v8/src/deoptimizer.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1083 lines
36 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_DEOPTIMIZER_H_
#define V8_DEOPTIMIZER_H_
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
#include <stack>
#include <vector>
#include "src/allocation.h"
#include "src/base/macros.h"
#include "src/boxed-float.h"
#include "src/deoptimize-reason.h"
#include "src/feedback-vector.h"
#include "src/frame-constants.h"
#include "src/isolate.h"
#include "src/macro-assembler.h"
#include "src/source-position.h"
#include "src/zone/zone-chunk-list.h"
namespace v8 {
namespace internal {
class FrameDescription;
class TranslationIterator;
class DeoptimizedFrameInfo;
class TranslatedState;
class RegisterValues;
class TranslatedValue {
public:
// Allocation-less getter of the value.
// Returns heap()->arguments_marker() if allocation would be
// necessary to get the value.
Object* GetRawValue() const;
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
// Getter for the value, takes care of materializing the subgraph
// reachable from this value.
Handle<Object> GetValue();
bool IsMaterializedObject() const;
bool IsMaterializableByDebugger() const;
private:
friend class TranslatedState;
friend class TranslatedFrame;
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
enum Kind : uint8_t {
kInvalid,
kTagged,
kInt32,
kUInt32,
kBoolBit,
kFloat,
kDouble,
kCapturedObject, // Object captured by the escape analysis.
// The number of nested objects can be obtained
// with the DeferredObjectLength() method
// (the values of the nested objects follow
// this value in the depth-first order.)
kDuplicatedObject // Duplicated object of a deferred object.
};
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
enum MaterializationState : uint8_t {
kUninitialized,
kAllocated, // Storage for the object has been allocated (or
// enqueued for allocation).
kFinished, // The object has been initialized (or enqueued for
// initialization).
};
TranslatedValue(TranslatedState* container, Kind kind)
: kind_(kind), container_(container) {}
Kind kind() const { return kind_; }
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
MaterializationState materialization_state() const {
return materialization_state_;
}
void Handlify();
int GetChildrenCount() const;
static TranslatedValue NewDeferredObject(TranslatedState* container,
int length, int object_index);
static TranslatedValue NewDuplicateObject(TranslatedState* container, int id);
static TranslatedValue NewFloat(TranslatedState* container, Float32 value);
static TranslatedValue NewDouble(TranslatedState* container, Float64 value);
static TranslatedValue NewInt32(TranslatedState* container, int32_t value);
static TranslatedValue NewUInt32(TranslatedState* container, uint32_t value);
static TranslatedValue NewBool(TranslatedState* container, uint32_t value);
static TranslatedValue NewTagged(TranslatedState* container, Object* literal);
static TranslatedValue NewInvalid(TranslatedState* container);
Isolate* isolate() const;
void MaterializeSimple();
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
void set_storage(Handle<HeapObject> storage) { storage_ = storage; }
void set_initialized_storage(Handle<Object> storage);
void mark_finished() { materialization_state_ = kFinished; }
void mark_allocated() { materialization_state_ = kAllocated; }
Handle<Object> GetStorage() {
DCHECK_NE(kUninitialized, materialization_state());
return storage_;
}
Kind kind_;
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
MaterializationState materialization_state_ = kUninitialized;
TranslatedState* container_; // This is only needed for materialization of
// objects and constructing handles (to get
// to the isolate).
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
Handle<Object> storage_; // Contains the materialized value or the
// byte-array that will be later morphed into
// the materialized object.
struct MaterializedObjectInfo {
int id_;
int length_; // Applies only to kCapturedObject kinds.
};
union {
// kind kTagged. After handlification it is always nullptr.
Object* raw_literal_;
// kind is kUInt32 or kBoolBit.
uint32_t uint32_value_;
// kind is kInt32.
int32_t int32_value_;
// kind is kFloat
Float32 float_value_;
// kind is kDouble
Float64 double_value_;
// kind is kDuplicatedObject or kCapturedObject.
MaterializedObjectInfo materialization_info_;
};
// Checked accessors for the union members.
Object* raw_literal() const;
int32_t int32_value() const;
uint32_t uint32_value() const;
Float32 float_value() const;
Float64 double_value() const;
int object_length() const;
int object_index() const;
};
class TranslatedFrame {
public:
enum Kind {
kInterpretedFunction,
kArgumentsAdaptor,
kConstructStub,
kBuiltinContinuation,
kJavaScriptBuiltinContinuation,
kJavaScriptBuiltinContinuationWithCatch,
kInvalid
};
int GetValueCount();
Kind kind() const { return kind_; }
BailoutId node_id() const { return node_id_; }
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
int height() const { return height_; }
SharedFunctionInfo* raw_shared_info() const {
CHECK_NOT_NULL(raw_shared_info_);
return raw_shared_info_;
}
class iterator {
public:
iterator& operator++() {
AdvanceIterator(&position_);
return *this;
}
iterator operator++(int) {
iterator original(position_);
AdvanceIterator(&position_);
return original;
}
bool operator==(const iterator& other) const {
return position_ == other.position_;
}
bool operator!=(const iterator& other) const { return !(*this == other); }
TranslatedValue& operator*() { return (*position_); }
TranslatedValue* operator->() { return &(*position_); }
const TranslatedValue& operator*() const { return (*position_); }
const TranslatedValue* operator->() const { return &(*position_); }
private:
friend TranslatedFrame;
explicit iterator(std::deque<TranslatedValue>::iterator position)
: position_(position) {}
std::deque<TranslatedValue>::iterator position_;
};
typedef TranslatedValue& reference;
typedef TranslatedValue const& const_reference;
iterator begin() { return iterator(values_.begin()); }
iterator end() { return iterator(values_.end()); }
reference front() { return values_.front(); }
const_reference front() const { return values_.front(); }
private:
friend class TranslatedState;
// Constructor static methods.
