v8/src/code-stubs-hydrogen.cc

2219 lines
79 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/code-stubs.h"
#include "src/bailout-reason.h"
#include "src/field-index.h"
#include "src/hydrogen.h"
#include "src/ic/ic.h"
#include "src/lithium.h"
namespace v8 {
namespace internal {
static LChunk* OptimizeGraph(HGraph* graph) {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
DCHECK(graph != NULL);
BailoutReason bailout_reason = kNoReason;
if (!graph->Optimize(&bailout_reason)) {
FATAL(GetBailoutReason(bailout_reason));
}
LChunk* chunk = LChunk::NewChunk(graph);
if (chunk == NULL) {
FATAL(GetBailoutReason(graph->info()->bailout_reason()));
}
return chunk;
}
class CodeStubGraphBuilderBase : public HGraphBuilder {
public:
explicit CodeStubGraphBuilderBase(CompilationInfo* info)
: HGraphBuilder(info),
arguments_length_(NULL),
info_(info),
descriptor_(info->code_stub()),
context_(NULL) {
int parameter_count = GetParameterCount();
parameters_.Reset(new HParameter*[parameter_count]);
}
virtual bool BuildGraph();
protected:
virtual HValue* BuildCodeStub() = 0;
int GetParameterCount() const { return descriptor_.GetParameterCount(); }
int GetRegisterParameterCount() const {
return descriptor_.GetRegisterParameterCount();
}
HParameter* GetParameter(int parameter) {
DCHECK(parameter < GetParameterCount());
return parameters_[parameter];
}
Representation GetParameterRepresentation(int parameter) {
return RepresentationFromType(descriptor_.GetParameterType(parameter));
}
bool IsParameterCountRegister(int index) const {
return descriptor_.GetRegisterParameter(index)
.is(descriptor_.stack_parameter_count());
}
HValue* GetArgumentsLength() {
// This is initialized in BuildGraph()
DCHECK(arguments_length_ != NULL);
return arguments_length_;
}
CompilationInfo* info() { return info_; }
CodeStub* stub() { return info_->code_stub(); }
HContext* context() { return context_; }
Isolate* isolate() { return info_->isolate(); }
HLoadNamedField* BuildLoadNamedField(HValue* object, FieldIndex index);
void BuildStoreNamedField(HValue* object, HValue* value, FieldIndex index,
Representation representation,
bool transition_to_field);
enum ArgumentClass {
NONE,
SINGLE,
MULTIPLE
};
HValue* UnmappedCase(HValue* elements, HValue* key, HValue* value);
HValue* EmitKeyedSloppyArguments(HValue* receiver, HValue* key,
HValue* value);
HValue* BuildArrayConstructor(ElementsKind kind,
AllocationSiteOverrideMode override_mode,
ArgumentClass argument_class);
HValue* BuildInternalArrayConstructor(ElementsKind kind,
ArgumentClass argument_class);
// BuildCheckAndInstallOptimizedCode emits code to install the optimized
// function found in the optimized code map at map_index in js_function, if
// the function at map_index matches the given native_context. Builder is
// left in the "Then()" state after the install.
void BuildCheckAndInstallOptimizedCode(HValue* js_function,
HValue* native_context,
IfBuilder* builder,
HValue* optimized_map,
HValue* map_index);
void BuildInstallOptimizedCode(HValue* js_function, HValue* native_context,
HValue* code_object, HValue* literals);
void BuildInstallCode(HValue* js_function, HValue* shared_info);
HInstruction* LoadFromOptimizedCodeMap(HValue* optimized_map,
HValue* iterator,
int field_offset);
void BuildInstallFromOptimizedCodeMap(HValue* js_function,
HValue* shared_info,
HValue* native_context);
private:
HValue* BuildArraySingleArgumentConstructor(JSArrayBuilder* builder);
HValue* BuildArrayNArgumentsConstructor(JSArrayBuilder* builder,
ElementsKind kind);
base::SmartArrayPointer<HParameter*> parameters_;
HValue* arguments_length_;
CompilationInfo* info_;
CodeStubDescriptor descriptor_;
HContext* context_;
};
bool CodeStubGraphBuilderBase::BuildGraph() {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
if (FLAG_trace_hydrogen_stubs) {
const char* name = CodeStub::MajorName(stub()->MajorKey());
PrintF("-----------------------------------------------------------\n");
PrintF("Compiling stub %s using hydrogen\n", name);
isolate()->GetHTracer()->TraceCompilation(info());
}
int param_count = GetParameterCount();
int register_param_count = GetRegisterParameterCount();
HEnvironment* start_environment = graph()->start_environment();
HBasicBlock* next_block = CreateBasicBlock(start_environment);
Goto(next_block);
next_block->SetJoinId(BailoutId::StubEntry());
set_current_block(next_block);
bool runtime_stack_params = descriptor_.stack_parameter_count().is_valid();
HInstruction* stack_parameter_count = NULL;
for (int i = 0; i < param_count; ++i) {
Representation r = GetParameterRepresentation(i);
HParameter* param;
if (i >= register_param_count) {
param = Add<HParameter>(i - register_param_count,
HParameter::STACK_PARAMETER, r);
} else {
param = Add<HParameter>(i, HParameter::REGISTER_PARAMETER, r);
start_environment->Bind(i, param);
}
parameters_[i] = param;
if (i < register_param_count && IsParameterCountRegister(i)) {
param->set_type(HType::Smi());
stack_parameter_count = param;
arguments_length_ = stack_parameter_count;
}
}
DCHECK(!runtime_stack_params || arguments_length_ != NULL);
if (!runtime_stack_params) {
stack_parameter_count =
Add<HConstant>(param_count - register_param_count - 1);
// graph()->GetConstantMinus1();
arguments_length_ = graph()->GetConstant0();
}
context_ = Add<HContext>();
start_environment->BindContext(context_);
Add<HSimulate>(BailoutId::StubEntry());
NoObservableSideEffectsScope no_effects(this);
HValue* return_value = BuildCodeStub();
// We might have extra expressions to pop from the stack in addition to the
// arguments above.
HInstruction* stack_pop_count = stack_parameter_count;
if (descriptor_.function_mode() == JS_FUNCTION_STUB_MODE) {
if (!stack_parameter_count->IsConstant() &&
descriptor_.hint_stack_parameter_count() < 0) {
HInstruction* constant_one = graph()->GetConstant1();
stack_pop_count = AddUncasted<HAdd>(stack_parameter_count, constant_one);
stack_pop_count->ClearFlag(HValue::kCanOverflow);
// TODO(mvstanton): verify that stack_parameter_count+1 really fits in a
// smi.
} else {
int count = descriptor_.hint_stack_parameter_count();
stack_pop_count = Add<HConstant>(count);
}
}
if (current_block() != NULL) {
HReturn* hreturn_instruction = New<HReturn>(return_value,
stack_pop_count);
FinishCurrentBlock(hreturn_instruction);
}
return true;
}
template <class Stub>
class CodeStubGraphBuilder: public CodeStubGraphBuilderBase {
public:
explicit CodeStubGraphBuilder(CompilationInfo* info)
: CodeStubGraphBuilderBase(info) {}
protected:
virtual HValue* BuildCodeStub() {
if (casted_stub()->IsUninitialized()) {
return BuildCodeUninitializedStub();
} else {
return BuildCodeInitializedStub();
}
}
virtual HValue* BuildCodeInitializedStub() {
UNIMPLEMENTED();
return NULL;
}
virtual HValue* BuildCodeUninitializedStub() {
// Force a deopt that falls back to the runtime.
HValue* undefined = graph()->GetConstantUndefined();
IfBuilder builder(this);
builder.IfNot<HCompareObjectEqAndBranch, HValue*>(undefined, undefined);
builder.Then();
builder.ElseDeopt(Deoptimizer::kForcedDeoptToRuntime);
return undefined;
}
Stub* casted_stub() { return static_cast<Stub*>(stub()); }
};
Handle<Code> HydrogenCodeStub::GenerateLightweightMissCode(
ExternalReference miss) {
Factory* factory = isolate()->factory();
// Generate the new code.
MacroAssembler masm(isolate(), NULL, 256);
{
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
// Generate the code for the stub.
masm.set_generating_stub(true);
// TODO(yangguo): remove this once we can serialize IC stubs.
masm.enable_serializer();
NoCurrentFrameScope scope(&masm);
GenerateLightweightMiss(&masm, miss);
}
// Create the code object.
CodeDesc desc;
masm.GetCode(&desc);
// Copy the generated code into a heap object.
