v8/test/cctest/test-regexp.cc

1821 lines
58 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "ast.h"
#include "char-predicates-inl.h"
#include "cctest.h"
#include "jsregexp.h"
#include "parser.h"
#include "regexp-macro-assembler.h"
#include "regexp-macro-assembler-irregexp.h"
#include "string-stream.h"
#include "zone-inl.h"
#ifdef V8_INTERPRETED_REGEXP
#include "interpreter-irregexp.h"
#else // V8_INTERPRETED_REGEXP
#include "macro-assembler.h"
#include "code.h"
#if V8_TARGET_ARCH_ARM
#include "arm/assembler-arm.h"
#include "arm/macro-assembler-arm.h"
#include "arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_ARM64
#include "arm64/assembler-arm64.h"
#include "arm64/macro-assembler-arm64.h"
#include "arm64/regexp-macro-assembler-arm64.h"
#endif
#if V8_TARGET_ARCH_MIPS
#include "mips/assembler-mips.h"
#include "mips/macro-assembler-mips.h"
#include "mips/regexp-macro-assembler-mips.h"
#endif
#if V8_TARGET_ARCH_X64
#include "x64/assembler-x64.h"
#include "x64/macro-assembler-x64.h"
#include "x64/regexp-macro-assembler-x64.h"
#endif
#if V8_TARGET_ARCH_IA32
#include "ia32/assembler-ia32.h"
#include "ia32/macro-assembler-ia32.h"
#include "ia32/regexp-macro-assembler-ia32.h"
#endif
#if V8_TARGET_ARCH_X87
#include "x87/assembler-x87.h"
#include "x87/macro-assembler-x87.h"
#include "x87/regexp-macro-assembler-x87.h"
#endif
#endif // V8_INTERPRETED_REGEXP
using namespace v8::internal;
static bool CheckParse(const char* input) {
V8::Initialize(NULL);
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
return v8::internal::RegExpParser::ParseRegExp(
&reader, false, &result, &zone);
}
static SmartArrayPointer<const char> Parse(const char* input) {
V8::Initialize(NULL);
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
&reader, false, &result, &zone));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
SmartArrayPointer<const char> output = result.tree->ToString(&zone);
return output;
}
static bool CheckSimple(const char* input) {
V8::Initialize(NULL);
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
&reader, false, &result, &zone));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
return result.simple;
}
struct MinMaxPair {
int min_match;
int max_match;
};
static MinMaxPair CheckMinMaxMatch(const char* input) {
V8::Initialize(NULL);
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
&reader, false, &result, &zone));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
int min_match = result.tree->min_match();
int max_match = result.tree->max_match();
MinMaxPair pair = { min_match, max_match };
return pair;
}
#define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input))
#define CHECK_PARSE_EQ(input, expected) CHECK_EQ(expected, Parse(input).get())
#define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input));
#define CHECK_MIN_MAX(input, min, max) \
{ MinMaxPair min_max = CheckMinMaxMatch(input); \
CHECK_EQ(min, min_max.min_match); \
CHECK_EQ(max, min_max.max_match); \
}
TEST(Parser) {
V8::Initialize(NULL);
CHECK_PARSE_ERROR("?");
CHECK_PARSE_EQ("abc", "'abc'");
CHECK_PARSE_EQ("", "%");
CHECK_PARSE_EQ("abc|def", "(| 'abc' 'def')");
CHECK_PARSE_EQ("abc|def|ghi", "(| 'abc' 'def' 'ghi')");
CHECK_PARSE_EQ("^xxx$", "(: @^i 'xxx' @$i)");
CHECK_PARSE_EQ("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')");
CHECK_PARSE_EQ("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])");
CHECK_PARSE_EQ("a*", "(# 0 - g 'a')");
CHECK_PARSE_EQ("a*?", "(# 0 - n 'a')");
CHECK_PARSE_EQ("abc+", "(: 'ab' (# 1 - g 'c'))");
CHECK_PARSE_EQ("abc+?", "(: 'ab' (# 1 - n 'c'))");
CHECK_PARSE_EQ("xyz?", "(: 'xy' (# 0 1 g 'z'))");
CHECK_PARSE_EQ("xyz??", "(: 'xy' (# 0 1 n 'z'))");
CHECK_PARSE_EQ("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))");
CHECK_PARSE_EQ("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))");
CHECK_PARSE_EQ("xyz{93}", "(: 'xy' (# 93 93 g 'z'))");
CHECK_PARSE_EQ("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))");
CHECK_PARSE_EQ("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))");
CHECK_PARSE_EQ("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))");
CHECK_PARSE_EQ("xyz{1,}", "(: 'xy' (# 1 - g 'z'))");
CHECK_PARSE_EQ("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))");
CHECK_PARSE_EQ("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'");
CHECK_PARSE_EQ("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')");
CHECK_PARSE_EQ("(?:foo)", "'foo'");
CHECK_PARSE_EQ("(?: foo )", "' foo '");
CHECK_PARSE_EQ("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))");
CHECK_PARSE_EQ("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')");
CHECK_PARSE_EQ("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')");
CHECK_PARSE_EQ("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')");
CHECK_PARSE_EQ("()", "(^ %)");
CHECK_PARSE_EQ("(?=)", "(-> + %)");
CHECK_PARSE_EQ("[]", "^[\\x00-\\uffff]"); // Doesn't compile on windows
CHECK_PARSE_EQ("[^]", "[\\x00-\\uffff]"); // \uffff isn't in codepage 1252
CHECK_PARSE_EQ("[x]", "[x]");
CHECK_PARSE_EQ("[xyz]", "[x y z]");
CHECK_PARSE_EQ("[a-zA-Z0-9]", "[a-z A-Z 0-9]");
CHECK_PARSE_EQ("[-123]", "[- 1 2 3]");
CHECK_PARSE_EQ("[^123]", "^[1 2 3]");
CHECK_PARSE_EQ("]", "']'");
CHECK_PARSE_EQ("}", "'}'");
CHECK_PARSE_EQ("[a-b-c]", "[a-b - c]");
CHECK_PARSE_EQ("[\\d]", "[0-9]");
CHECK_PARSE_EQ("[x\\dz]", "[x 0-9 z]");
CHECK_PARSE_EQ("[\\d-z]", "[0-9 - z]");
CHECK_PARSE_EQ("[\\d-\\d]", "[0-9 - 0-9]");
CHECK_PARSE_EQ("[z-\\d]", "[z - 0-9]");
// Control character outside character class.