static TranslatedFrame InterpretedFrame(BailoutId bytecode_offset,
SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame AccessorFrame(Kind kind,
SharedFunctionInfo* shared_info);
static TranslatedFrame ArgumentsAdaptorFrame(SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame ConstructStubFrame(BailoutId bailout_id,
SharedFunctionInfo* shared_info,
int height);
static TranslatedFrame BuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height);
static TranslatedFrame JavaScriptBuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height);
static TranslatedFrame JavaScriptBuiltinContinuationWithCatchFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height);
static TranslatedFrame InvalidFrame() {
return TranslatedFrame(kInvalid, nullptr);
}
static void AdvanceIterator(std::deque<TranslatedValue>::iterator* iter);
TranslatedFrame(Kind kind, SharedFunctionInfo* shared_info = nullptr,
int height = 0)
: kind_(kind),
node_id_(BailoutId::None()),
raw_shared_info_(shared_info),
height_(height) {}
void Add(const TranslatedValue& value) { values_.push_back(value); }
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
TranslatedValue* ValueAt(int index) { return &(values_[index]); }
void Handlify();
Kind kind_;
BailoutId node_id_;
SharedFunctionInfo* raw_shared_info_;
Handle<SharedFunctionInfo> shared_info_;
int height_;
typedef std::deque<TranslatedValue> ValuesContainer;
ValuesContainer values_;
};
// Auxiliary class for translating deoptimization values.
// Typical usage sequence:
//
// 1. Construct the instance. This will involve reading out the translations
// and resolving them to values using the supplied frame pointer and
// machine state (registers). This phase is guaranteed not to allocate
// and not to use any HandleScope. Any object pointers will be stored raw.
//
// 2. Handlify pointers. This will convert all the raw pointers to handles.
//
// 3. Reading out the frame values.
//
// Note: After the instance is constructed, it is possible to iterate over
// the values eagerly.
class TranslatedState {
public:
TranslatedState() {}
explicit TranslatedState(const JavaScriptFrame* frame);
void Prepare(Address stack_frame_pointer);
// Store newly materialized values into the isolate.
void StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame);
typedef std::vector<TranslatedFrame>::iterator iterator;
iterator begin() { return frames_.begin(); }
iterator end() { return frames_.end(); }
typedef std::vector<TranslatedFrame>::const_iterator const_iterator;
const_iterator begin() const { return frames_.begin(); }
const_iterator end() const { return frames_.end(); }
std::vector<TranslatedFrame>& frames() { return frames_; }
TranslatedFrame* GetFrameFromJSFrameIndex(int jsframe_index);
TranslatedFrame* GetArgumentsInfoFromJSFrameIndex(int jsframe_index,
int* arguments_count);
Isolate* isolate() { return isolate_; }
void Init(Address input_frame_pointer, TranslationIterator* iterator,
FixedArray* literal_array, RegisterValues* registers,
[turbofan] escape analysis supports arguments object and rest elements The new NewUnmappedArgumentsElements node now takes two inputs: - the frame holding the arguments (current frame or arguments adaptor frame) - the length of the suffix of passed arguments to be copied into the backing store These inputs are computed with two new node types: ArgumentsFrame() ArgumentsLength[formal_parameter_count,is_rest_length](Node* arguments_frame) The node type NewRestParameterElements can now be expressed with NewUnmappedArgumentsElements and an appropriate length and is thus not needed anymore. In escape analysis, we lower loads from the length field of NewUnmappedArgumentsElements with its length input and if we find out that no write access to the arguments elements exists, we replace element loads with direct stack access and replace the NewUnmappedArgumentsElements node with a node of the new node type ArgumentsElementsState. This corresponds to an ObjectState node and gets translated into a deoptimizer instruction to allocate the backing store. Together with the already existing deoptimizer support for the actual arguments object/rest parameters, this allows to remove all allocations for arguments objects/rest parameters in this case. In the deoptimizer, we read the actual parameters from the stack while transforming the static deopt info into TranslatedValue objects. If escape analysis cannot remove the backing store allocation, NewUnmappedArgumentsElements gets lo BUG=v8:5726 Review-Url: https://codereview.chromium.org/2692753004 Cr-Commit-Position: refs/heads/master@{#43475}
2017-02-28 11:16:27 +00:00
FILE* trace_file, int parameter_count);
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
void VerifyMaterializedObjects();
bool DoUpdateFeedback();
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
private:
friend TranslatedValue;
TranslatedFrame CreateNextTranslatedFrame(TranslationIterator* iterator,
FixedArray* literal_array,
Address fp,
FILE* trace_file);
[turbofan] escape analysis supports arguments object and rest elements The new NewUnmappedArgumentsElements node now takes two inputs: - the frame holding the arguments (current frame or arguments adaptor frame) - the length of the suffix of passed arguments to be copied into the backing store These inputs are computed with two new node types: ArgumentsFrame() ArgumentsLength[formal_parameter_count,is_rest_length](Node* arguments_frame) The node type NewRestParameterElements can now be expressed with NewUnmappedArgumentsElements and an appropriate length and is thus not needed anymore. In escape analysis, we lower loads from the length field of NewUnmappedArgumentsElements with its length input and if we find out that no write access to the arguments elements exists, we replace element loads with direct stack access and replace the NewUnmappedArgumentsElements node with a node of the new node type ArgumentsElementsState. This corresponds to an ObjectState node and gets translated into a deoptimizer instruction to allocate the backing store. Together with the already existing deoptimizer support for the actual arguments object/rest parameters, this allows to remove all allocations for arguments objects/rest parameters in this case. In the deoptimizer, we read the actual parameters from the stack while transforming the static deopt info into TranslatedValue objects. If escape analysis cannot remove the backing store allocation, NewUnmappedArgumentsElements gets lo BUG=v8:5726 Review-Url: https://codereview.chromium.org/2692753004 Cr-Commit-Position: refs/heads/master@{#43475}