Code::Flags flags = Code::ComputeFlags(
GetCodeKind(),
GetICState(),
GetExtraICState(),
GetStubType());
Handle<Code> new_object = factory->NewCode(
desc, flags, masm.CodeObject(), NeedsImmovableCode());
return new_object;
}
template <class Stub>
static Handle<Code> DoGenerateCode(Stub* stub) {
Isolate* isolate = stub->isolate();
CodeStubDescriptor descriptor(stub);
// If we are uninitialized we can use a light-weight stub to enter
// the runtime that is significantly faster than using the standard
// stub-failure deopt mechanism.
if (stub->IsUninitialized() && descriptor.has_miss_handler()) {
DCHECK(!descriptor.stack_parameter_count().is_valid());
return stub->GenerateLightweightMissCode(descriptor.miss_handler());
}
base::ElapsedTimer timer;
if (FLAG_profile_hydrogen_code_stub_compilation) {
timer.Start();
}
Zone zone;
CompilationInfo info(stub, isolate, &zone);
CodeStubGraphBuilder<Stub> builder(&info);
LChunk* chunk = OptimizeGraph(builder.CreateGraph());
Handle<Code> code = chunk->Codegen();
if (FLAG_profile_hydrogen_code_stub_compilation) {
OFStream os(stdout);
os << "[Lazy compilation of " << stub << " took "
<< timer.Elapsed().InMillisecondsF() << " ms]" << std::endl;
}
return code;
}
template <>
HValue* CodeStubGraphBuilder<NumberToStringStub>::BuildCodeStub() {
info()->MarkAsSavesCallerDoubles();
HValue* number = GetParameter(NumberToStringStub::kNumber);
return BuildNumberToString(number, Type::Number(zone()));
}
Handle<Code> NumberToStringStub::GenerateCode() {
return DoGenerateCode(this);
}
// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
template <>
HValue* CodeStubGraphBuilder<TypeofStub>::BuildCodeStub() {
Factory* factory = isolate()->factory();
HConstant* number_string = Add<HConstant>(factory->number_string());
HValue* object = GetParameter(TypeofStub::kObject);
IfBuilder is_smi(this);
HValue* smi_check = is_smi.If<HIsSmiAndBranch>(object);
is_smi.Then();
{ Push(number_string); }
is_smi.Else();
{
IfBuilder is_number(this);
is_number.If<HCompareMap>(object, isolate()->factory()->heap_number_map());
is_number.Then();
{ Push(number_string); }
is_number.Else();
{
HValue* map = AddLoadMap(object, smi_check);
HValue* instance_type = Add<HLoadNamedField>(
map, nullptr, HObjectAccess::ForMapInstanceType());
IfBuilder is_string(this);
is_string.If<HCompareNumericAndBranch>(
instance_type, Add<HConstant>(FIRST_NONSTRING_TYPE), Token::LT);
is_string.Then();
{ Push(Add<HConstant>(factory->string_string())); }
is_string.Else();
{
HConstant* object_string = Add<HConstant>(factory->object_string());
IfBuilder is_oddball(this);
is_oddball.If<HCompareNumericAndBranch>(
instance_type, Add<HConstant>(ODDBALL_TYPE), Token::EQ);
is_oddball.Then();
{
Push(Add<HLoadNamedField>(object, nullptr,
HObjectAccess::ForOddballTypeOf()));
}
is_oddball.Else();
{
IfBuilder is_symbol(this);
is_symbol.If<HCompareNumericAndBranch>(
instance_type, Add<HConstant>(SYMBOL_TYPE), Token::EQ);
is_symbol.Then();
{ Push(Add<HConstant>(factory->symbol_string())); }
is_symbol.Else();
{
HValue* bit_field = Add<HLoadNamedField>(
map, nullptr, HObjectAccess::ForMapBitField());
HValue* bit_field_masked = AddUncasted<HBitwise>(
Token::BIT_AND, bit_field,
Add<HConstant>((1 << Map::kIsCallable) |
(1 << Map::kIsUndetectable)));
IfBuilder is_function(this);
is_function.If<HCompareNumericAndBranch>(
bit_field_masked, Add<HConstant>(1 << Map::kIsCallable),
Token::EQ);
is_function.Then();
{ Push(Add<HConstant>(factory->function_string())); }
is_function.Else();
{
#define SIMD128_BUILDER_OPEN(TYPE, Type, type, lane_count, lane_type) \
IfBuilder is_##type(this); \
is_##type.If<HCompareObjectEqAndBranch>( \
map, Add<HConstant>(factory->type##_map())); \
is_##type.Then(); \
{ Push(Add<HConstant>(factory->type##_string())); } \
is_##type.Else(); {
SIMD128_TYPES(SIMD128_BUILDER_OPEN)
#undef SIMD128_BUILDER_OPEN
// Is it an undetectable object?
IfBuilder is_undetectable(this);
is_undetectable.If<HCompareNumericAndBranch>(
bit_field_masked, Add<HConstant>(1 << Map::kIsUndetectable),
Token::EQ);
is_undetectable.Then();
{
// typeof an undetectable object is 'undefined'.
Push(Add<HConstant>(factory->undefined_string()));
}
is_undetectable.Else();
{
// For any kind of object not handled above, the spec rule for
// host objects gives that it is okay to return "object".
Push(object_string);
}
#define SIMD128_BUILDER_CLOSE(TYPE, Type, type, lane_count, lane_type) }
SIMD128_TYPES(SIMD128_BUILDER_CLOSE)
#undef SIMD128_BUILDER_CLOSE
}
is_function.End();
}
is_symbol.End();
}
is_oddball.End();
}
is_string.End();
}
is_number.End();
}
is_smi.End();
return environment()->Pop();
}
Handle<Code> TypeofStub::GenerateCode() { return DoGenerateCode(this); }
template <>
HValue* CodeStubGraphBuilder<FastCloneShallowArrayStub>::BuildCodeStub() {
Factory* factory = isolate()->factory();
HValue* undefined = graph()->GetConstantUndefined();
AllocationSiteMode alloc_site_mode = casted_stub()->allocation_site_mode();
// This stub is very performance sensitive, the generated code must be tuned
// so that it doesn't build and eager frame.
info()->MarkMustNotHaveEagerFrame();
HInstruction* allocation_site =
Add<HLoadKeyed>(GetParameter(0), GetParameter(1), nullptr, FAST_ELEMENTS);
IfBuilder checker(this);
checker.IfNot<HCompareObjectEqAndBranch, HValue*>(allocation_site,
undefined);
checker.Then();
HObjectAccess access = HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset);
HInstruction* boilerplate =
Add<HLoadNamedField>(allocation_site, nullptr, access);
HValue* elements = AddLoadElements(boilerplate);
HValue* capacity = AddLoadFixedArrayLength(elements);
IfBuilder zero_capacity(this);
zero_capacity.If<HCompareNumericAndBranch>(capacity, graph()->GetConstant0(),
Token::EQ);
zero_capacity.Then();
Push(BuildCloneShallowArrayEmpty(boilerplate,
allocation_site,
alloc_site_mode));
zero_capacity.Else();
IfBuilder if_fixed_cow(this);
if_fixed_cow.If<HCompareMap>(elements, factory->fixed_cow_array_map());
if_fixed_cow.Then();
Push(BuildCloneShallowArrayCow(boilerplate,
allocation_site,
alloc_site_mode,
FAST_ELEMENTS));
if_fixed_cow.Else();
IfBuilder if_fixed(this);
if_fixed.If<HCompareMap>(elements, factory->fixed_array_map());
if_fixed.Then();
Push(BuildCloneShallowArrayNonEmpty(boilerplate,
allocation_site,
alloc_site_mode,
FAST_ELEMENTS));
if_fixed.Else();
Push(BuildCloneShallowArrayNonEmpty(boilerplate,
allocation_site,
alloc_site_mode,
FAST_DOUBLE_ELEMENTS));
if_fixed.End();
if_fixed_cow.End();
zero_capacity.End();
checker.ElseDeopt(Deoptimizer::kUninitializedBoilerplateLiterals);
checker.End();
return environment()->Pop();
}
Handle<Code> FastCloneShallowArrayStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<FastCloneShallowObjectStub>::BuildCodeStub() {
HValue* undefined = graph()->GetConstantUndefined();
HInstruction* allocation_site =
Add<HLoadKeyed>(GetParameter(0), GetParameter(1), nullptr, FAST_ELEMENTS);
IfBuilder checker(this);
checker.IfNot<HCompareObjectEqAndBranch, HValue*>(allocation_site,
undefined);
checker.And();
HObjectAccess access = HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset);
HInstruction* boilerplate =
Add<HLoadNamedField>(allocation_site, nullptr, access);
int length = casted_stub()->length();
if (length == 0) {
// Empty objects have some slack added to them.
length = JSObject::kInitialGlobalObjectUnusedPropertiesCount;
}
int size = JSObject::kHeaderSize + length * kPointerSize;
int object_size = size;
if (FLAG_allocation_site_pretenuring) {
size += AllocationMemento::kSize;
}
HValue* boilerplate_map =
Add<HLoadNamedField>(boilerplate, nullptr, HObjectAccess::ForMap());
HValue* boilerplate_size = Add<HLoadNamedField>(
boilerplate_map, nullptr, HObjectAccess::ForMapInstanceSize());
HValue* size_in_words = Add<HConstant>(object_size >> kPointerSizeLog2);
checker.If<HCompareNumericAndBranch>(boilerplate_size,
size_in_words, Token::EQ);
checker.Then();
HValue* size_in_bytes = Add<HConstant>(size);
HInstruction* object = Add<HAllocate>(size_in_bytes, HType::JSObject(),
NOT_TENURED, JS_OBJECT_TYPE);
for (int i = 0; i < object_size; i += kPointerSize) {
HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(i);
Add<HStoreNamedField>(object, access,
Add<HLoadNamedField>(boilerplate, nullptr, access));
}
DCHECK(FLAG_allocation_site_pretenuring || (size == object_size));
if (FLAG_allocation_site_pretenuring) {
BuildCreateAllocationMemento(
object, Add<HConstant>(object_size), allocation_site);
}
environment()->Push(object);
checker.ElseDeopt(Deoptimizer::kUninitializedBoilerplateInFastClone);
checker.End();
return environment()->Pop();
}
Handle<Code> FastCloneShallowObjectStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<CreateAllocationSiteStub>::BuildCodeStub() {
// This stub is performance sensitive, the generated code must be tuned
// so that it doesn't build an eager frame.
info()->MarkMustNotHaveEagerFrame();
HValue* size = Add<HConstant>(AllocationSite::kSize);
HInstruction* object = Add<HAllocate>(size, HType::JSObject(), TENURED,
JS_OBJECT_TYPE);
// Store the map
Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
AddStoreMapConstant(object, allocation_site_map);
// Store the payload (smi elements kind)
HValue* initial_elements_kind = Add<HConstant>(GetInitialFastElementsKind());
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kTransitionInfoOffset),
initial_elements_kind);
// Unlike literals, constructed arrays don't have nested sites
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kNestedSiteOffset),
graph()->GetConstant0());
// Pretenuring calculation field.