CHECK_PARSE_EQ("\\cj\\cJ\\ci\\cI\\ck\\cK",
"'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'");
CHECK_PARSE_EQ("\\c!", "'\\c!'");
CHECK_PARSE_EQ("\\c_", "'\\c_'");
CHECK_PARSE_EQ("\\c~", "'\\c~'");
CHECK_PARSE_EQ("\\c1", "'\\c1'");
// Control character inside character class.
CHECK_PARSE_EQ("[\\c!]", "[\\ c !]");
CHECK_PARSE_EQ("[\\c_]", "[\\x1f]");
CHECK_PARSE_EQ("[\\c~]", "[\\ c ~]");
CHECK_PARSE_EQ("[\\ca]", "[\\x01]");
CHECK_PARSE_EQ("[\\cz]", "[\\x1a]");
CHECK_PARSE_EQ("[\\cA]", "[\\x01]");
CHECK_PARSE_EQ("[\\cZ]", "[\\x1a]");
CHECK_PARSE_EQ("[\\c1]", "[\\x11]");
CHECK_PARSE_EQ("[a\\]c]", "[a ] c]");
CHECK_PARSE_EQ("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '");
CHECK_PARSE_EQ("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]");
CHECK_PARSE_EQ("\\0", "'\\x00'");
CHECK_PARSE_EQ("\\8", "'8'");
CHECK_PARSE_EQ("\\9", "'9'");
CHECK_PARSE_EQ("\\11", "'\\x09'");
CHECK_PARSE_EQ("\\11a", "'\\x09a'");
CHECK_PARSE_EQ("\\011", "'\\x09'");
CHECK_PARSE_EQ("\\00011", "'\\x0011'");
CHECK_PARSE_EQ("\\118", "'\\x098'");
CHECK_PARSE_EQ("\\111", "'I'");
CHECK_PARSE_EQ("\\1111", "'I1'");
CHECK_PARSE_EQ("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))");
CHECK_PARSE_EQ("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))");
CHECK_PARSE_EQ("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))");
CHECK_PARSE_EQ("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')");
CHECK_PARSE_EQ("(x)(x)(x)\\1*", "(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 1)))");
CHECK_PARSE_EQ("(x)(x)(x)\\2*", "(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 2)))");
CHECK_PARSE_EQ("(x)(x)(x)\\3*", "(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 3)))");
CHECK_PARSE_EQ("(x)(x)(x)\\4*", "(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g '\\x04'))");
CHECK_PARSE_EQ("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))");
CHECK_PARSE_EQ("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')");
CHECK_PARSE_EQ("(a)\\1", "(: (^ 'a') (<- 1))");
CHECK_PARSE_EQ("(a\\1)", "(^ 'a')");
CHECK_PARSE_EQ("(\\1a)", "(^ 'a')");
CHECK_PARSE_EQ("(?=a)?a", "'a'");
CHECK_PARSE_EQ("(?=a){0,10}a", "'a'");
CHECK_PARSE_EQ("(?=a){1,10}a", "(: (-> + 'a') 'a')");
CHECK_PARSE_EQ("(?=a){9,10}a", "(: (-> + 'a') 'a')");
CHECK_PARSE_EQ("(?!a)?a", "'a'");
CHECK_PARSE_EQ("\\1(a)", "(^ 'a')");
CHECK_PARSE_EQ("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))");
CHECK_PARSE_EQ("(?!\\1(a\\1)\\1)\\1", "(: (-> - (: (^ 'a') (<- 1))) (<- 1))");
CHECK_PARSE_EQ("[\\0]", "[\\x00]");
CHECK_PARSE_EQ("[\\11]", "[\\x09]");
CHECK_PARSE_EQ("[\\11a]", "[\\x09 a]");
CHECK_PARSE_EQ("[\\011]", "[\\x09]");
CHECK_PARSE_EQ("[\\00011]", "[\\x00 1 1]");
CHECK_PARSE_EQ("[\\118]", "[\\x09 8]");
CHECK_PARSE_EQ("[\\111]", "[I]");
CHECK_PARSE_EQ("[\\1111]", "[I 1]");
CHECK_PARSE_EQ("\\x34", "'\x34'");
CHECK_PARSE_EQ("\\x60", "'\x60'");
CHECK_PARSE_EQ("\\x3z", "'x3z'");
CHECK_PARSE_EQ("\\c", "'\\c'");
CHECK_PARSE_EQ("\\u0034", "'\x34'");
CHECK_PARSE_EQ("\\u003z", "'u003z'");
CHECK_PARSE_EQ("foo[z]*", "(: 'foo' (# 0 - g [z]))");
CHECK_SIMPLE("", false);
CHECK_SIMPLE("a", true);
CHECK_SIMPLE("a|b", false);
CHECK_SIMPLE("a\\n", false);
CHECK_SIMPLE("^a", false);
CHECK_SIMPLE("a$", false);
CHECK_SIMPLE("a\\b!", false);
CHECK_SIMPLE("a\\Bb", false);
CHECK_SIMPLE("a*", false);
CHECK_SIMPLE("a*?", false);
CHECK_SIMPLE("a?", false);
CHECK_SIMPLE("a??", false);
CHECK_SIMPLE("a{0,1}?", false);
CHECK_SIMPLE("a{1,1}?", false);
CHECK_SIMPLE("a{1,2}?", false);
CHECK_SIMPLE("a+?", false);
CHECK_SIMPLE("(a)", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(\\1a)", false);
CHECK_SIMPLE("\\1(a)", false);
CHECK_SIMPLE("a\\s", false);
CHECK_SIMPLE("a\\S", false);
CHECK_SIMPLE("a\\d", false);
CHECK_SIMPLE("a\\D", false);