2017-02-28 11:16:27 +00:00
int CreateNextTranslatedValue(int frame_index, TranslationIterator* iterator,
FixedArray* literal_array, Address fp,
RegisterValues* registers, FILE* trace_file);
Address ComputeArgumentsPosition(Address input_frame_pointer,
CreateArgumentsType type, int* length);
[turbofan] escape analysis supports arguments object and rest elements The new NewUnmappedArgumentsElements node now takes two inputs: - the frame holding the arguments (current frame or arguments adaptor frame) - the length of the suffix of passed arguments to be copied into the backing store These inputs are computed with two new node types: ArgumentsFrame() ArgumentsLength[formal_parameter_count,is_rest_length](Node* arguments_frame) The node type NewRestParameterElements can now be expressed with NewUnmappedArgumentsElements and an appropriate length and is thus not needed anymore. In escape analysis, we lower loads from the length field of NewUnmappedArgumentsElements with its length input and if we find out that no write access to the arguments elements exists, we replace element loads with direct stack access and replace the NewUnmappedArgumentsElements node with a node of the new node type ArgumentsElementsState. This corresponds to an ObjectState node and gets translated into a deoptimizer instruction to allocate the backing store. Together with the already existing deoptimizer support for the actual arguments object/rest parameters, this allows to remove all allocations for arguments objects/rest parameters in this case. In the deoptimizer, we read the actual parameters from the stack while transforming the static deopt info into TranslatedValue objects. If escape analysis cannot remove the backing store allocation, NewUnmappedArgumentsElements gets lo BUG=v8:5726 Review-Url: https://codereview.chromium.org/2692753004 Cr-Commit-Position: refs/heads/master@{#43475}
2017-02-28 11:16:27 +00:00
void CreateArgumentsElementsTranslatedValues(int frame_index,
Address input_frame_pointer,
CreateArgumentsType type,
FILE* trace_file);
void UpdateFromPreviouslyMaterializedObjects();
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
void MaterializeFixedDoubleArray(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot, Handle<Map> map);
void MaterializeMutableHeapNumber(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot);
void EnsureObjectAllocatedAt(TranslatedValue* slot);
void SkipSlots(int slots_to_skip, TranslatedFrame* frame, int* value_index);
Handle<ByteArray> AllocateStorageFor(TranslatedValue* slot);
void EnsureJSObjectAllocated(TranslatedValue* slot, Handle<Map> map);
void EnsurePropertiesAllocatedAndMarked(TranslatedValue* properties_slot,
Handle<Map> map);
void EnsureChildrenAllocated(int count, TranslatedFrame* frame,
int* value_index, std::stack<int>* worklist);
void EnsureCapturedObjectAllocatedAt(int object_index,
std::stack<int>* worklist);
Handle<Object> InitializeObjectAt(TranslatedValue* slot);
void InitializeCapturedObjectAt(int object_index, std::stack<int>* worklist,
const DisallowHeapAllocation& no_allocation);
void InitializeJSObjectAt(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot, Handle<Map> map,
const DisallowHeapAllocation& no_allocation);
void InitializeObjectWithTaggedFieldsAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowHeapAllocation& no_allocation);
void ReadUpdateFeedback(TranslationIterator* iterator,
FixedArray* literal_array, FILE* trace_file);
Reland "[deoptimizer] Staged materialization of objects." This relands commit e71b802279ccc474820068af7f63218e71a5a48a. This can now back in as the fix for chromium:787301 had enough time to be tested in Canary. Original change's description: > [deoptimizer] Staged materialization of objects. > > The existing object materialization in the deoptimizer has the following problems: > > - Objects do not necessarily verify during materialization (because during the > depth first walk we might have inconsistent objects). > > - Stack can overflow (because we just materialize using recursive calls). > > - We generalize object fields. > > > This CL re-implements the materialization algorithm to solve this problem. The > new implementation creates the objects in two steps: > > 1. We allocate space for all the objects. In general, we allocate ByteArrays > of the right size. For leaf objects that cannot participate in cycles, > we build and initialize the materialized objects completely. > > For JS objects, we insert markers into the byte array at the positions > where unboxed doubles are expected. > > 2. We initialize all the objects with the proper field values and change the > map from the ByteArray map to the correct map. This requires some sync > with the concurrent marker (Heap::NotifyObjectLayoutChange). > > When initializing the JS object fields, we make sure that we respect > the unboxed double marker. > > Bug: chromium:770106, v8:3836 > Change-Id: I1ec466a9d19db9538df4ba915516d4c3ca825632 > Reviewed-on: https://chromium-review.googlesource.com/777559 > Commit-Queue: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#49821} Bug: chromium:770106, v8:3836 Change-Id: Ied6c4e0fbae52713e55ae6dc13794a7521dbb8a5 Reviewed-on: https://chromium-review.googlesource.com/817745 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#49982}