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureDataOffset),
graph()->GetConstant0());
// Pretenuring memento creation count field.
Add<HStoreNamedField>(object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kPretenureCreateCountOffset),
graph()->GetConstant0());
// Store an empty fixed array for the code dependency.
HConstant* empty_fixed_array =
Add<HConstant>(isolate()->factory()->empty_fixed_array());
Add<HStoreNamedField>(
object,
HObjectAccess::ForAllocationSiteOffset(
AllocationSite::kDependentCodeOffset),
empty_fixed_array);
// Link the object to the allocation site list
HValue* site_list = Add<HConstant>(
ExternalReference::allocation_sites_list_address(isolate()));
HValue* site = Add<HLoadNamedField>(site_list, nullptr,
HObjectAccess::ForAllocationSiteList());
// TODO(mvstanton): This is a store to a weak pointer, which we may want to
// mark as such in order to skip the write barrier, once we have a unified
// system for weakness. For now we decided to keep it like this because having
// an initial write barrier backed store makes this pointer strong until the
// next GC, and allocation sites are designed to survive several GCs anyway.
Add<HStoreNamedField>(
object,
HObjectAccess::ForAllocationSiteOffset(AllocationSite::kWeakNextOffset),
site);
Add<HStoreNamedField>(site_list, HObjectAccess::ForAllocationSiteList(),
object);
HInstruction* feedback_vector = GetParameter(0);
HInstruction* slot = GetParameter(1);
Add<HStoreKeyed>(feedback_vector, slot, object, FAST_ELEMENTS,
INITIALIZING_STORE);
return feedback_vector;
}
Handle<Code> CreateAllocationSiteStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<CreateWeakCellStub>::BuildCodeStub() {
// This stub is performance sensitive, the generated code must be tuned
// so that it doesn't build an eager frame.
info()->MarkMustNotHaveEagerFrame();
HValue* size = Add<HConstant>(WeakCell::kSize);
HInstruction* object =
Add<HAllocate>(size, HType::JSObject(), TENURED, JS_OBJECT_TYPE);
Handle<Map> weak_cell_map = isolate()->factory()->weak_cell_map();
AddStoreMapConstant(object, weak_cell_map);
HInstruction* value = GetParameter(CreateWeakCellDescriptor::kValueIndex);
Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellValue(), value);
Add<HStoreNamedField>(object, HObjectAccess::ForWeakCellNext(),
graph()->GetConstantHole());
HInstruction* feedback_vector =
GetParameter(CreateWeakCellDescriptor::kVectorIndex);
HInstruction* slot = GetParameter(CreateWeakCellDescriptor::kSlotIndex);
Add<HStoreKeyed>(feedback_vector, slot, object, FAST_ELEMENTS,
INITIALIZING_STORE);
return graph()->GetConstant0();
}
Handle<Code> CreateWeakCellStub::GenerateCode() { return DoGenerateCode(this); }
template <>
HValue* CodeStubGraphBuilder<LoadScriptContextFieldStub>::BuildCodeStub() {
int context_index = casted_stub()->context_index();
int slot_index = casted_stub()->slot_index();
HValue* script_context = BuildGetScriptContext(context_index);
return Add<HLoadNamedField>(script_context, nullptr,
HObjectAccess::ForContextSlot(slot_index));
}
Handle<Code> LoadScriptContextFieldStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<StoreScriptContextFieldStub>::BuildCodeStub() {
int context_index = casted_stub()->context_index();
int slot_index = casted_stub()->slot_index();
HValue* script_context = BuildGetScriptContext(context_index);
Add<HStoreNamedField>(script_context,
HObjectAccess::ForContextSlot(slot_index),
GetParameter(2), STORE_TO_INITIALIZED_ENTRY);
return GetParameter(2);
}
Handle<Code> StoreScriptContextFieldStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<GrowArrayElementsStub>::BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
if (IsFastDoubleElementsKind(kind)) {
info()->MarkAsSavesCallerDoubles();
}
HValue* object = GetParameter(GrowArrayElementsDescriptor::kObjectIndex);
HValue* key = GetParameter(GrowArrayElementsDescriptor::kKeyIndex);
HValue* elements = AddLoadElements(object);
HValue* current_capacity = Add<HLoadNamedField>(
elements, nullptr, HObjectAccess::ForFixedArrayLength());
HValue* length =
casted_stub()->is_js_array()
? Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
HObjectAccess::ForArrayLength(kind))
: current_capacity;
return BuildCheckAndGrowElementsCapacity(object, elements, kind, length,
current_capacity, key);
}
Handle<Code> GrowArrayElementsStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<LoadFastElementStub>::BuildCodeStub() {
LoadKeyedHoleMode hole_mode = casted_stub()->convert_hole_to_undefined()
? CONVERT_HOLE_TO_UNDEFINED
: NEVER_RETURN_HOLE;
HInstruction* load = BuildUncheckedMonomorphicElementAccess(
GetParameter(LoadDescriptor::kReceiverIndex),
GetParameter(LoadDescriptor::kNameIndex), NULL,
casted_stub()->is_js_array(), casted_stub()->elements_kind(), LOAD,
hole_mode, STANDARD_STORE);
return load;
}
Handle<Code> LoadFastElementStub::GenerateCode() {
return DoGenerateCode(this);
}
HLoadNamedField* CodeStubGraphBuilderBase::BuildLoadNamedField(
HValue* object, FieldIndex index) {
Representation representation = index.is_double()
? Representation::Double()
: Representation::Tagged();
int offset = index.offset();
HObjectAccess access = index.is_inobject()
? HObjectAccess::ForObservableJSObjectOffset(offset, representation)
: HObjectAccess::ForBackingStoreOffset(offset, representation);
if (index.is_double() &&
(!FLAG_unbox_double_fields || !index.is_inobject())) {
// Load the heap number.
object = Add<HLoadNamedField>(
object, nullptr, access.WithRepresentation(Representation::Tagged()));
// Load the double value from it.
access = HObjectAccess::ForHeapNumberValue();
}
return Add<HLoadNamedField>(object, nullptr, access);
}
template<>
HValue* CodeStubGraphBuilder<LoadFieldStub>::BuildCodeStub() {
return BuildLoadNamedField(GetParameter(0), casted_stub()->index());
}
Handle<Code> LoadFieldStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ArrayBufferViewLoadFieldStub>::BuildCodeStub() {
return BuildArrayBufferViewFieldAccessor(GetParameter(0), nullptr,
casted_stub()->index());
}
Handle<Code> ArrayBufferViewLoadFieldStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<LoadConstantStub>::BuildCodeStub() {
HValue* map = AddLoadMap(GetParameter(0), NULL);
HObjectAccess descriptors_access = HObjectAccess::ForObservableJSObjectOffset(
Map::kDescriptorsOffset, Representation::Tagged());
HValue* descriptors = Add<HLoadNamedField>(map, nullptr, descriptors_access);
HObjectAccess value_access = HObjectAccess::ForObservableJSObjectOffset(
DescriptorArray::GetValueOffset(casted_stub()->constant_index()));
return Add<HLoadNamedField>(descriptors, nullptr, value_access);
}
Handle<Code> LoadConstantStub::GenerateCode() { return DoGenerateCode(this); }
HValue* CodeStubGraphBuilderBase::UnmappedCase(HValue* elements, HValue* key,
HValue* value) {
HValue* result = NULL;
HInstruction* backing_store =
Add<HLoadKeyed>(elements, graph()->GetConstant1(), nullptr, FAST_ELEMENTS,
ALLOW_RETURN_HOLE);
Add<HCheckMaps>(backing_store, isolate()->factory()->fixed_array_map());
HValue* backing_store_length = Add<HLoadNamedField>(
backing_store, nullptr, HObjectAccess::ForFixedArrayLength());
IfBuilder in_unmapped_range(this);
in_unmapped_range.If<HCompareNumericAndBranch>(key, backing_store_length,
Token::LT);
in_unmapped_range.Then();
{
if (value == NULL) {
result = Add<HLoadKeyed>(backing_store, key, nullptr, FAST_HOLEY_ELEMENTS,
NEVER_RETURN_HOLE);
} else {
Add<HStoreKeyed>(backing_store, key, value, FAST_HOLEY_ELEMENTS);
}
}
in_unmapped_range.ElseDeopt(Deoptimizer::kOutsideOfRange);
in_unmapped_range.End();
return result;
}
HValue* CodeStubGraphBuilderBase::EmitKeyedSloppyArguments(HValue* receiver,
HValue* key,
HValue* value) {
// Mapped arguments are actual arguments. Unmapped arguments are values added
// to the arguments object after it was created for the call. Mapped arguments
// are stored in the context at indexes given by elements[key + 2]. Unmapped
// arguments are stored as regular indexed properties in the arguments array,
// held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed
// look at argument object construction.