CHECK_SIMPLE("a\\w", false);
CHECK_SIMPLE("a\\W", false);
CHECK_SIMPLE("a.", false);
CHECK_SIMPLE("a\\q", false);
CHECK_SIMPLE("a[a]", false);
CHECK_SIMPLE("a[^a]", false);
CHECK_SIMPLE("a[a-z]", false);
CHECK_SIMPLE("a[\\q]", false);
CHECK_SIMPLE("a(?:b)", false);
CHECK_SIMPLE("a(?=b)", false);
CHECK_SIMPLE("a(?!b)", false);
CHECK_SIMPLE("\\x60", false);
CHECK_SIMPLE("\\u0060", false);
CHECK_SIMPLE("\\cA", false);
CHECK_SIMPLE("\\q", false);
CHECK_SIMPLE("\\1112", false);
CHECK_SIMPLE("\\0", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(?=a)?a", false);
CHECK_SIMPLE("(?!a)?a\\1", false);
CHECK_SIMPLE("(?:(?=a))a\\1", false);
CHECK_PARSE_EQ("a{}", "'a{}'");
CHECK_PARSE_EQ("a{,}", "'a{,}'");
CHECK_PARSE_EQ("a{", "'a{'");
CHECK_PARSE_EQ("a{z}", "'a{z}'");
CHECK_PARSE_EQ("a{1z}", "'a{1z}'");
CHECK_PARSE_EQ("a{12z}", "'a{12z}'");
CHECK_PARSE_EQ("a{12,", "'a{12,'");
CHECK_PARSE_EQ("a{12,3b", "'a{12,3b'");
CHECK_PARSE_EQ("{}", "'{}'");
CHECK_PARSE_EQ("{,}", "'{,}'");
CHECK_PARSE_EQ("{", "'{'");
CHECK_PARSE_EQ("{z}", "'{z}'");
CHECK_PARSE_EQ("{1z}", "'{1z}'");
CHECK_PARSE_EQ("{12z}", "'{12z}'");
CHECK_PARSE_EQ("{12,", "'{12,'");
CHECK_PARSE_EQ("{12,3b", "'{12,3b'");
CHECK_MIN_MAX("a", 1, 1);
CHECK_MIN_MAX("abc", 3, 3);
CHECK_MIN_MAX("a[bc]d", 3, 3);
CHECK_MIN_MAX("a|bc", 1, 2);
CHECK_MIN_MAX("ab|c", 1, 2);
CHECK_MIN_MAX("a||bc", 0, 2);
CHECK_MIN_MAX("|", 0, 0);
CHECK_MIN_MAX("(?:ab)", 2, 2);
CHECK_MIN_MAX("(?:ab|cde)", 2, 3);
CHECK_MIN_MAX("(?:ab)|cde", 2, 3);
CHECK_MIN_MAX("(ab)", 2, 2);
CHECK_MIN_MAX("(ab|cde)", 2, 3);
CHECK_MIN_MAX("(ab)\\1", 2, 4);
CHECK_MIN_MAX("(ab|cde)\\1", 2, 6);
CHECK_MIN_MAX("(?:ab)?", 0, 2);
CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a?", 0, 1);
CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a??", 0, 1);
CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)?", 0, 1);
CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a{0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0,0}", 0, 0);
CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab){4,7}", 8, 14);
CHECK_MIN_MAX("a\\bc", 2, 2);
CHECK_MIN_MAX("a\\Bc", 2, 2);
CHECK_MIN_MAX("a\\sc", 3, 3);
CHECK_MIN_MAX("a\\Sc", 3, 3);
CHECK_MIN_MAX("a(?=b)c", 2, 2);
CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2);
CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2);
}
TEST(ParserRegression) {
CHECK_PARSE_EQ("[A-Z$-][x]", "(! [A-Z $ -] [x])");
CHECK_PARSE_EQ("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')");
CHECK_PARSE_EQ("{", "'{'");
CHECK_PARSE_EQ("a|", "(| 'a' %)");
}
static void ExpectError(const char* input,
const char* expected) {
V8::Initialize(NULL);
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(!v8::internal::RegExpParser::ParseRegExp(
&reader, false, &result, &zone));
CHECK(result.tree == NULL);
CHECK(!result.error.is_null());
SmartArrayPointer<char> str = result.error->ToCString(ALLOW_NULLS);
CHECK_EQ(expected, str.get());
}
TEST(Errors) {
const char* kEndBackslash = "\\ at end of pattern";
ExpectError("\\", kEndBackslash);
const char* kUnterminatedGroup = "Unterminated group";
ExpectError("(foo", kUnterminatedGroup);
const char* kInvalidGroup = "Invalid group";
ExpectError("(?", kInvalidGroup);
const char* kUnterminatedCharacterClass = "Unterminated character class";
ExpectError("[", kUnterminatedCharacterClass);
ExpectError("[a-", kUnterminatedCharacterClass);
const char* kNothingToRepeat = "Nothing to repeat";
ExpectError("*", kNothingToRepeat);
ExpectError("?", kNothingToRepeat);
ExpectError("+", kNothingToRepeat);
ExpectError("{1}", kNothingToRepeat);
ExpectError("{1,2}", kNothingToRepeat);
ExpectError("{1,}", kNothingToRepeat);
// Check that we don't allow more than kMaxCapture captures
const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures.