2017-12-11 08:14:34 +00:00
TranslatedValue* ResolveCapturedObject(TranslatedValue* slot);
TranslatedValue* GetValueByObjectIndex(int object_index);
Handle<Object> GetValueAndAdvance(TranslatedFrame* frame, int* value_index);
static uint32_t GetUInt32Slot(Address fp, int slot_index);
static Float32 GetFloatSlot(Address fp, int slot_index);
static Float64 GetDoubleSlot(Address fp, int slot_index);
std::vector<TranslatedFrame> frames_;
Isolate* isolate_ = nullptr;
Address stack_frame_pointer_ = kNullAddress;
[turbofan] escape analysis supports arguments object and rest elements The new NewUnmappedArgumentsElements node now takes two inputs: - the frame holding the arguments (current frame or arguments adaptor frame) - the length of the suffix of passed arguments to be copied into the backing store These inputs are computed with two new node types: ArgumentsFrame() ArgumentsLength[formal_parameter_count,is_rest_length](Node* arguments_frame) The node type NewRestParameterElements can now be expressed with NewUnmappedArgumentsElements and an appropriate length and is thus not needed anymore. In escape analysis, we lower loads from the length field of NewUnmappedArgumentsElements with its length input and if we find out that no write access to the arguments elements exists, we replace element loads with direct stack access and replace the NewUnmappedArgumentsElements node with a node of the new node type ArgumentsElementsState. This corresponds to an ObjectState node and gets translated into a deoptimizer instruction to allocate the backing store. Together with the already existing deoptimizer support for the actual arguments object/rest parameters, this allows to remove all allocations for arguments objects/rest parameters in this case. In the deoptimizer, we read the actual parameters from the stack while transforming the static deopt info into TranslatedValue objects. If escape analysis cannot remove the backing store allocation, NewUnmappedArgumentsElements gets lo BUG=v8:5726 Review-Url: https://codereview.chromium.org/2692753004 Cr-Commit-Position: refs/heads/master@{#43475}
2017-02-28 11:16:27 +00:00
int formal_parameter_count_;
struct ObjectPosition {
int frame_index_;
int value_index_;
};
std::deque<ObjectPosition> object_positions_;
Handle<FeedbackVector> feedback_vector_handle_;
FeedbackVector* feedback_vector_ = nullptr;
FeedbackSlot feedback_slot_;
};
class OptimizedFunctionVisitor BASE_EMBEDDED {
public:
virtual ~OptimizedFunctionVisitor() {}
virtual void VisitFunction(JSFunction* function) = 0;
};
class Deoptimizer : public Malloced {
public:
enum BailoutType { EAGER, LAZY, SOFT, kLastBailoutType = SOFT };
struct DeoptInfo {
DeoptInfo(SourcePosition position, DeoptimizeReason deopt_reason,
int deopt_id)
: position(position), deopt_reason(deopt_reason), deopt_id(deopt_id) {}
SourcePosition position;
DeoptimizeReason deopt_reason;
int deopt_id;
static const int kNoDeoptId = -1;
};
static DeoptInfo GetDeoptInfo(Code* code, Address from);
static int ComputeSourcePositionFromBytecodeArray(SharedFunctionInfo* shared,
BailoutId node_id);
struct JumpTableEntry : public ZoneObject {
inline JumpTableEntry(Address entry, const DeoptInfo& deopt_info,
Deoptimizer::BailoutType type, bool frame)
: label(),
address(entry),
deopt_info(deopt_info),
bailout_type(type),
needs_frame(frame) {}
bool IsEquivalentTo(const JumpTableEntry& other) const {
return address == other.address && bailout_type == other.bailout_type &&
needs_frame == other.needs_frame;
}
Label label;
Address address;
DeoptInfo deopt_info;
Deoptimizer::BailoutType bailout_type;
bool needs_frame;
};
static const char* MessageFor(BailoutType type);
int output_count() const { return output_count_; }
Handle<JSFunction> function() const;
Handle<Code> compiled_code() const;
BailoutType bailout_type() const { return bailout_type_; }
// Number of created JS frames. Not all created frames are necessarily JS.
int jsframe_count() const { return jsframe_count_; }
static Deoptimizer* New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate);
static Deoptimizer* Grab(Isolate* isolate);
// The returned object with information on the optimized frame needs to be
// freed before another one can be generated.
static DeoptimizedFrameInfo* DebuggerInspectableFrame(JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate);
// Deoptimize the function now. Its current optimized code will never be run
// again and any activations of the optimized code will get deoptimized when
// execution returns. If {code} is specified then the given code is targeted
// instead of the function code (e.g. OSR code not installed on function).
static void DeoptimizeFunction(JSFunction* function, Code* code = nullptr);
// Deoptimize all code in the given isolate.
static void DeoptimizeAll(Isolate* isolate);
// Deoptimizes all optimized code that has been previously marked
// (via code->set_marked_for_deoptimization) and unlinks all functions that
// refer to that code.
static void DeoptimizeMarkedCode(Isolate* isolate);
~Deoptimizer();
void MaterializeHeapObjects();
static void ComputeOutputFrames(Deoptimizer* deoptimizer);
static Address GetDeoptimizationEntry(Isolate* isolate, int id,
BailoutType type);
static int GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type);
// Code generation support.
static int input_offset() { return OFFSET_OF(Deoptimizer, input_); }
static int output_count_offset() {
return OFFSET_OF(Deoptimizer, output_count_);
}
static int output_offset() { return OFFSET_OF(Deoptimizer, output_); }
static int caller_frame_top_offset() {
return OFFSET_OF(Deoptimizer, caller_frame_top_);
}
static int GetDeoptimizedCodeCount(Isolate* isolate);
static const int kNotDeoptimizationEntry = -1;
// Generators for the deoptimization entry code.