//
// The sloppy arguments elements array has a special format:
//
// 0: context
// 1: unmapped arguments array
// 2: mapped_index0,
// 3: mapped_index1,
// ...
//
// length is 2 + min(number_of_actual_arguments, number_of_formal_arguments).
// If key + 2 >= elements.length then attempt to look in the unmapped
// arguments array (given by elements[1]) and return the value at key, missing
// to the runtime if the unmapped arguments array is not a fixed array or if
// key >= unmapped_arguments_array.length.
//
// Otherwise, t = elements[key + 2]. If t is the hole, then look up the value
// in the unmapped arguments array, as described above. Otherwise, t is a Smi
// index into the context array given at elements[0]. Return the value at
// context[t].
bool is_load = value == NULL;
key = AddUncasted<HForceRepresentation>(key, Representation::Smi());
IfBuilder positive_smi(this);
positive_smi.If<HCompareNumericAndBranch>(key, graph()->GetConstant0(),
Token::LT);
positive_smi.ThenDeopt(Deoptimizer::kKeyIsNegative);
positive_smi.End();
HValue* constant_two = Add<HConstant>(2);
HValue* elements = AddLoadElements(receiver, nullptr);
HValue* elements_length = Add<HLoadNamedField>(
elements, nullptr, HObjectAccess::ForFixedArrayLength());
HValue* adjusted_length = AddUncasted<HSub>(elements_length, constant_two);
IfBuilder in_range(this);
in_range.If<HCompareNumericAndBranch>(key, adjusted_length, Token::LT);
in_range.Then();
{
HValue* index = AddUncasted<HAdd>(key, constant_two);
HInstruction* mapped_index = Add<HLoadKeyed>(
elements, index, nullptr, FAST_HOLEY_ELEMENTS, ALLOW_RETURN_HOLE);
IfBuilder is_valid(this);
is_valid.IfNot<HCompareObjectEqAndBranch>(mapped_index,
graph()->GetConstantHole());
is_valid.Then();
{
// TODO(mvstanton): I'd like to assert from this point, that if the
// mapped_index is not the hole that it is indeed, a smi. An unnecessary
// smi check is being emitted.
HValue* the_context = Add<HLoadKeyed>(elements, graph()->GetConstant0(),
nullptr, FAST_ELEMENTS);
STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize);
if (is_load) {
HValue* result = Add<HLoadKeyed>(the_context, mapped_index, nullptr,
FAST_ELEMENTS, ALLOW_RETURN_HOLE);
environment()->Push(result);
} else {
DCHECK(value != NULL);
Add<HStoreKeyed>(the_context, mapped_index, value, FAST_ELEMENTS);
environment()->Push(value);
}
}
is_valid.Else();
{
HValue* result = UnmappedCase(elements, key, value);
environment()->Push(is_load ? result : value);
}
is_valid.End();
}
in_range.Else();
{
HValue* result = UnmappedCase(elements, key, value);
environment()->Push(is_load ? result : value);
}
in_range.End();
return environment()->Pop();
}
template <>
HValue* CodeStubGraphBuilder<KeyedLoadSloppyArgumentsStub>::BuildCodeStub() {
HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex);
HValue* key = GetParameter(LoadDescriptor::kNameIndex);
return EmitKeyedSloppyArguments(receiver, key, NULL);
}
Handle<Code> KeyedLoadSloppyArgumentsStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<KeyedStoreSloppyArgumentsStub>::BuildCodeStub() {
HValue* receiver = GetParameter(StoreDescriptor::kReceiverIndex);
HValue* key = GetParameter(StoreDescriptor::kNameIndex);
HValue* value = GetParameter(StoreDescriptor::kValueIndex);
return EmitKeyedSloppyArguments(receiver, key, value);
}
Handle<Code> KeyedStoreSloppyArgumentsStub::GenerateCode() {
return DoGenerateCode(this);
}
void CodeStubGraphBuilderBase::BuildStoreNamedField(
HValue* object, HValue* value, FieldIndex index,
Representation representation, bool transition_to_field) {
DCHECK(!index.is_double() || representation.IsDouble());
int offset = index.offset();
HObjectAccess access =
index.is_inobject()
? HObjectAccess::ForObservableJSObjectOffset(offset, representation)
: HObjectAccess::ForBackingStoreOffset(offset, representation);
if (representation.IsDouble()) {
if (!FLAG_unbox_double_fields || !index.is_inobject()) {
HObjectAccess heap_number_access =
access.WithRepresentation(Representation::Tagged());
if (transition_to_field) {
// The store requires a mutable HeapNumber to be allocated.
NoObservableSideEffectsScope no_side_effects(this);
HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
// TODO(hpayer): Allocation site pretenuring support.
HInstruction* heap_number =
Add<HAllocate>(heap_number_size, HType::HeapObject(), NOT_TENURED,
MUTABLE_HEAP_NUMBER_TYPE);
AddStoreMapConstant(heap_number,
isolate()->factory()->mutable_heap_number_map());
Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
value);
// Store the new mutable heap number into the object.
access = heap_number_access;
value = heap_number;
} else {
// Load the heap number.
object = Add<HLoadNamedField>(object, nullptr, heap_number_access);
// Store the double value into it.
access = HObjectAccess::ForHeapNumberValue();
}
}
} else if (representation.IsHeapObject()) {
BuildCheckHeapObject(value);
}
Add<HStoreNamedField>(object, access, value, INITIALIZING_STORE);
}
template <>
HValue* CodeStubGraphBuilder<StoreFieldStub>::BuildCodeStub() {
BuildStoreNamedField(GetParameter(0), GetParameter(2), casted_stub()->index(),
casted_stub()->representation(), false);
return GetParameter(2);
}
Handle<Code> StoreFieldStub::GenerateCode() { return DoGenerateCode(this); }
template <>
HValue* CodeStubGraphBuilder<StoreTransitionStub>::BuildCodeStub() {
HValue* object = GetParameter(StoreTransitionHelper::ReceiverIndex());
switch (casted_stub()->store_mode()) {
case StoreTransitionStub::ExtendStorageAndStoreMapAndValue: {
HValue* properties = Add<HLoadNamedField>(
object, nullptr, HObjectAccess::ForPropertiesPointer());
HValue* length = AddLoadFixedArrayLength(properties);
HValue* delta =
Add<HConstant>(static_cast<int32_t>(JSObject::kFieldsAdded));
HValue* new_capacity = AddUncasted<HAdd>(length, delta);
// Grow properties array.
ElementsKind kind = FAST_ELEMENTS;
Add<HBoundsCheck>(new_capacity,
Add<HConstant>((Page::kMaxRegularHeapObjectSize -
FixedArray::kHeaderSize) >>
ElementsKindToShiftSize(kind)));
// Reuse this code for properties backing store allocation.
HValue* new_properties =
BuildAllocateAndInitializeArray(kind, new_capacity);
BuildCopyProperties(properties, new_properties, length, new_capacity);
Add<HStoreNamedField>(object, HObjectAccess::ForPropertiesPointer(),
new_properties);
}
// Fall through.
case StoreTransitionStub::StoreMapAndValue:
// Store the new value into the "extended" object.
BuildStoreNamedField(
object, GetParameter(StoreTransitionHelper::ValueIndex()),
casted_stub()->index(), casted_stub()->representation(), true);
// Fall through.
case StoreTransitionStub::StoreMapOnly:
// And finally update the map.
Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
GetParameter(StoreTransitionHelper::MapIndex()));
break;
}
return GetParameter(StoreTransitionHelper::ValueIndex());
}
Handle<Code> StoreTransitionStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<StringLengthStub>::BuildCodeStub() {
HValue* string = BuildLoadNamedField(GetParameter(0),
FieldIndex::ForInObjectOffset(JSValue::kValueOffset));
return BuildLoadNamedField(string,
FieldIndex::ForInObjectOffset(String::kLengthOffset));
}
Handle<Code> StringLengthStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<StoreFastElementStub>::BuildCodeStub() {
BuildUncheckedMonomorphicElementAccess(
GetParameter(StoreDescriptor::kReceiverIndex),
GetParameter(StoreDescriptor::kNameIndex),
GetParameter(StoreDescriptor::kValueIndex), casted_stub()->is_js_array(),
casted_stub()->elements_kind(), STORE, NEVER_RETURN_HOLE,
casted_stub()->store_mode());
return GetParameter(2);
}
Handle<Code> StoreFastElementStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<TransitionElementsKindStub>::BuildCodeStub() {
info()->MarkAsSavesCallerDoubles();
BuildTransitionElementsKind(GetParameter(0),
GetParameter(1),
casted_stub()->from_kind(),
casted_stub()->to_kind(),
casted_stub()->is_js_array());
return GetParameter(0);
}
Handle<Code> TransitionElementsKindStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<AllocateHeapNumberStub>::BuildCodeStub() {
HValue* result =
Add<HAllocate>(Add<HConstant>(HeapNumber::kSize), HType::HeapNumber(),
NOT_TENURED, HEAP_NUMBER_TYPE);
AddStoreMapConstant(result, isolate()->factory()->heap_number_map());
return result;
}
Handle<Code> AllocateHeapNumberStub::GenerateCode() {
return DoGenerateCode(this);
}
HValue* CodeStubGraphBuilderBase::BuildArrayConstructor(
ElementsKind kind,
AllocationSiteOverrideMode override_mode,
ArgumentClass argument_class) {
HValue* constructor = GetParameter(ArrayConstructorStubBase::kConstructor);
HValue* alloc_site = GetParameter(ArrayConstructorStubBase::kAllocationSite);
JSArrayBuilder array_builder(this, kind, alloc_site, constructor,
override_mode);
HValue* result = NULL;
switch (argument_class) {
case NONE:
// This stub is very performance sensitive, the generated code must be
// tuned so that it doesn't build and eager frame.
info()->MarkMustNotHaveEagerFrame();
result = array_builder.AllocateEmptyArray();
break;
case SINGLE:
result = BuildArraySingleArgumentConstructor(&array_builder);
break;
case MULTIPLE:
result = BuildArrayNArgumentsConstructor(&array_builder, kind);
break;
}
return result;
}
HValue* CodeStubGraphBuilderBase::BuildInternalArrayConstructor(
ElementsKind kind, ArgumentClass argument_class) {
HValue* constructor = GetParameter(
InternalArrayConstructorStubBase::kConstructor);
JSArrayBuilder array_builder(this, kind, constructor);
HValue* result = NULL;
switch (argument_class) {
case NONE:
// This stub is very performance sensitive, the generated code must be
// tuned so that it doesn't build and eager frame.
info()->MarkMustNotHaveEagerFrame();
result = array_builder.AllocateEmptyArray();
break;
case SINGLE:
result = BuildArraySingleArgumentConstructor(&array_builder);
break;
case MULTIPLE:
result = BuildArrayNArgumentsConstructor(&array_builder, kind);
break;
}
return result;
}
HValue* CodeStubGraphBuilderBase::BuildArraySingleArgumentConstructor(
JSArrayBuilder* array_builder) {
// Smi check and range check on the input arg.
HValue* constant_one = graph()->GetConstant1();
HValue* constant_zero = graph()->GetConstant0();
HInstruction* elements = Add<HArgumentsElements>(false);
HInstruction* argument = Add<HAccessArgumentsAt>(
elements, constant_one, constant_zero);
return BuildAllocateArrayFromLength(array_builder, argument);
}
HValue* CodeStubGraphBuilderBase::BuildArrayNArgumentsConstructor(
JSArrayBuilder* array_builder, ElementsKind kind) {
// Insert a bounds check because the number of arguments might exceed
// the kInitialMaxFastElementArray limit. This cannot happen for code
// that was parsed, but calling via Array.apply(thisArg, [...]) might
// trigger it.
HValue* length = GetArgumentsLength();
HConstant* max_alloc_length =
Add<HConstant>(JSObject::kInitialMaxFastElementArray);
HValue* checked_length = Add<HBoundsCheck>(length, max_alloc_length);
// We need to fill with the hole if it's a smi array in the multi-argument
// case because we might have to bail out while copying arguments into
// the array because they aren't compatible with a smi array.
// If it's a double array, no problem, and if it's fast then no
// problem either because doubles are boxed.
//
// TODO(mvstanton): consider an instruction to memset fill the array
// with zero in this case instead.
JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind)
? JSArrayBuilder::FILL_WITH_HOLE
: JSArrayBuilder::DONT_FILL_WITH_HOLE;
HValue* new_object = array_builder->AllocateArray(checked_length,
max_alloc_length,
checked_length,
fill_mode);
HValue* elements = array_builder->GetElementsLocation();
DCHECK(elements != NULL);
// Now populate the elements correctly.
LoopBuilder builder(this,
context(),
LoopBuilder::kPostIncrement);
HValue* start = graph()->GetConstant0();
HValue* key = builder.BeginBody(start, checked_length, Token::LT);
HInstruction* argument_elements = Add<HArgumentsElements>(false);
HInstruction* argument = Add<HAccessArgumentsAt>(
argument_elements, checked_length, key);
Add<HStoreKeyed>(elements, key, argument, kind);
builder.EndBody();
return new_object;
}
template <>
HValue* CodeStubGraphBuilder<ArrayNoArgumentConstructorStub>::BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, NONE);
}
Handle<Code> ArrayNoArgumentConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ArraySingleArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, SINGLE);
}
Handle<Code> ArraySingleArgumentConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ArrayNArgumentsConstructorStub>::BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
AllocationSiteOverrideMode override_mode = casted_stub()->override_mode();
return BuildArrayConstructor(kind, override_mode, MULTIPLE);
}
Handle<Code> ArrayNArgumentsConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArrayNoArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, NONE);
}
Handle<Code> InternalArrayNoArgumentConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArraySingleArgumentConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, SINGLE);
}
Handle<Code> InternalArraySingleArgumentConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<InternalArrayNArgumentsConstructorStub>::
BuildCodeStub() {
ElementsKind kind = casted_stub()->elements_kind();
return BuildInternalArrayConstructor(kind, MULTIPLE);
}
Handle<Code> InternalArrayNArgumentsConstructorStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<CompareNilICStub>::BuildCodeInitializedStub() {
Isolate* isolate = graph()->isolate();
CompareNilICStub* stub = casted_stub();
HIfContinuation continuation;
Handle<Map> sentinel_map(isolate->heap()->meta_map());
Type* type = stub->GetType(zone(), sentinel_map);
BuildCompareNil(GetParameter(0), type, &continuation, kEmbedMapsViaWeakCells);
IfBuilder if_nil(this, &continuation);
if_nil.Then();
if (continuation.IsFalseReachable()) {
if_nil.Else();
if_nil.Return(graph()->GetConstant0());
}
if_nil.End();
return continuation.IsTrueReachable()
? graph()->GetConstant1()
: graph()->GetConstantUndefined();
}
Handle<Code> CompareNilICStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<BinaryOpICStub>::BuildCodeInitializedStub() {
BinaryOpICState state = casted_stub()->state();
HValue* left = GetParameter(BinaryOpICStub::kLeft);
HValue* right = GetParameter(BinaryOpICStub::kRight);
Type* left_type = state.GetLeftType(zone());
Type* right_type = state.GetRightType(zone());
Type* result_type = state.GetResultType(zone());
DCHECK(!left_type->Is(Type::None()) && !right_type->Is(Type::None()) &&
(state.HasSideEffects() || !result_type->Is(Type::None())));
HValue* result = NULL;
HAllocationMode allocation_mode(NOT_TENURED);
if (state.op() == Token::ADD &&
(left_type->Maybe(Type::String()) || right_type->Maybe(Type::String())) &&
!left_type->Is(Type::String()) && !right_type->Is(Type::String())) {
// For the generic add stub a fast case for string addition is performance
// critical.
if (left_type->Maybe(Type::String())) {
IfBuilder if_leftisstring(this);
if_leftisstring.If<HIsStringAndBranch>(left);
if_leftisstring.Then();
{
Push(BuildBinaryOperation(state.op(), left, right, Type::String(zone()),
right_type, result_type,
state.fixed_right_arg(), allocation_mode,
state.strength()));
}
if_leftisstring.Else();
{
Push(BuildBinaryOperation(
state.op(), left, right, left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode, state.strength()));
}
if_leftisstring.End();
result = Pop();
} else {
IfBuilder if_rightisstring(this);
if_rightisstring.If<HIsStringAndBranch>(right);
if_rightisstring.Then();
{
Push(BuildBinaryOperation(state.op(), left, right, left_type,
Type::String(zone()), result_type,
state.fixed_right_arg(), allocation_mode,
state.strength()));
}
if_rightisstring.Else();
{
Push(BuildBinaryOperation(
state.op(), left, right, left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode, state.strength()));
}
if_rightisstring.End();
result = Pop();
}
} else {
result = BuildBinaryOperation(
state.op(), left, right, left_type, right_type, result_type,
state.fixed_right_arg(), allocation_mode, state.strength());
}
// If we encounter a generic argument, the number conversion is
// observable, thus we cannot afford to bail out after the fact.