const char* kTooManyCaptures = "Too many captures";
HeapStringAllocator allocator;
StringStream accumulator(&allocator);
for (int i = 0; i <= kMaxCaptures; i++) {
accumulator.Add("()");
}
SmartArrayPointer<const char> many_captures(accumulator.ToCString());
ExpectError(many_captures.get(), kTooManyCaptures);
}
static bool IsDigit(uc16 c) {
return ('0' <= c && c <= '9');
}
static bool NotDigit(uc16 c) {
return !IsDigit(c);
}
static bool IsWhiteSpaceOrLineTerminator(uc16 c) {
// According to ECMA 5.1, 15.10.2.12 the CharacterClassEscape \s includes
// WhiteSpace (7.2) and LineTerminator (7.3) values.
return v8::internal::WhiteSpaceOrLineTerminator::Is(c);
}
static bool NotWhiteSpaceNorLineTermiantor(uc16 c) {
return !IsWhiteSpaceOrLineTerminator(c);
}
static bool NotWord(uc16 c) {
return !IsRegExpWord(c);
}
static void TestCharacterClassEscapes(uc16 c, bool (pred)(uc16 c)) {
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(2, &zone);
CharacterRange::AddClassEscape(c, ranges, &zone);
for (unsigned i = 0; i < (1 << 16); i++) {
bool in_class = false;
for (int j = 0; !in_class && j < ranges->length(); j++) {
CharacterRange& range = ranges->at(j);
in_class = (range.from() <= i && i <= range.to());
}
CHECK_EQ(pred(i), in_class);
}
}
TEST(CharacterClassEscapes) {
v8::internal::V8::Initialize(NULL);
TestCharacterClassEscapes('.', IsRegExpNewline);
TestCharacterClassEscapes('d', IsDigit);
TestCharacterClassEscapes('D', NotDigit);
TestCharacterClassEscapes('s', IsWhiteSpaceOrLineTerminator);
TestCharacterClassEscapes('S', NotWhiteSpaceNorLineTermiantor);
TestCharacterClassEscapes('w', IsRegExpWord);
TestCharacterClassEscapes('W', NotWord);
}
static RegExpNode* Compile(const char* input,
bool multiline,
bool is_ascii,
Zone* zone) {
V8::Initialize(NULL);
Isolate* isolate = CcTest::i_isolate();
FlatStringReader reader(isolate, CStrVector(input));
RegExpCompileData compile_data;
if (!v8::internal::RegExpParser::ParseRegExp(&reader, multiline,
&compile_data, zone))
return NULL;
Handle<String> pattern = isolate->factory()->
NewStringFromUtf8(CStrVector(input)).ToHandleChecked();
Regexp: Improve the speed that we scan for an initial point where a non-anchored regexp can match by using a Boyer-Moore-like table. This is done by identifying non-greedy non-capturing loops in the nodes that eat any character one at a time. For example in the middle of the regexp /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly inserted at the start of any non-anchored regexp. When we have found such a loop we look ahead in the nodes to find the set of characters that can come at given distances. For example for the regexp /.?foo/ we know that there are at least 3 characters ahead of us, and the sets of characters that can occur are [any, [f, o], [o]]. We find a range in the lookahead info where the set of characters is reasonably constrained. In our example this is from index 1 to 2 (0 is not constrained). We can now look 3 characters ahead and if we don't find one of [f, o] (the union of [f, o] and [o]) then we can skip forwards by the range size (in this case 2). For Unicode input strings we do the same, but modulo 128. We also look at the first string fed to the regexp and use that to get a hint of the character frequencies in the inputs. This affects the assessment of whether the set of characters is 'reasonably constrained'. We still have the old lookahead mechanism, which uses a wide load of multiple characters followed by a mask and compare to determine whether a match is possible at this point. Review URL: http://codereview.chromium.org/9965010 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@11204 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-04-02 09:38:07 +00:00
Handle<String> sample_subject =
isolate->factory()->NewStringFromUtf8(CStrVector("")).ToHandleChecked();
RegExpEngine::Compile(&compile_data,
false,
false,
multiline,
pattern,
sample_subject,
is_ascii,
zone);
return compile_data.node;
}
static void Execute(const char* input,
bool multiline,
bool is_ascii,
bool dot_output = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate());
RegExpNode* node = Compile(input, multiline, is_ascii, &zone);
USE(node);
#ifdef DEBUG
if (dot_output) {
RegExpEngine::DotPrint(input, node, false);
}
#endif // DEBUG
}
class TestConfig {
public:
typedef int Key;
typedef int Value;
static const int kNoKey;
static int NoValue() { return 0; }
static inline int Compare(int a, int b) {
if (a < b)
return -1;
else if (a > b)
return 1;
else
return 0;
}
};
const int TestConfig::kNoKey = 0;
static unsigned PseudoRandom(int i, int j) {
return ~(~((i * 781) ^ (j * 329)));
}
TEST(SplayTreeSimple) {
v8::internal::V8::Initialize(NULL);
static const unsigned kLimit = 1000;
Zone zone(CcTest::i_isolate());
ZoneSplayTree<TestConfig> tree(&zone);
bool seen[kLimit];
for (unsigned i = 0; i < kLimit; i++) seen[i] = false;
#define CHECK_MAPS_EQUAL() do { \
for (unsigned k = 0; k < kLimit; k++) \
CHECK_EQ(seen[k], tree.Find(k, &loc)); \
} while (false)
for (int i = 0; i < 50; i++) {
for (int j = 0; j < 50; j++) {
unsigned next = PseudoRandom(i, j) % kLimit;
if (seen[next]) {
// We've already seen this one. Check the value and remove
// it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.Find(next, &loc));
CHECK_EQ(next, loc.key());
CHECK_EQ(3 * next, loc.value());
tree.Remove(next);
seen[next] = false;
CHECK_MAPS_EQUAL();
} else {
// Check that it wasn't there already and then add it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(!tree.Find(next, &loc));
CHECK(tree.Insert(next, &loc));
CHECK_EQ(next, loc.key());
loc.set_value(3 * next);
seen[next] = true;
CHECK_MAPS_EQUAL();
}
int val = PseudoRandom(j, i) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindGreatestLessThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
val = PseudoRandom(i + j, i - j) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindLeastGreaterThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
}
}
}
TEST(DispatchTableConstruction) {
v8::internal::V8::Initialize(NULL);
// Initialize test data.
static const int kLimit = 1000;
static const int kRangeCount = 8;
static const int kRangeSize = 16;
uc16 ranges[kRangeCount][2 * kRangeSize];
for (int i = 0; i < kRangeCount; i++) {
Vector<uc16> range(ranges[i], 2 * kRangeSize);
for (int j = 0; j < 2 * kRangeSize; j++) {
range[j] = PseudoRandom(i + 25, j + 87) % kLimit;
}
range.Sort();
for (int j = 1; j < 2 * kRangeSize; j++) {
CHECK(range[j-1] <= range[j]);
}
}
// Enter test data into dispatch table.