class TableEntryGenerator BASE_EMBEDDED {
public:
TableEntryGenerator(MacroAssembler* masm, BailoutType type, int count)
: masm_(masm), type_(type), count_(count) {}
void Generate();
protected:
MacroAssembler* masm() const { return masm_; }
BailoutType type() const { return type_; }
Isolate* isolate() const { return masm_->isolate(); }
void GeneratePrologue();
private:
int count() const { return count_; }
MacroAssembler* masm_;
Deoptimizer::BailoutType type_;
int count_;
};
static void EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type);
static void EnsureCodeForMaxDeoptimizationEntries(Isolate* isolate);
Isolate* isolate() const { return isolate_; }
private:
friend class FrameWriter;
void QueueValueForTranslation(Address output_address, Object* obj,
const TranslatedFrame::iterator& iterator);
static const int kMinNumberOfEntries = 64;
static const int kMaxNumberOfEntries = 16384;
Deoptimizer(Isolate* isolate, JSFunction* function, BailoutType type,
unsigned bailout_id, Address from, int fp_to_sp_delta);
Code* FindOptimizedCode();
void PrintFunctionName();
void DeleteFrameDescriptions();
void DoComputeOutputFrames();
void DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
int frame_index, bool goto_catch_handler);
void DoComputeArgumentsAdaptorFrame(TranslatedFrame* translated_frame,
int frame_index);
void DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
int frame_index);
enum class BuiltinContinuationMode {
STUB,
JAVASCRIPT,
JAVASCRIPT_WITH_CATCH,
JAVASCRIPT_HANDLE_EXCEPTION
};
static bool BuiltinContinuationModeIsWithCatch(BuiltinContinuationMode mode);
static bool BuiltinContinuationModeIsJavaScript(BuiltinContinuationMode mode);
static StackFrame::Type BuiltinContinuationModeToFrameType(
BuiltinContinuationMode mode);
static Builtins::Name TrampolineForBuiltinContinuation(
BuiltinContinuationMode mode, bool must_handle_result);
void DoComputeBuiltinContinuation(TranslatedFrame* translated_frame,
int frame_index,
BuiltinContinuationMode mode);
void WriteTranslatedValueToOutput(
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
unsigned output_offset, const char* debug_hint_string = nullptr,
Address output_address_for_materialization = kNullAddress);
void WriteValueToOutput(Object* value, int input_index, int frame_index,
unsigned output_offset,
const char* debug_hint_string);
void DebugPrintOutputSlot(intptr_t value, int frame_index,
unsigned output_offset,
const char* debug_hint_string);
unsigned ComputeInputFrameAboveFpFixedSize() const;
unsigned ComputeInputFrameSize() const;
static unsigned ComputeInterpretedFixedSize(SharedFunctionInfo* shared);
static unsigned ComputeIncomingArgumentSize(SharedFunctionInfo* shared);
static unsigned ComputeOutgoingArgumentSize(Code* code, unsigned bailout_id);
static void GenerateDeoptimizationEntries(
MacroAssembler* masm, int count, BailoutType type);
// Marks all the code in the given context for deoptimization.
static void MarkAllCodeForContext(Context* native_context);
// Deoptimizes all code marked in the given context.
static void DeoptimizeMarkedCodeForContext(Context* native_context);
// Some architectures need to push padding together with the TOS register
// in order to maintain stack alignment.
static bool PadTopOfStackRegister();
// Searches the list of known deoptimizing code for a Code object
// containing the given address (which is supposedly faster than
// searching all code objects).
Code* FindDeoptimizingCode(Address addr);
Isolate* isolate_;
JSFunction* function_;
Code* compiled_code_;
unsigned bailout_id_;
BailoutType bailout_type_;
Address from_;
int fp_to_sp_delta_;
bool deoptimizing_throw_;
int catch_handler_data_;
int catch_handler_pc_offset_;
// Input frame description.
FrameDescription* input_;
// Number of output frames.
int output_count_;
// Number of output js frames.
int jsframe_count_;
// Array of output frame descriptions.
FrameDescription** output_;
// Caller frame details computed from input frame.
intptr_t caller_frame_top_;
intptr_t caller_fp_;
intptr_t caller_pc_;
intptr_t caller_constant_pool_;
intptr_t input_frame_context_;
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
// Key for lookup of previously materialized objects
intptr_t stack_fp_;
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
TranslatedState translated_state_;
struct ValueToMaterialize {
Address output_slot_address_;
TranslatedFrame::iterator value_;
};
std::vector<ValueToMaterialize> values_to_materialize_;
#ifdef DEBUG
DisallowHeapAllocation* disallow_heap_allocation_;
#endif // DEBUG
CodeTracer::Scope* trace_scope_;
static const int table_entry_size_;
friend class FrameDescription;
friend class DeoptimizedFrameInfo;
};
class RegisterValues {
public:
intptr_t GetRegister(unsigned n) const {
#if DEBUG
// This convoluted DCHECK is needed to work around a gcc problem that
// improperly detects an array bounds overflow in optimized debug builds
// when using a plain DCHECK.
if (n >= arraysize(registers_)) {
DCHECK(false);
return 0;
}
#endif
return registers_[n];
}
Float32 GetFloatRegister(unsigned n) const {
DCHECK(n < arraysize(float_registers_));
return float_registers_[n];
}
Float64 GetDoubleRegister(unsigned n) const {
DCHECK(n < arraysize(double_registers_));
return double_registers_[n];
}
void SetRegister(unsigned n, intptr_t value) {
DCHECK(n < arraysize(registers_));
registers_[n] = value;
}
void SetFloatRegister(unsigned n, Float32 value) {
DCHECK(n < arraysize(float_registers_));
float_registers_[n] = value;
}
void SetDoubleRegister(unsigned n, Float64 value) {
DCHECK(n < arraysize(double_registers_));
double_registers_[n] = value;
}
// Generated code is writing directly into the below arrays, make sure their
// element sizes fit what the machine instructions expect.