if (!state.HasSideEffects()) {
result = EnforceNumberType(result, result_type);
}
return result;
}
Handle<Code> BinaryOpICStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<BinaryOpWithAllocationSiteStub>::BuildCodeStub() {
BinaryOpICState state = casted_stub()->state();
HValue* allocation_site = GetParameter(
BinaryOpWithAllocationSiteStub::kAllocationSite);
HValue* left = GetParameter(BinaryOpWithAllocationSiteStub::kLeft);
HValue* right = GetParameter(BinaryOpWithAllocationSiteStub::kRight);
Type* left_type = state.GetLeftType(zone());
Type* right_type = state.GetRightType(zone());
Type* result_type = state.GetResultType(zone());
HAllocationMode allocation_mode(allocation_site);
return BuildBinaryOperation(state.op(), left, right, left_type, right_type,
result_type, state.fixed_right_arg(),
allocation_mode, state.strength());
}
Handle<Code> BinaryOpWithAllocationSiteStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<StringAddStub>::BuildCodeInitializedStub() {
StringAddStub* stub = casted_stub();
StringAddFlags flags = stub->flags();
PretenureFlag pretenure_flag = stub->pretenure_flag();
HValue* left = GetParameter(StringAddStub::kLeft);
HValue* right = GetParameter(StringAddStub::kRight);
// Make sure that both arguments are strings if not known in advance.
if ((flags & STRING_ADD_CHECK_LEFT) == STRING_ADD_CHECK_LEFT) {
left = BuildCheckString(left);
}
if ((flags & STRING_ADD_CHECK_RIGHT) == STRING_ADD_CHECK_RIGHT) {
right = BuildCheckString(right);
}
return BuildStringAdd(left, right, HAllocationMode(pretenure_flag));
}
Handle<Code> StringAddStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ToBooleanStub>::BuildCodeInitializedStub() {
ToBooleanStub* stub = casted_stub();
HValue* true_value = NULL;
HValue* false_value = NULL;
switch (stub->mode()) {
case ToBooleanStub::RESULT_AS_SMI:
true_value = graph()->GetConstant1();
false_value = graph()->GetConstant0();
break;
case ToBooleanStub::RESULT_AS_ODDBALL:
true_value = graph()->GetConstantTrue();
false_value = graph()->GetConstantFalse();
break;
case ToBooleanStub::RESULT_AS_INVERSE_ODDBALL:
true_value = graph()->GetConstantFalse();
false_value = graph()->GetConstantTrue();
break;
}
IfBuilder if_true(this);
if_true.If<HBranch>(GetParameter(0), stub->types());
if_true.Then();
if_true.Return(true_value);
if_true.Else();
if_true.End();
return false_value;
}
Handle<Code> ToBooleanStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<StoreGlobalStub>::BuildCodeInitializedStub() {
StoreGlobalStub* stub = casted_stub();
HParameter* value = GetParameter(StoreDescriptor::kValueIndex);
if (stub->check_global()) {
// Check that the map of the global has not changed: use a placeholder map
// that will be replaced later with the global object's map.
HParameter* proxy = GetParameter(StoreDescriptor::kReceiverIndex);
HValue* proxy_map =
Add<HLoadNamedField>(proxy, nullptr, HObjectAccess::ForMap());
HValue* global =
Add<HLoadNamedField>(proxy_map, nullptr, HObjectAccess::ForPrototype());
HValue* map_cell = Add<HConstant>(isolate()->factory()->NewWeakCell(
StoreGlobalStub::global_map_placeholder(isolate())));
HValue* expected_map = Add<HLoadNamedField>(
map_cell, nullptr, HObjectAccess::ForWeakCellValue());
HValue* map =
Add<HLoadNamedField>(global, nullptr, HObjectAccess::ForMap());
IfBuilder map_check(this);
map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
map_check.ThenDeopt(Deoptimizer::kUnknownMap);
map_check.End();
}
HValue* weak_cell = Add<HConstant>(isolate()->factory()->NewWeakCell(
StoreGlobalStub::property_cell_placeholder(isolate())));
HValue* cell = Add<HLoadNamedField>(weak_cell, nullptr,
HObjectAccess::ForWeakCellValue());
Add<HCheckHeapObject>(cell);
HObjectAccess access = HObjectAccess::ForPropertyCellValue();
// Load the payload of the global parameter cell. A hole indicates that the
// cell has been invalidated and that the store must be handled by the
// runtime.
HValue* cell_contents = Add<HLoadNamedField>(cell, nullptr, access);
auto cell_type = stub->cell_type();
if (cell_type == PropertyCellType::kConstant ||
cell_type == PropertyCellType::kUndefined) {
// This is always valid for all states a cell can be in.
IfBuilder builder(this);
builder.If<HCompareObjectEqAndBranch>(cell_contents, value);
builder.Then();
builder.ElseDeopt(
Deoptimizer::kUnexpectedCellContentsInConstantGlobalStore);
builder.End();
} else {
IfBuilder builder(this);
HValue* hole_value = graph()->GetConstantHole();
builder.If<HCompareObjectEqAndBranch>(cell_contents, hole_value);
builder.Then();
builder.Deopt(Deoptimizer::kUnexpectedCellContentsInGlobalStore);
builder.Else();
// When dealing with constant types, the type may be allowed to change, as
// long as optimized code remains valid.
if (cell_type == PropertyCellType::kConstantType) {
switch (stub->constant_type()) {
case PropertyCellConstantType::kSmi:
access = access.WithRepresentation(Representation::Smi());
break;
case PropertyCellConstantType::kStableMap: {
// It is sufficient here to check that the value and cell contents
// have identical maps, no matter if they are stable or not or if they
// are the maps that were originally in the cell or not. If optimized
// code will deopt when a cell has a unstable map and if it has a
// dependency on a stable map, it will deopt if the map destabilizes.
Add<HCheckHeapObject>(value);
Add<HCheckHeapObject>(cell_contents);
HValue* expected_map = Add<HLoadNamedField>(cell_contents, nullptr,
HObjectAccess::ForMap());
HValue* map =
Add<HLoadNamedField>(value, nullptr, HObjectAccess::ForMap());
IfBuilder map_check(this);
map_check.IfNot<HCompareObjectEqAndBranch>(expected_map, map);
map_check.ThenDeopt(Deoptimizer::kUnknownMap);
map_check.End();
access = access.WithRepresentation(Representation::HeapObject());
break;
}
}
}
Add<HStoreNamedField>(cell, access, value);
builder.End();
}
return value;
}
Handle<Code> StoreGlobalStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ElementsTransitionAndStoreStub>::BuildCodeStub() {
HValue* object = GetParameter(StoreTransitionHelper::ReceiverIndex());
HValue* key = GetParameter(StoreTransitionHelper::NameIndex());
HValue* value = GetParameter(StoreTransitionHelper::ValueIndex());
HValue* map = GetParameter(StoreTransitionHelper::MapIndex());
if (FLAG_trace_elements_transitions) {
// Tracing elements transitions is the job of the runtime.
Add<HDeoptimize>(Deoptimizer::kTracingElementsTransitions,
Deoptimizer::EAGER);
} else {
info()->MarkAsSavesCallerDoubles();
BuildTransitionElementsKind(object, map,
casted_stub()->from_kind(),
casted_stub()->to_kind(),
casted_stub()->is_jsarray());
BuildUncheckedMonomorphicElementAccess(object, key, value,
casted_stub()->is_jsarray(),
casted_stub()->to_kind(),
STORE, ALLOW_RETURN_HOLE,
casted_stub()->store_mode());
}
return value;
}
Handle<Code> ElementsTransitionAndStoreStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<ToObjectStub>::BuildCodeStub() {
HValue* receiver = GetParameter(ToObjectDescriptor::kReceiverIndex);
return BuildToObject(receiver);
}
Handle<Code> ToObjectStub::GenerateCode() { return DoGenerateCode(this); }
void CodeStubGraphBuilderBase::BuildCheckAndInstallOptimizedCode(
HValue* js_function,
HValue* native_context,
IfBuilder* builder,
HValue* optimized_map,
HValue* map_index) {
HValue* osr_ast_id_none = Add<HConstant>(BailoutId::None().ToInt());
HValue* context_slot = LoadFromOptimizedCodeMap(
optimized_map, map_index, SharedFunctionInfo::kContextOffset);
HValue* osr_ast_slot = LoadFromOptimizedCodeMap(
optimized_map, map_index, SharedFunctionInfo::kOsrAstIdOffset);
builder->If<HCompareObjectEqAndBranch>(native_context,
context_slot);
builder->AndIf<HCompareObjectEqAndBranch>(osr_ast_slot, osr_ast_id_none);
builder->Then();
HValue* code_object = LoadFromOptimizedCodeMap(optimized_map,
map_index, SharedFunctionInfo::kCachedCodeOffset);
// and the literals
HValue* literals = LoadFromOptimizedCodeMap(optimized_map,
map_index, SharedFunctionInfo::kLiteralsOffset);
BuildInstallOptimizedCode(js_function, native_context, code_object, literals);
// The builder continues in the "then" after this function.
}
void CodeStubGraphBuilderBase::BuildInstallOptimizedCode(HValue* js_function,
HValue* native_context,
HValue* code_object,
HValue* literals) {
Counters* counters = isolate()->counters();
AddIncrementCounter(counters->fast_new_closure_install_optimized());
// TODO(fschneider): Idea: store proper code pointers in the optimized code
// map and either unmangle them on marking or do nothing as the whole map is
// discarded on major GC anyway.
Add<HStoreCodeEntry>(js_function, code_object);
Add<HStoreNamedField>(js_function, HObjectAccess::ForLiteralsPointer(),
literals);
// Now link a function into a list of optimized functions.