Zone zone(CcTest::i_isolate());
DispatchTable table(&zone);
for (int i = 0; i < kRangeCount; i++) {
uc16* range = ranges[i];
for (int j = 0; j < 2 * kRangeSize; j += 2)
table.AddRange(CharacterRange(range[j], range[j + 1]), i, &zone);
}
// Check that the table looks as we would expect
for (int p = 0; p < kLimit; p++) {
OutSet* outs = table.Get(p);
for (int j = 0; j < kRangeCount; j++) {
uc16* range = ranges[j];
bool is_on = false;
for (int k = 0; !is_on && (k < 2 * kRangeSize); k += 2)
is_on = (range[k] <= p && p <= range[k + 1]);
CHECK_EQ(is_on, outs->Get(j));
}
}
}
// Test of debug-only syntax.
#ifdef DEBUG
TEST(ParsePossessiveRepetition) {
bool old_flag_value = FLAG_regexp_possessive_quantifier;
// Enable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = true;
CHECK_PARSE_EQ("a*+", "(# 0 - p 'a')");
CHECK_PARSE_EQ("a++", "(# 1 - p 'a')");
CHECK_PARSE_EQ("a?+", "(# 0 1 p 'a')");
CHECK_PARSE_EQ("a{10,20}+", "(# 10 20 p 'a')");
CHECK_PARSE_EQ("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')");
// Disable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = false;
CHECK_PARSE_ERROR("a*+");
CHECK_PARSE_ERROR("a++");
CHECK_PARSE_ERROR("a?+");
CHECK_PARSE_ERROR("a{10,20}+");
CHECK_PARSE_ERROR("a{10,20}+b");
FLAG_regexp_possessive_quantifier = old_flag_value;
}
#endif
// Tests of interpreter.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
typedef RegExpMacroAssemblerIA32 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X64
typedef RegExpMacroAssemblerX64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM
typedef RegExpMacroAssemblerARM ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM64
typedef RegExpMacroAssemblerARM64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_MIPS
typedef RegExpMacroAssemblerMIPS ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X87
typedef RegExpMacroAssemblerX87 ArchRegExpMacroAssembler;
#endif
class ContextInitializer {
public:
ContextInitializer()
: scope_(CcTest::isolate()),
env_(v8::Context::New(CcTest::isolate())) {
env_->Enter();
}
~ContextInitializer() {
env_->Exit();
}
private:
v8::HandleScope scope_;
v8::Handle<v8::Context> env_;
};
static ArchRegExpMacroAssembler::Result Execute(Code* code,
String* input,
int start_offset,
const byte* input_start,
const byte* input_end,
int* captures) {
return NativeRegExpMacroAssembler::Execute(
code,
input,
start_offset,
input_start,
input_end,
captures,
0,
CcTest::i_isolate());
}
TEST(MacroAssemblerNativeSuccess) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4, &zone);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticAscii("");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticAscii("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
const byte* start_adr =
reinterpret_cast<const byte*>(seq_input->GetCharsAddress());
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + seq_input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(-1, captures[0]);
CHECK_EQ(-1, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
}
TEST(MacroAssemblerNativeSimple) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4, &zone);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(1, NULL, false);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(0, NULL, false);
m.CheckNotCharacter('f', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticAscii("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticAscii("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
input = factory->NewStringFromStaticAscii("barbarbar");
seq_input = Handle<SeqOneByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeSimpleUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::UC16, 4, &zone);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(1, NULL, false);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(0, NULL, false);
m.CheckNotCharacter('f', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticAscii("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
const uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o',
static_cast<uc16>(0x2603)};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
const uc16 input_data2[9] = {'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a',
static_cast<uc16>(0x2603)};
input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data2, 9)).ToHandleChecked();
seq_input = Handle<SeqTwoByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBacktrack) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0, &zone);
Label fail;
Label backtrack;
m.LoadCurrentCharacter(10, &fail);
m.Succeed();
m.Bind(&fail);
m.PushBacktrack(&backtrack);
m.LoadCurrentCharacter(10, NULL);
m.Succeed();
m.Bind(&backtrack);
m.Fail();
Handle<String> source = factory->NewStringFromStaticAscii("..........");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticAscii("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBackReferenceASCII) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4, &zone);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticAscii("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticAscii("fooofo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblerNativeBackReferenceUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::UC16, 4, &zone);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticAscii("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
const uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblernativeAtStart) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0, &zone);
Label not_at_start, newline, fail;
m.CheckNotAtStart(&not_at_start);
// Check that prevchar = '\n' and current = 'f'.
m.CheckCharacter('\n', &newline);
m.Bind(&fail);
m.Fail();
m.Bind(&newline);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('f', &fail);
m.Succeed();
m.Bind(&not_at_start);
// Check that prevchar = 'o' and current = 'b'.
Label prevo;
m.CheckCharacter('o', &prevo);
m.Fail();
m.Bind(&prevo);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('b', &fail);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticAscii("(^f|ob)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticAscii("foobar");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
result = Execute(*code,
*input,
3,
start_adr + 3,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
}
TEST(MacroAssemblerNativeBackRefNoCase) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4, &zone);
Label fail, succ;
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(2, 0);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(3, 0);
m.CheckNotBackReferenceIgnoreCase(2, &fail); // Match "AbC".
m.CheckNotBackReferenceIgnoreCase(2, &fail); // Match "ABC".