static_assert(sizeof(Float32) == kFloatSize, "size mismatch");
static_assert(sizeof(Float64) == kDoubleSize, "size mismatch");
intptr_t registers_[Register::kNumRegisters];
[assembler] Make Register et al. real classes Up to now, each architecture defined all Register types as structs, with lots of redundancy. An often found comment noted that they cannot be classes due to initialization order problems. As these problems are gone with C++11 constexpr constants, I now tried making Registers classes again. All register types now inherit from RegisterBase, which provides a default set of methods and named constructors (like ::from_code, code(), bit(), is_valid(), ...). This design allows to guarantee an interesting property: Each register is either valid, or it's the no_reg register. There are no other invalid registers. This is guaranteed statically by the constexpr constructor, and dynamically by ::from_code. I decided to disallow the default constructor completely, so instead of "Register reg;" you now need "Register reg = no_reg;". This makes explicit how the Register is initialized. I did this change to the x64, ia32, arm, arm64, mips and mips64 ports. Overall, code got much more compact and more safe. In theory, it should also increase performance (since the is_valid() check is simpler), but this is probably not measurable. R=mstarzinger@chromium.org Change-Id: I5ccfa4050daf4e146a557970e9d37fd3d2788d4a Reviewed-on: https://chromium-review.googlesource.com/650927 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Reviewed-by: Igor Sheludko <ishell@chromium.org> Commit-Queue: Clemens Hammacher <clemensh@chromium.org> Cr-Commit-Position: refs/heads/master@{#47847}
2017-09-06 08:05:07 +00:00
Float32 float_registers_[FloatRegister::kNumRegisters];
Float64 double_registers_[DoubleRegister::kNumRegisters];
};
class FrameDescription {
public:
explicit FrameDescription(uint32_t frame_size, int parameter_count = 0);
void* operator new(size_t size, uint32_t frame_size) {
// Subtracts kPointerSize, as the member frame_content_ already supplies
// the first element of the area to store the frame.
return malloc(size + frame_size - kPointerSize);
}
void operator delete(void* pointer, uint32_t frame_size) {
free(pointer);
}
void operator delete(void* description) {
free(description);
}
uint32_t GetFrameSize() const {
USE(frame_content_);
DCHECK(static_cast<uint32_t>(frame_size_) == frame_size_);
return static_cast<uint32_t>(frame_size_);
}
intptr_t GetFrameSlot(unsigned offset) {
return *GetFrameSlotPointer(offset);
}
Reland "[arm64] Preparation for padding of arguments" This is a reland of bcf1172992a2d817978ff19a2d814c7629443956 The test was timing out in no snapshot builds, as each CodeAssemblerTester creates a new Context. Reduced the random iterations significantly. Original change's description: > [arm64] Preparation for padding of arguments > > As part of JSSP removal, we need to align the arguments passed to functions > on the stack, by adding a padding slot when the total number of arguments > is odd. > > This patch introduces the kPadArguments flag (which is currently set to > false for all architectures), which will control padding of arguments in > architecture-independent parts of the code (deoptimizer, instruction > selector). > > It also adds some executable tests for tail calls with various stack > parameter counts on the caller and callee sides. > > This will be turned on for arm64 together with arm64-specific changes to > the code generator, the MacroAsembler and the builtins, in a later patch. > > Bug: v8:6644 > Change-Id: I79a5c149123fe8130cedd1ccffec3d9b50361e08 > Reviewed-on: https://chromium-review.googlesource.com/806554 > Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com> > Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Cr-Commit-Position: refs/heads/master@{#50134} TBR=jarin@chromium.org Bug: v8:6644 Change-Id: I795877ed9791e126ffac6841dbbb65189e95d207 Reviewed-on: https://chromium-review.googlesource.com/833046 Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Cr-Commit-Position: refs/heads/master@{#50238}
2017-12-18 18:55:23 +00:00
unsigned GetLastArgumentSlotOffset() {
int parameter_slots = parameter_count();
if (kPadArguments) parameter_slots = RoundUp(parameter_slots, 2);
return GetFrameSize() - parameter_slots * kPointerSize;
}
Address GetFramePointerAddress() {
Reland "[arm64] Preparation for padding of arguments" This is a reland of bcf1172992a2d817978ff19a2d814c7629443956 The test was timing out in no snapshot builds, as each CodeAssemblerTester creates a new Context. Reduced the random iterations significantly. Original change's description: > [arm64] Preparation for padding of arguments > > As part of JSSP removal, we need to align the arguments passed to functions > on the stack, by adding a padding slot when the total number of arguments > is odd. > > This patch introduces the kPadArguments flag (which is currently set to > false for all architectures), which will control padding of arguments in > architecture-independent parts of the code (deoptimizer, instruction > selector). > > It also adds some executable tests for tail calls with various stack > parameter counts on the caller and callee sides. > > This will be turned on for arm64 together with arm64-specific changes to > the code generator, the MacroAsembler and the builtins, in a later patch. > > Bug: v8:6644 > Change-Id: I79a5c149123fe8130cedd1ccffec3d9b50361e08 > Reviewed-on: https://chromium-review.googlesource.com/806554 > Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com> > Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Cr-Commit-Position: refs/heads/master@{#50134} TBR=jarin@chromium.org Bug: v8:6644 Change-Id: I795877ed9791e126ffac6841dbbb65189e95d207 Reviewed-on: https://chromium-review.googlesource.com/833046 Commit-Queue: Georgia Kouveli <georgia.kouveli@arm.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Cr-Commit-Position: refs/heads/master@{#50238}
2017-12-18 18:55:23 +00:00
int fp_offset =
GetLastArgumentSlotOffset() - StandardFrameConstants::kCallerSPOffset;
return reinterpret_cast<Address>(GetFrameSlotPointer(fp_offset));
}
RegisterValues* GetRegisterValues() { return &register_values_; }
void SetFrameSlot(unsigned offset, intptr_t value) {
*GetFrameSlotPointer(offset) = value;
}
void SetCallerPc(unsigned offset, intptr_t value);
void SetCallerFp(unsigned offset, intptr_t value);
void SetCallerConstantPool(unsigned offset, intptr_t value);
intptr_t GetRegister(unsigned n) const {
return register_values_.GetRegister(n);
}
Float64 GetDoubleRegister(unsigned n) const {
return register_values_.GetDoubleRegister(n);
}
void SetRegister(unsigned n, intptr_t value) {
register_values_.SetRegister(n, value);
}
void SetDoubleRegister(unsigned n, Float64 value) {
register_values_.SetDoubleRegister(n, value);
}
intptr_t GetTop() const { return top_; }
void SetTop(intptr_t top) { top_ = top; }
intptr_t GetPc() const { return pc_; }
void SetPc(intptr_t pc) { pc_ = pc; }
intptr_t GetFp() const { return fp_; }
void SetFp(intptr_t fp) { fp_ = fp; }
intptr_t GetContext() const { return context_; }
void SetContext(intptr_t context) { context_ = context; }
intptr_t GetConstantPool() const { return constant_pool_; }
void SetConstantPool(intptr_t constant_pool) {
constant_pool_ = constant_pool;
}
void SetContinuation(intptr_t pc) { continuation_ = pc; }
// Argument count, including receiver.