HValue* optimized_functions_list = Add<HLoadNamedField>(
native_context, nullptr,
HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST));
Add<HStoreNamedField>(js_function,
HObjectAccess::ForNextFunctionLinkPointer(),
optimized_functions_list);
// This store is the only one that should have a write barrier.
Add<HStoreNamedField>(native_context,
HObjectAccess::ForContextSlot(Context::OPTIMIZED_FUNCTIONS_LIST),
js_function);
}
void CodeStubGraphBuilderBase::BuildInstallCode(HValue* js_function,
HValue* shared_info) {
Add<HStoreNamedField>(js_function,
HObjectAccess::ForNextFunctionLinkPointer(),
graph()->GetConstantUndefined());
HValue* code_object = Add<HLoadNamedField>(shared_info, nullptr,
HObjectAccess::ForCodeOffset());
Add<HStoreCodeEntry>(js_function, code_object);
}
HInstruction* CodeStubGraphBuilderBase::LoadFromOptimizedCodeMap(
HValue* optimized_map,
HValue* iterator,
int field_offset) {
// By making sure to express these loads in the form [<hvalue> + constant]
// the keyed load can be hoisted.
DCHECK(field_offset >= 0 && field_offset < SharedFunctionInfo::kEntryLength);
HValue* field_slot = iterator;
if (field_offset > 0) {
HValue* field_offset_value = Add<HConstant>(field_offset);
field_slot = AddUncasted<HAdd>(iterator, field_offset_value);
}
HInstruction* field_entry =
Add<HLoadKeyed>(optimized_map, field_slot, nullptr, FAST_ELEMENTS);
return field_entry;
}
void CodeStubGraphBuilderBase::BuildInstallFromOptimizedCodeMap(
HValue* js_function,
HValue* shared_info,
HValue* native_context) {
Counters* counters = isolate()->counters();
Factory* factory = isolate()->factory();
IfBuilder is_optimized(this);
HInstruction* optimized_map = Add<HLoadNamedField>(
shared_info, nullptr, HObjectAccess::ForOptimizedCodeMap());
HValue* null_constant = Add<HConstant>(0);
is_optimized.If<HCompareObjectEqAndBranch>(optimized_map, null_constant);
is_optimized.Then();
{
BuildInstallCode(js_function, shared_info);
}
is_optimized.Else();
{
AddIncrementCounter(counters->fast_new_closure_try_optimized());
// The {optimized_map} points to fixed array of 4-element entries:
// (native context, optimized code, literals, ast-id).
// Iterate through the {optimized_map} backwards. After the loop, if no
// matching optimized code was found, install unoptimized code.
// for(i = map.length() - SharedFunctionInfo::kEntryLength;
// i >= SharedFunctionInfo::kEntriesStart;
// i -= SharedFunctionInfo::kEntryLength) { ... }
HValue* first_entry_index =
Add<HConstant>(SharedFunctionInfo::kEntriesStart);
HValue* shared_function_entry_length =
Add<HConstant>(SharedFunctionInfo::kEntryLength);
LoopBuilder loop_builder(this, context(), LoopBuilder::kPostDecrement,
shared_function_entry_length);
HValue* array_length = Add<HLoadNamedField>(
optimized_map, nullptr, HObjectAccess::ForFixedArrayLength());
HValue* start_pos =
AddUncasted<HSub>(array_length, shared_function_entry_length);
HValue* slot_iterator =
loop_builder.BeginBody(start_pos, first_entry_index, Token::GTE);
{
IfBuilder done_check(this);
BuildCheckAndInstallOptimizedCode(js_function, native_context,
&done_check, optimized_map,
slot_iterator);
// Fall out of the loop
loop_builder.Break();
}
loop_builder.EndBody();
// If {slot_iterator} is less than the first entry index, then we failed to
// find a context-dependent code and try context-independent code next.
IfBuilder no_optimized_code_check(this);
no_optimized_code_check.If<HCompareNumericAndBranch>(
slot_iterator, first_entry_index, Token::LT);
no_optimized_code_check.Then();
{
IfBuilder shared_code_check(this);
HValue* shared_code =
Add<HLoadNamedField>(optimized_map, nullptr,
HObjectAccess::ForOptimizedCodeMapSharedCode());
shared_code_check.IfNot<HCompareObjectEqAndBranch>(
shared_code, graph()->GetConstantUndefined());
shared_code_check.Then();
{
// Store the context-independent optimized code.
HValue* literals = Add<HConstant>(factory->empty_fixed_array());
BuildInstallOptimizedCode(js_function, native_context, shared_code,
literals);
}
shared_code_check.Else();
{
// Store the unoptimized code.
BuildInstallCode(js_function, shared_info);
}
}
}
}
template<>
HValue* CodeStubGraphBuilder<FastNewClosureStub>::BuildCodeStub() {
Counters* counters = isolate()->counters();
Factory* factory = isolate()->factory();
HInstruction* empty_fixed_array =
Add<HConstant>(factory->empty_fixed_array());
HValue* shared_info = GetParameter(0);
AddIncrementCounter(counters->fast_new_closure_total());
// Create a new closure from the given function info in new space
HValue* size = Add<HConstant>(JSFunction::kSize);
HInstruction* js_function =
Add<HAllocate>(size, HType::JSObject(), NOT_TENURED, JS_FUNCTION_TYPE);
int map_index = Context::FunctionMapIndex(casted_stub()->language_mode(),
casted_stub()->kind());
// Compute the function map in the current native context and set that
// as the map of the allocated object.
HInstruction* native_context = BuildGetNativeContext();
HInstruction* map_slot_value = Add<HLoadNamedField>(
native_context, nullptr, HObjectAccess::ForContextSlot(map_index));
Add<HStoreNamedField>(js_function, HObjectAccess::ForMap(), map_slot_value);
// Initialize the rest of the function.
Add<HStoreNamedField>(js_function, HObjectAccess::ForPropertiesPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForElementsPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForLiteralsPointer(),
empty_fixed_array);
Add<HStoreNamedField>(js_function, HObjectAccess::ForPrototypeOrInitialMap(),
graph()->GetConstantHole());
Add<HStoreNamedField>(
js_function, HObjectAccess::ForSharedFunctionInfoPointer(), shared_info);
Add<HStoreNamedField>(js_function, HObjectAccess::ForFunctionContextPointer(),
context());
// Initialize the code pointer in the function to be the one found in the
// shared function info object. But first check if there is an optimized
// version for our context.
BuildInstallFromOptimizedCodeMap(js_function, shared_info, native_context);
return js_function;
}
Handle<Code> FastNewClosureStub::GenerateCode() {
return DoGenerateCode(this);
}
template<>
HValue* CodeStubGraphBuilder<FastNewContextStub>::BuildCodeStub() {
int length = casted_stub()->slots() + Context::MIN_CONTEXT_SLOTS;
// Get the function.
HParameter* function = GetParameter(FastNewContextStub::kFunction);
// Allocate the context in new space.
HAllocate* function_context = Add<HAllocate>(
Add<HConstant>(length * kPointerSize + FixedArray::kHeaderSize),
HType::HeapObject(), NOT_TENURED, FIXED_ARRAY_TYPE);
// Set up the object header.
AddStoreMapConstant(function_context,
isolate()->factory()->function_context_map());
Add<HStoreNamedField>(function_context,
HObjectAccess::ForFixedArrayLength(),
Add<HConstant>(length));
// Set up the fixed slots.
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::CLOSURE_INDEX),
function);
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX),
context());
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(Context::EXTENSION_INDEX),
graph()->GetConstant0());
// Copy the global object from the previous context.
HValue* global_object = Add<HLoadNamedField>(
context(), nullptr,
HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(
Context::GLOBAL_OBJECT_INDEX),
global_object);
// Initialize the rest of the slots to undefined.
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; ++i) {
Add<HStoreNamedField>(function_context,
HObjectAccess::ForContextSlot(i),
graph()->GetConstantUndefined());
}
return function_context;
}
Handle<Code> FastNewContextStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
HValue* CodeStubGraphBuilder<LoadDictionaryElementStub>::BuildCodeStub() {
HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex);
HValue* key = GetParameter(LoadDescriptor::kNameIndex);
Add<HCheckSmi>(key);
HValue* elements = AddLoadElements(receiver);
HValue* hash = BuildElementIndexHash(key);
return BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash,
casted_stub()->language_mode());
}
Handle<Code> LoadDictionaryElementStub::GenerateCode() {
return DoGenerateCode(this);
}
template<>
HValue* CodeStubGraphBuilder<RegExpConstructResultStub>::BuildCodeStub() {
// Determine the parameters.