Label expected_fail;
m.CheckNotBackReferenceIgnoreCase(2, &expected_fail);
m.Bind(&fail);
m.Fail();
m.Bind(&expected_fail);
m.AdvanceCurrentPosition(3); // Skip "xYz"
m.CheckNotBackReferenceIgnoreCase(2, &succ);
m.Fail();
m.Bind(&succ);
m.WriteCurrentPositionToRegister(1, 0);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticAscii("^(abc)\1\1(?!\1)...(?!\1)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input =
factory->NewStringFromStaticAscii("aBcAbCABCxYzab");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(12, output[1]);
CHECK_EQ(0, output[2]);
CHECK_EQ(3, output[3]);
}
TEST(MacroAssemblerNativeRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 6, &zone);
uc16 foo_chars[3] = {'f', 'o', 'o'};
Vector<const uc16> foo(foo_chars, 3);
enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt };
Label fail;
Label backtrack;
m.WriteCurrentPositionToRegister(out1, 0); // Output: [0]
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&backtrack);
m.WriteStackPointerToRegister(sp);
// Fill stack and registers
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(out1, 0);
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&fail);
// Drop backtrack stack frames.
m.ReadStackPointerFromRegister(sp);
// And take the first backtrack (to &backtrack)
m.Backtrack();
m.PushCurrentPosition();
m.AdvanceCurrentPosition(2);
m.PopCurrentPosition();
m.Bind(&backtrack);
m.PopRegister(out1);
m.ReadCurrentPositionFromRegister(out1);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(out2, 0); // [0,3]
Label loop;
m.SetRegister(loop_cnt, 0); // loop counter
m.Bind(&loop);
m.AdvanceRegister(loop_cnt, 1);
m.AdvanceCurrentPosition(1);
m.IfRegisterLT(loop_cnt, 3, &loop);
m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6]
Label loop2;
m.SetRegister(loop_cnt, 2); // loop counter
m.Bind(&loop2);
m.AdvanceRegister(loop_cnt, -1);
m.AdvanceCurrentPosition(1);
m.IfRegisterGE(loop_cnt, 0, &loop2);
m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9]
Label loop3;
Label exit_loop3;
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.ReadCurrentPositionFromRegister(out3);
m.Bind(&loop3);
m.AdvanceCurrentPosition(1);
m.CheckGreedyLoop(&exit_loop3);
m.GoTo(&loop3);
m.Bind(&exit_loop3);
m.PopCurrentPosition();
m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1]
m.Succeed();
m.Bind(&fail);
m.Fail();
Handle<String> source =
factory->NewStringFromStaticAscii("<loop test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input =
factory->NewStringFromStaticAscii("foofoofoofoofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[6];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(3, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(9, output[3]);
CHECK_EQ(9, output[4]);
CHECK_EQ(-1, output[5]);
}
TEST(MacroAssemblerStackOverflow) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0, &zone);
Label loop;
m.Bind(&loop);
m.PushBacktrack(&loop);
m.GoTo(&loop);
Handle<String> source =
factory->NewStringFromStaticAscii("<stack overflow test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input =
factory->NewStringFromStaticAscii("dummy");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
NULL);
CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result);
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
TEST(MacroAssemblerNativeLotsOfRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(isolate);
ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 2, &zone);
// At least 2048, to ensure the allocated space for registers
// span one full page.
const int large_number = 8000;
m.WriteCurrentPositionToRegister(large_number, 42);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 1);
Label done;
m.CheckNotBackReference(0, &done); // Performs a system-stack push.
m.Bind(&done);
m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck);
m.PopRegister(1);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticAscii("<huge register space test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input =
factory->NewStringFromStaticAscii("sample text");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int captures[2];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(42, captures[1]);
isolate->clear_pending_exception();
}
#else // V8_INTERPRETED_REGEXP
TEST(MacroAssembler) {
V8::Initialize(NULL);
byte codes[1024];
Zone zone(CcTest::i_isolate());
RegExpMacroAssemblerIrregexp m(Vector<byte>(codes, 1024), &zone);
// ^f(o)o.