int parameter_count() { return parameter_count_; }
static int registers_offset() {
return OFFSET_OF(FrameDescription, register_values_.registers_);
}
static int double_registers_offset() {
return OFFSET_OF(FrameDescription, register_values_.double_registers_);
}
static int float_registers_offset() {
return OFFSET_OF(FrameDescription, register_values_.float_registers_);
}
static int frame_size_offset() {
return offsetof(FrameDescription, frame_size_);
}
static int pc_offset() { return offsetof(FrameDescription, pc_); }
static int continuation_offset() {
return offsetof(FrameDescription, continuation_);
}
static int frame_content_offset() {
return offsetof(FrameDescription, frame_content_);
}
private:
static const uint32_t kZapUint32 = 0xbeeddead;
// Frame_size_ must hold a uint32_t value. It is only a uintptr_t to
// keep the variable-size array frame_content_ of type intptr_t at
// the end of the structure aligned.
uintptr_t frame_size_; // Number of bytes.
int parameter_count_;
RegisterValues register_values_;
intptr_t top_;
intptr_t pc_;
intptr_t fp_;
intptr_t context_;
intptr_t constant_pool_;
// Continuation is the PC where the execution continues after
// deoptimizing.
intptr_t continuation_;
// This must be at the end of the object as the object is allocated larger
// than it's definition indicate to extend this array.
intptr_t frame_content_[1];
intptr_t* GetFrameSlotPointer(unsigned offset) {
DCHECK(offset < frame_size_);
return reinterpret_cast<intptr_t*>(
reinterpret_cast<Address>(this) + frame_content_offset() + offset);
}
};
class DeoptimizerData {
public:
explicit DeoptimizerData(Heap* heap);
~DeoptimizerData();
private:
Heap* heap_;
Code* deopt_entry_code_[Deoptimizer::kLastBailoutType + 1];
Deoptimizer* current_;
friend class Deoptimizer;
DISALLOW_COPY_AND_ASSIGN(DeoptimizerData);
};
class TranslationBuffer BASE_EMBEDDED {
public:
explicit TranslationBuffer(Zone* zone) : contents_(zone) {}
int CurrentIndex() const { return static_cast<int>(contents_.size()); }
void Add(int32_t value);
Handle<ByteArray> CreateByteArray(Factory* factory);
private:
ZoneChunkList<uint8_t> contents_;
};
class TranslationIterator BASE_EMBEDDED {
public:
TranslationIterator(ByteArray* buffer, int index);
int32_t Next();
bool HasNext() const;
void Skip(int n) {
for (int i = 0; i < n; i++) Next();
}
private:
ByteArray* buffer_;
int index_;
};
#define TRANSLATION_OPCODE_LIST(V) \
V(BEGIN) \
V(INTERPRETED_FRAME) \
V(BUILTIN_CONTINUATION_FRAME) \
V(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME) \
V(JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME) \
V(CONSTRUCT_STUB_FRAME) \
V(ARGUMENTS_ADAPTOR_FRAME) \
V(DUPLICATED_OBJECT) \
V(ARGUMENTS_ELEMENTS) \
V(ARGUMENTS_LENGTH) \
V(CAPTURED_OBJECT) \
V(REGISTER) \
V(INT32_REGISTER) \
V(UINT32_REGISTER) \
V(BOOL_REGISTER) \
V(FLOAT_REGISTER) \
V(DOUBLE_REGISTER) \
V(STACK_SLOT) \
V(INT32_STACK_SLOT) \
V(UINT32_STACK_SLOT) \
V(BOOL_STACK_SLOT) \
V(FLOAT_STACK_SLOT) \
V(DOUBLE_STACK_SLOT) \
V(LITERAL) \
V(UPDATE_FEEDBACK)
class Translation BASE_EMBEDDED {
public:
#define DECLARE_TRANSLATION_OPCODE_ENUM(item) item,
enum Opcode {
TRANSLATION_OPCODE_LIST(DECLARE_TRANSLATION_OPCODE_ENUM)
LAST = LITERAL
};
#undef DECLARE_TRANSLATION_OPCODE_ENUM
Translation(TranslationBuffer* buffer, int frame_count, int jsframe_count,
int update_feedback_count, Zone* zone)
: buffer_(buffer), index_(buffer->CurrentIndex()), zone_(zone) {
buffer_->Add(BEGIN);
buffer_->Add(frame_count);
buffer_->Add(jsframe_count);
buffer_->Add(update_feedback_count);
}
int index() const { return index_; }
// Commands.