HValue* length = GetParameter(RegExpConstructResultStub::kLength);
HValue* index = GetParameter(RegExpConstructResultStub::kIndex);
HValue* input = GetParameter(RegExpConstructResultStub::kInput);
info()->MarkMustNotHaveEagerFrame();
return BuildRegExpConstructResult(length, index, input);
}
Handle<Code> RegExpConstructResultStub::GenerateCode() {
return DoGenerateCode(this);
}
template <>
class CodeStubGraphBuilder<KeyedLoadGenericStub>
: public CodeStubGraphBuilderBase {
public:
explicit CodeStubGraphBuilder(CompilationInfo* info)
: CodeStubGraphBuilderBase(info) {}
protected:
virtual HValue* BuildCodeStub();
void BuildElementsKindLimitCheck(HGraphBuilder::IfBuilder* if_builder,
HValue* bit_field2,
ElementsKind kind);
void BuildFastElementLoad(HGraphBuilder::IfBuilder* if_builder,
HValue* receiver,
HValue* key,
HValue* instance_type,
HValue* bit_field2,
ElementsKind kind);
KeyedLoadGenericStub* casted_stub() {
return static_cast<KeyedLoadGenericStub*>(stub());
}
};
void CodeStubGraphBuilder<KeyedLoadGenericStub>::BuildElementsKindLimitCheck(
HGraphBuilder::IfBuilder* if_builder, HValue* bit_field2,
ElementsKind kind) {
ElementsKind next_kind = static_cast<ElementsKind>(kind + 1);
HValue* kind_limit = Add<HConstant>(
static_cast<int>(Map::ElementsKindBits::encode(next_kind)));
if_builder->If<HCompareNumericAndBranch>(bit_field2, kind_limit, Token::LT);
if_builder->Then();
}
void CodeStubGraphBuilder<KeyedLoadGenericStub>::BuildFastElementLoad(
HGraphBuilder::IfBuilder* if_builder, HValue* receiver, HValue* key,
HValue* instance_type, HValue* bit_field2, ElementsKind kind) {
BuildElementsKindLimitCheck(if_builder, bit_field2, kind);
IfBuilder js_array_check(this);
js_array_check.If<HCompareNumericAndBranch>(
instance_type, Add<HConstant>(JS_ARRAY_TYPE), Token::EQ);
js_array_check.Then();
Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL,
true, kind,
LOAD, NEVER_RETURN_HOLE,
STANDARD_STORE));
js_array_check.Else();
Push(BuildUncheckedMonomorphicElementAccess(receiver, key, NULL,
false, kind,
LOAD, NEVER_RETURN_HOLE,
STANDARD_STORE));
js_array_check.End();
}
HValue* CodeStubGraphBuilder<KeyedLoadGenericStub>::BuildCodeStub() {
HValue* receiver = GetParameter(LoadDescriptor::kReceiverIndex);
HValue* key = GetParameter(LoadDescriptor::kNameIndex);
// Split into a smi/integer case and unique string case.
HIfContinuation index_name_split_continuation(graph()->CreateBasicBlock(),
graph()->CreateBasicBlock());
BuildKeyedIndexCheck(key, &index_name_split_continuation);
IfBuilder index_name_split(this, &index_name_split_continuation);
index_name_split.Then();
{
// Key is an index (number)
key = Pop();
int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasIndexedInterceptor);
BuildJSObjectCheck(receiver, bit_field_mask);
HValue* map =
Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
HValue* instance_type =
Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapInstanceType());
HValue* bit_field2 =
Add<HLoadNamedField>(map, nullptr, HObjectAccess::ForMapBitField2());
IfBuilder kind_if(this);
BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2,
FAST_HOLEY_ELEMENTS);
kind_if.Else();
{
BuildFastElementLoad(&kind_if, receiver, key, instance_type, bit_field2,
FAST_HOLEY_DOUBLE_ELEMENTS);
}
kind_if.Else();
// The DICTIONARY_ELEMENTS check generates a "kind_if.Then"
BuildElementsKindLimitCheck(&kind_if, bit_field2, DICTIONARY_ELEMENTS);
{
HValue* elements = AddLoadElements(receiver);
HValue* hash = BuildElementIndexHash(key);
Push(BuildUncheckedDictionaryElementLoad(receiver, elements, key, hash,
casted_stub()->language_mode()));
}
kind_if.Else();
// The SLOW_SLOPPY_ARGUMENTS_ELEMENTS check generates a "kind_if.Then"
STATIC_ASSERT(FAST_SLOPPY_ARGUMENTS_ELEMENTS <
SLOW_SLOPPY_ARGUMENTS_ELEMENTS);
BuildElementsKindLimitCheck(&kind_if, bit_field2,
SLOW_SLOPPY_ARGUMENTS_ELEMENTS);
// Non-strict elements are not handled.
Add<HDeoptimize>(Deoptimizer::kNonStrictElementsInKeyedLoadGenericStub,
Deoptimizer::EAGER);
Push(graph()->GetConstant0());
kind_if.ElseDeopt(
Deoptimizer::kElementsKindUnhandledInKeyedLoadGenericStub);
kind_if.End();
}
index_name_split.Else();
{
// Key is a unique string.
key = Pop();
int bit_field_mask = (1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor);
BuildJSObjectCheck(receiver, bit_field_mask);
HIfContinuation continuation;
BuildTestForDictionaryProperties(receiver, &continuation);
IfBuilder if_dict_properties(this, &continuation);
if_dict_properties.Then();
{
// Key is string, properties are dictionary mode
BuildNonGlobalObjectCheck(receiver);
HValue* properties = Add<HLoadNamedField>(
receiver, nullptr, HObjectAccess::ForPropertiesPointer());
HValue* hash =
Add<HLoadNamedField>(key, nullptr, HObjectAccess::ForNameHashField());
hash = AddUncasted<HShr>(hash, Add<HConstant>(Name::kHashShift));
HValue* value = BuildUncheckedDictionaryElementLoad(
receiver, properties, key, hash, casted_stub()->language_mode());
Push(value);
}
if_dict_properties.Else();
{
// TODO(dcarney): don't use keyed lookup cache, but convert to use
// megamorphic stub cache.
UNREACHABLE();
// Key is string, properties are fast mode
HValue* hash = BuildKeyedLookupCacheHash(receiver, key);
ExternalReference cache_keys_ref =
ExternalReference::keyed_lookup_cache_keys(isolate());
HValue* cache_keys = Add<HConstant>(cache_keys_ref);
HValue* map =
Add<HLoadNamedField>(receiver, nullptr, HObjectAccess::ForMap());
HValue* base_index = AddUncasted<HMul>(hash, Add<HConstant>(2));
base_index->ClearFlag(HValue::kCanOverflow);
HIfContinuation inline_or_runtime_continuation(
graph()->CreateBasicBlock(), graph()->CreateBasicBlock());
{
IfBuilder lookup_ifs[KeyedLookupCache::kEntriesPerBucket];
for (int probe = 0; probe < KeyedLookupCache::kEntriesPerBucket;
++probe) {
IfBuilder* lookup_if = &lookup_ifs[probe];
lookup_if->Initialize(this);
int probe_base = probe * KeyedLookupCache::kEntryLength;
HValue* map_index = AddUncasted<HAdd>(
base_index,
Add<HConstant>(probe_base + KeyedLookupCache::kMapIndex));
map_index->ClearFlag(HValue::kCanOverflow);
HValue* key_index = AddUncasted<HAdd>(
base_index,
Add<HConstant>(probe_base + KeyedLookupCache::kKeyIndex));
key_index->ClearFlag(HValue::kCanOverflow);
HValue* map_to_check =
Add<HLoadKeyed>(cache_keys, map_index, nullptr, FAST_ELEMENTS,
NEVER_RETURN_HOLE, 0);
lookup_if->If<HCompareObjectEqAndBranch>(map_to_check, map);
lookup_if->And();
HValue* key_to_check =
Add<HLoadKeyed>(cache_keys, key_index, nullptr, FAST_ELEMENTS,
NEVER_RETURN_HOLE, 0);
lookup_if->If<HCompareObjectEqAndBranch>(key_to_check, key);
lookup_if->Then();
{
ExternalReference cache_field_offsets_ref =
ExternalReference::keyed_lookup_cache_field_offsets(isolate());
HValue* cache_field_offsets =
Add<HConstant>(cache_field_offsets_ref);
HValue* index = AddUncasted<HAdd>(hash, Add<HConstant>(probe));
index->ClearFlag(HValue::kCanOverflow);
HValue* property_index =
Add<HLoadKeyed>(cache_field_offsets, index, nullptr,
INT32_ELEMENTS, NEVER_RETURN_HOLE, 0);
Push(property_index);
}
lookup_if->Else();
}
for (int i = 0; i < KeyedLookupCache::kEntriesPerBucket; ++i) {
lookup_ifs[i].JoinContinuation(&inline_or_runtime_continuation);
}
}
IfBuilder inline_or_runtime(this, &inline_or_runtime_continuation);
inline_or_runtime.Then();
{
// Found a cached index, load property inline.
Push(Add<HLoadFieldByIndex>(receiver, Pop()));
}
inline_or_runtime.Else();
{
// KeyedLookupCache miss; call runtime.
Add<HPushArguments>(receiver, key);
Push(Add<HCallRuntime>(
Runtime::FunctionForId(is_strong(casted_stub()->language_mode())
? Runtime::kKeyedGetPropertyStrong
: Runtime::kKeyedGetProperty),
2));
}
inline_or_runtime.End();
}
if_dict_properties.End();
}
index_name_split.End();
return Pop();
}
Handle<Code> KeyedLoadGenericStub::GenerateCode() {
return DoGenerateCode(this);
}
} // namespace internal
} // namespace v8