Label start, fail, backtrack;
m.SetRegister(4, 42);
m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck);
m.AdvanceRegister(4, 42);
m.GoTo(&start);
m.Fail();
m.Bind(&start);
m.PushBacktrack(&fail);
m.CheckNotAtStart(NULL);
m.LoadCurrentCharacter(0, NULL);
m.CheckNotCharacter('f', NULL);
m.LoadCurrentCharacter(1, NULL);
m.CheckNotCharacter('o', NULL);
m.LoadCurrentCharacter(2, NULL);
m.CheckNotCharacter('o', NULL);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.WriteCurrentPositionToRegister(2, 1);
m.WriteCurrentPositionToRegister(3, 2);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.ClearRegisters(2, 3);
m.Backtrack();
m.Bind(&fail);
m.PopRegister(0);
m.Fail();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<String> source = factory->NewStringFromStaticAscii("^f(o)o");
Handle<ByteArray> array = Handle<ByteArray>::cast(m.GetCode(source));
int captures[5];
const uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'};
Handle<String> f1_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str1, 6)).ToHandleChecked();
CHECK(IrregexpInterpreter::Match(isolate, array, f1_16, captures, 0));
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(1, captures[2]);
CHECK_EQ(2, captures[3]);
CHECK_EQ(84, captures[4]);
const uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'};
Handle<String> f2_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str2, 6)).ToHandleChecked();
CHECK(!IrregexpInterpreter::Match(isolate, array, f2_16, captures, 0));
CHECK_EQ(42, captures[0]);
}
#endif // V8_INTERPRETED_REGEXP
TEST(AddInverseToTable) {
v8::internal::V8::Initialize(NULL);
static const int kLimit = 1000;
static const int kRangeCount = 16;
for (int t = 0; t < 10; t++) {
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(kRangeCount, &zone);
for (int i = 0; i < kRangeCount; i++) {
int from = PseudoRandom(t + 87, i + 25) % kLimit;
int to = from + (PseudoRandom(i + 87, t + 25) % (kLimit / 20));
if (to > kLimit) to = kLimit;
ranges->Add(CharacterRange(from, to), &zone);
}
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
for (int i = 0; i < kLimit; i++) {
bool is_on = false;
for (int j = 0; !is_on && j < kRangeCount; j++)
is_on = ranges->at(j).Contains(i);
OutSet* set = table.Get(i);
CHECK_EQ(is_on, set->Get(0) == false);
}
}
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(1, &zone);
ranges->Add(CharacterRange(0xFFF0, 0xFFFE), &zone);
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
CHECK(!table.Get(0xFFFE)->Get(0));
CHECK(table.Get(0xFFFF)->Get(0));
}
static uc32 canonicalize(uc32 c) {
unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth];
int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, NULL);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(LatinCanonicalize) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
for (char lower = 'a'; lower <= 'z'; lower++) {
char upper = lower + ('A' - 'a');
CHECK_EQ(canonicalize(lower), canonicalize(upper));
unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length = un_canonicalize.get(lower, '\0', uncanon);
CHECK_EQ(2, length);
CHECK_EQ(upper, uncanon[0]);
CHECK_EQ(lower, uncanon[1]);
}
for (uc32 c = 128; c < (1 << 21); c++)
CHECK_GE(canonicalize(c), 128);
unibrow::Mapping<unibrow::ToUppercase> to_upper;
// Canonicalization is only defined for the Basic Multilingual Plane.
for (uc32 c = 0; c < (1 << 16); c++) {
unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth];
int length = to_upper.get(c, '\0', upper);
if (length == 0) {
length = 1;
upper[0] = c;
}
uc32 u = upper[0];
if (length > 1 || (c >= 128 && u < 128))
u = c;
CHECK_EQ(u, canonicalize(c));
}
}
static uc32 CanonRangeEnd(uc32 c) {
unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth];
int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, NULL);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(RangeCanonicalization) {
// Check that we arrive at the same result when using the basic
// range canonicalization primitives as when using immediate
// canonicalization.
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
int block_start = 0;
while (block_start <= 0xFFFF) {
uc32 block_end = CanonRangeEnd(block_start);
unsigned block_length = block_end - block_start + 1;
if (block_length > 1) {
unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int first_length = un_canonicalize.get(block_start, '\0', first);
for (unsigned i = 1; i < block_length; i++) {
unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int succ_length = un_canonicalize.get(block_start + i, '\0', succ);
CHECK_EQ(first_length, succ_length);
for (int j = 0; j < succ_length; j++) {
int calc = first[j] + i;
int found = succ[j];
CHECK_EQ(calc, found);
}
}
}
block_start = block_start + block_length;
}
}
TEST(UncanonicalizeEquivalence) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
for (int i = 0; i < (1 << 16); i++) {
int length = un_canonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length2 = un_canonicalize.get(chars[j], '\0', chars2);
CHECK_EQ(length, length2);
for (int k = 0; k < length; k++)
CHECK_EQ(static_cast<int>(chars[k]), static_cast<int>(chars2[k]));
}
}
}
static void TestRangeCaseIndependence(CharacterRange input,
Vector<CharacterRange> expected) {
Zone zone(CcTest::i_isolate());
int count = expected.length();
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(count, &zone);
input.AddCaseEquivalents(list, false, &zone);
CHECK_EQ(count, list->length());
for (int i = 0; i < list->length(); i++) {
CHECK_EQ(expected[i].from(), list->at(i).from());
CHECK_EQ(expected[i].to(), list->at(i).to());
}
}
static void TestSimpleRangeCaseIndependence(CharacterRange input,
CharacterRange expected) {
EmbeddedVector<CharacterRange, 1> vector;
vector[0] = expected;
TestRangeCaseIndependence(input, vector);
}
TEST(CharacterRangeCaseIndependence) {
v8::internal::V8::Initialize(NULL);
TestSimpleRangeCaseIndependence(CharacterRange::Singleton('a'),
CharacterRange::Singleton('A'));
TestSimpleRangeCaseIndependence(CharacterRange::Singleton('z'),
CharacterRange::Singleton('Z'));
TestSimpleRangeCaseIndependence(CharacterRange('a', 'z'),
CharacterRange('A', 'Z'));
TestSimpleRangeCaseIndependence(CharacterRange('c', 'f'),
CharacterRange('C', 'F'));
TestSimpleRangeCaseIndependence(CharacterRange('a', 'b'),
CharacterRange('A', 'B'));
TestSimpleRangeCaseIndependence(CharacterRange('y', 'z'),
CharacterRange('Y', 'Z'));
TestSimpleRangeCaseIndependence(CharacterRange('a' - 1, 'z' + 1),
CharacterRange('A', 'Z'));
TestSimpleRangeCaseIndependence(CharacterRange('A', 'Z'),
CharacterRange('a', 'z'));
TestSimpleRangeCaseIndependence(CharacterRange('C', 'F'),
CharacterRange('c', 'f'));
TestSimpleRangeCaseIndependence(CharacterRange('A' - 1, 'Z' + 1),
CharacterRange('a', 'z'));
// Here we need to add [l-z] to complete the case independence of
// [A-Za-z] but we expect [a-z] to be added since we always add a
// whole block at a time.
