.left;
|
||
|
var r = n.right;
|
||
|
if (l) {
|
||
|
if (f(l.value)) return;
|
||
|
new_stack[new_length++] = l;
|
||
|
}
|
||
|
if (r) {
|
||
|
if (f(r.value)) return;
|
||
|
new_stack[new_length++] = r;
|
||
|
}
|
||
|
}
|
||
|
stack = new_stack;
|
||
|
length = new_length;
|
||
|
}
|
||
|
};
|