void BeginInterpretedFrame(BailoutId bytecode_offset, int literal_id,
unsigned height);
void BeginArgumentsAdaptorFrame(int literal_id, unsigned height);
void BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
unsigned height);
void BeginBuiltinContinuationFrame(BailoutId bailout_id, int literal_id,
unsigned height);
void BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id, unsigned height);
void BeginJavaScriptBuiltinContinuationWithCatchFrame(BailoutId bailout_id,
int literal_id,
unsigned height);
void ArgumentsElements(CreateArgumentsType type);
void ArgumentsLength(CreateArgumentsType type);
void BeginCapturedObject(int length);
void AddUpdateFeedback(int vector_literal, int slot);
void DuplicateObject(int object_index);
void StoreRegister(Register reg);
void StoreInt32Register(Register reg);
void StoreUint32Register(Register reg);
void StoreBoolRegister(Register reg);
void StoreFloatRegister(FloatRegister reg);
void StoreDoubleRegister(DoubleRegister reg);
void StoreStackSlot(int index);
void StoreInt32StackSlot(int index);
void StoreUint32StackSlot(int index);
void StoreBoolStackSlot(int index);
void StoreFloatStackSlot(int index);
void StoreDoubleStackSlot(int index);
void StoreLiteral(int literal_id);
void StoreJSFrameFunction();
Zone* zone() const { return zone_; }
static int NumberOfOperandsFor(Opcode opcode);
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
static const char* StringFor(Opcode opcode);
#endif
private:
TranslationBuffer* buffer_;
int index_;
Zone* zone_;
};
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
class MaterializedObjectStore {
public:
explicit MaterializedObjectStore(Isolate* isolate) : isolate_(isolate) {
}
Handle<FixedArray> Get(Address fp);
void Set(Address fp, Handle<FixedArray> materialized_objects);
bool Remove(Address fp);
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
private:
Isolate* isolate() const { return isolate_; }
The current version is passing all the existing test + a bunch of new tests (packaged in the change list, too). The patch extends the SlotRef object to describe captured and duplicated objects. Since the SlotRefs are not independent of each other anymore, there is a new SlotRefValueBuilder class that stores the SlotRefs and later materializes the objects from the SlotRefs. Note that unlike the previous implementation of SlotRefs, we now build the SlotRef entries for the entire frame, not just the particular function. This is because duplicate objects might refer to previous captured objects (that might live inside other inlined function's part of the frame). We also need to store the materialized objects between other potential invocations of the same arguments object so that we materialize each captured object at most once. The materialized objects of frames live in the new MaterielizedObjectStore object (contained in Isolate), indexed by the frame's FP address. Each argument materialization (and deoptimization) tries to lookup its captured objects in the store before building new ones. Deoptimization also removes the materialized objects from the store. We also schedule a lazy deopt to be sure that we always get rid of the materialized objects and that the optmized function adopts the materialized objects (instead of happily computing with its captured representations). Concerns: - Is the FP address the right key for a frame? (Note that deoptimizer's representation of frame is different from the argument object materializer's one - it is not easy to find common ground.) - Performance is suboptimal in several places, but a quick local run of benchmarks does not seem to show a perf hit. Examples of possible improvements: smarter generation of SlotRefs (build other functions' SlotRefs only for captured objects and only if necessary), smarter lookup of stored materialized objects. - Ideally, we would like to share the code for argument materialization with deoptimizer's materializer. However, the supporting data structures (mainly the frame descriptor) are quite different in each case, so it looks more like a separate project. Thanks for any feedback. R=danno@chromium.org, mstarzinger@chromium.org LOG=N BUG= Committed: https://code.google.com/p/v8/source/detail?r=18918 Review URL: https://codereview.chromium.org/103243005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-30 10:33:53 +00:00
Handle<FixedArray> GetStackEntries();
Handle<FixedArray> EnsureStackEntries(int size);
int StackIdToIndex(Address fp);
Isolate* isolate_;
std::vector<Address> frame_fps_;
};
// Class used to represent an unoptimized frame when the debugger
// needs to inspect a frame that is part of an optimized frame. The
// internally used FrameDescription objects are not GC safe so for use
// by the debugger frame information is copied to an object of this type.
// Represents parameters in unadapted form so their number might mismatch
// formal parameter count.
class DeoptimizedFrameInfo : public Malloced {
public:
DeoptimizedFrameInfo(TranslatedState* state,
TranslatedState::iterator frame_it, Isolate* isolate);
// Return the number of incoming arguments.
int parameters_count() { return static_cast<int>(parameters_.size()); }
// Return the height of the expression stack.
int expression_count() { return static_cast<int>(expression_stack_.size()); }
// Get the frame function.
Handle<JSFunction> GetFunction() { return function_; }
// Get the frame context.
Handle<Object> GetContext() { return context_; }
// Check if this frame is preceded by construct stub frame. The bottom-most
// inlined frame might still be called by an uninlined construct stub.
bool HasConstructStub() {
return has_construct_stub_;
}
// Get an incoming argument.
Handle<Object> GetParameter(int index) {
DCHECK(0 <= index && index < parameters_count());
return parameters_[index];
}
// Get an expression from the expression stack.
Handle<Object> GetExpression(int index) {
DCHECK(0 <= index && index < expression_count());
return expression_stack_[index];
}
int GetSourcePosition() {
return source_position_;
}
private:
// Set an incoming argument.
void SetParameter(int index, Handle<Object> obj) {
DCHECK(0 <= index && index < parameters_count());
parameters_[index] = obj;
}
// Set an expression on the expression stack.
void SetExpression(int index, Handle<Object> obj) {
DCHECK(0 <= index && index < expression_count());
expression_stack_[index] = obj;
}
Handle<JSFunction> function_;
Handle<Object> context_;
bool has_construct_stub_;
std::vector<Handle<Object> > parameters_;
std::vector<Handle<Object> > expression_stack_;
int source_position_;
friend class Deoptimizer;
};
} // namespace internal
} // namespace v8
#endif // V8_DEOPTIMIZER_H_