TestSimpleRangeCaseIndependence(CharacterRange('A', 'k'),
CharacterRange('a', 'z'));
}
static bool InClass(uc16 c, ZoneList<CharacterRange>* ranges) {
if (ranges == NULL)
return false;
for (int i = 0; i < ranges->length(); i++) {
CharacterRange range = ranges->at(i);
if (range.from() <= c && c <= range.to())
return true;
}
return false;
}
TEST(CharClassDifference) {
v8::internal::V8::Initialize(NULL);
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange>* base =
new(&zone) ZoneList<CharacterRange>(1, &zone);
base->Add(CharacterRange::Everything(), &zone);
Vector<const int> overlay = CharacterRange::GetWordBounds();
ZoneList<CharacterRange>* included = NULL;
ZoneList<CharacterRange>* excluded = NULL;
CharacterRange::Split(base, overlay, &included, &excluded, &zone);
for (int i = 0; i < (1 << 16); i++) {
bool in_base = InClass(i, base);
if (in_base) {
bool in_overlay = false;
for (int j = 0; !in_overlay && j < overlay.length(); j += 2) {
if (overlay[j] <= i && i < overlay[j+1])
in_overlay = true;
}
CHECK_EQ(in_overlay, InClass(i, included));
CHECK_EQ(!in_overlay, InClass(i, excluded));
} else {
CHECK(!InClass(i, included));
CHECK(!InClass(i, excluded));
}
}
}
TEST(CanonicalizeCharacterSets) {
v8::internal::V8::Initialize(NULL);
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(4, &zone);
CharacterSet set(list);
list->Add(CharacterRange(10, 20), &zone);
list->Add(CharacterRange(30, 40), &zone);
list->Add(CharacterRange(50, 60), &zone);
set.Canonicalize();
ASSERT_EQ(3, list->length());
ASSERT_EQ(10, list->at(0).from());
ASSERT_EQ(20, list->at(0).to());
ASSERT_EQ(30, list->at(1).from());
ASSERT_EQ(40, list->at(1).to());
ASSERT_EQ(50, list->at(2).from());
ASSERT_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange(10, 20), &zone);
list->Add(CharacterRange(50, 60), &zone);
list->Add(CharacterRange(30, 40), &zone);
set.Canonicalize();
ASSERT_EQ(3, list->length());
ASSERT_EQ(10, list->at(0).from());
ASSERT_EQ(20, list->at(0).to());
ASSERT_EQ(30, list->at(1).from());
ASSERT_EQ(40, list->at(1).to());
ASSERT_EQ(50, list->at(2).from());
ASSERT_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange(30, 40), &zone);
list->Add(CharacterRange(10, 20), &zone);
list->Add(CharacterRange(25, 25), &zone);
list->Add(CharacterRange(100, 100), &zone);
list->Add(CharacterRange(1, 1), &zone);
set.Canonicalize();
ASSERT_EQ(5, list->length());
ASSERT_EQ(1, list->at(0).from());
ASSERT_EQ(1, list->at(0).to());
ASSERT_EQ(10, list->at(1).from());
ASSERT_EQ(20, list->at(1).to());
ASSERT_EQ(25, list->at(2).from());
ASSERT_EQ(25, list->at(2).to());
ASSERT_EQ(30, list->at(3).from());
ASSERT_EQ(40, list->at(3).to());
ASSERT_EQ(100, list->at(4).from());
ASSERT_EQ(100, list->at(4).to());
list->Rewind(0);
list->Add(CharacterRange(10, 19), &zone);
list->Add(CharacterRange(21, 30), &zone);
list->Add(CharacterRange(20, 20), &zone);
set.Canonicalize();
ASSERT_EQ(1, list->length());
ASSERT_EQ(10, list->at(0).from());
ASSERT_EQ(30, list->at(0).to());
}
TEST(CharacterRangeMerge) {
v8::internal::V8::Initialize(NULL);
Zone zone(CcTest::i_isolate());
ZoneList<CharacterRange> l1(4, &zone);
ZoneList<CharacterRange> l2(4, &zone);
// Create all combinations of intersections of ranges, both singletons and
// longer.
int offset = 0;
// The five kinds of singleton intersections:
// X
// Y - outside before
// Y - outside touching start
// Y - overlap
// Y - outside touching end
// Y - outside after
for (int i = 0; i < 5; i++) {
l1.Add(CharacterRange::Singleton(offset + 2), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 6;
}
// The seven kinds of singleton/non-singleton intersections:
// XXX
// Y - outside before
// Y - outside touching start
// Y - inside touching start
// Y - entirely inside
// Y - inside touching end
// Y - outside touching end
// Y - disjoint after
for (int i = 0; i < 7; i++) {
l1.Add(CharacterRange::Range(offset + 2, offset + 4), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 8;
}
// The eleven kinds of non-singleton intersections:
//
// XXXXXXXX
// YYYY - outside before.
// YYYY - outside touching start.
// YYYY - overlapping start
// YYYY - inside touching start
// YYYY - entirely inside
// YYYY - inside touching end
// YYYY - overlapping end
// YYYY - outside touching end
// YYYY - outside after
// YYYYYYYY - identical
// YYYYYYYYYYYY - containing entirely.
for (int i = 0; i < 9; i++) {
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); // Length 8.
l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3), &zone);
offset += 22;
}
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
offset += 22;
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 4, offset + 17), &zone);
offset += 22;
// Different kinds of multi-range overlap:
// XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
// YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y
l1.Add(CharacterRange::Range(offset, offset + 21), &zone);
l1.Add(CharacterRange::Range(offset + 31, offset + 52), &zone);
for (int i = 0; i < 6; i++) {
l2.Add(CharacterRange::Range(offset + 2, offset + 5), &zone);
l2.Add(CharacterRange::Singleton(offset + 8), &zone);
offset += 9;
}
ASSERT(CharacterRange::IsCanonical(&l1));
ASSERT(CharacterRange::IsCanonical(&l2));
ZoneList<CharacterRange> first_only(4, &zone);
ZoneList<CharacterRange> second_only(4, &zone);
ZoneList<CharacterRange> both(4, &zone);
}
TEST(Graph) {
V8::Initialize(NULL);
Execute("\\b\\w+\\b", false, true, true);
}