v8/src/a64/macro-assembler-a64.h

2312 lines
96 KiB
C
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_
#define V8_A64_MACRO_ASSEMBLER_A64_H_
#include <vector>
#include "v8globals.h"
#include "globals.h"
#include "a64/assembler-a64-inl.h"
namespace v8 {
namespace internal {
#define LS_MACRO_LIST(V) \
V(Ldrb, Register&, rt, LDRB_w) \
V(Strb, Register&, rt, STRB_w) \
V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
V(Ldrh, Register&, rt, LDRH_w) \
V(Strh, Register&, rt, STRH_w) \
V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
V(Str, CPURegister&, rt, StoreOpFor(rt)) \
V(Ldrsw, Register&, rt, LDRSW_x)
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset);
inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
// Generate a MemOperand for loading a SMI from memory.
inline MemOperand UntagSmiMemOperand(Register object, int offset);
// ----------------------------------------------------------------------------
// MacroAssembler
enum BranchType {
// Copies of architectural conditions.
// The associated conditions can be used in place of those, the code will
// take care of reinterpreting them with the correct type.
integer_eq = eq,
integer_ne = ne,
integer_hs = hs,
integer_lo = lo,
integer_mi = mi,
integer_pl = pl,
integer_vs = vs,
integer_vc = vc,
integer_hi = hi,
integer_ls = ls,
integer_ge = ge,
integer_lt = lt,
integer_gt = gt,
integer_le = le,
integer_al = al,
integer_nv = nv,
// These two are *different* from the architectural codes al and nv.
// 'always' is used to generate unconditional branches.
// 'never' is used to not generate a branch (generally as the inverse
// branch type of 'always).
always, never,
// cbz and cbnz
reg_zero, reg_not_zero,
// tbz and tbnz
reg_bit_clear, reg_bit_set,
// Aliases.
kBranchTypeFirstCondition = eq,
kBranchTypeLastCondition = nv,
kBranchTypeFirstUsingReg = reg_zero,
kBranchTypeFirstUsingBit = reg_bit_clear
};
inline BranchType InvertBranchType(BranchType type) {
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
return static_cast<BranchType>(
InvertCondition(static_cast<Condition>(type)));
} else {
return static_cast<BranchType>(type ^ 1);
}
}
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
enum TargetAddressStorageMode {
CAN_INLINE_TARGET_ADDRESS,
NEVER_INLINE_TARGET_ADDRESS
};
enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
class MacroAssembler : public Assembler {
public:
MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
inline Handle<Object> CodeObject();
// Instruction set functions ------------------------------------------------
// Logical macros.
inline void And(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Ands(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Bic(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Bics(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Orr(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Orn(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Eor(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Eon(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Tst(const Register& rn, const Operand& operand);
void LogicalMacro(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op);
// Add and sub macros.
inline void Add(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Adds(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sub(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Subs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Cmn(const Register& rn, const Operand& operand);
inline void Cmp(const Register& rn, const Operand& operand);
inline void Neg(const Register& rd,
const Operand& operand);
inline void Negs(const Register& rd,
const Operand& operand);
void AddSubMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op);
// Add/sub with carry macros.
inline void Adc(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Adcs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sbc(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Sbcs(const Register& rd,
const Register& rn,
const Operand& operand);
inline void Ngc(const Register& rd,
const Operand& operand);
inline void Ngcs(const Register& rd,
const Operand& operand);
void AddSubWithCarryMacro(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op);
// Move macros.
void Mov(const Register& rd,
const Operand& operand,
DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
void Mov(const Register& rd, uint64_t imm);
inline void Mvn(const Register& rd, uint64_t imm);
void Mvn(const Register& rd, const Operand& operand);
static bool IsImmMovn(uint64_t imm, unsigned reg_size);
static bool IsImmMovz(uint64_t imm, unsigned reg_size);
static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
// Conditional macros.
inline void Ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
inline void Ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
void ConditionalCompareMacro(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op);
void Csel(const Register& rd,
const Register& rn,
const Operand& operand,
Condition cond);
// Load/store macros.
#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
inline void FN(const REGTYPE REG, const MemOperand& addr);
LS_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
void LoadStoreMacro(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op);
// V8-specific load/store helpers.
void Load(const Register& rt, const MemOperand& addr, Representation r);
void Store(const Register& rt, const MemOperand& addr, Representation r);
// Remaining instructions are simple pass-through calls to the assembler.
inline void Adr(const Register& rd, Label* label);
inline void Asr(const Register& rd, const Register& rn, unsigned shift);
inline void Asr(const Register& rd, const Register& rn, const Register& rm);
// Branch type inversion relies on these relations.
STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
(reg_bit_clear == (reg_bit_set ^ 1)) &&
(always == (never ^ 1)));
void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
inline void B(Label* label);
inline void B(Condition cond, Label* label);
void B(Label* label, Condition cond);
inline void Bfi(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Bind(Label* label);
inline void Bl(Label* label);
inline void Blr(const Register& xn);
inline void Br(const Register& xn);
inline void Brk(int code);
void Cbnz(const Register& rt, Label* label);
void Cbz(const Register& rt, Label* label);
inline void Cinc(const Register& rd, const Register& rn, Condition cond);
inline void Cinv(const Register& rd, const Register& rn, Condition cond);
inline void Cls(const Register& rd, const Register& rn);
inline void Clz(const Register& rd, const Register& rn);
inline void Cneg(const Register& rd, const Register& rn, Condition cond);
inline void CzeroX(const Register& rd, Condition cond);
inline void CmovX(const Register& rd, const Register& rn, Condition cond);
inline void Cset(const Register& rd, Condition cond);
inline void Csetm(const Register& rd, Condition cond);
inline void Csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
inline void Dmb(BarrierDomain domain, BarrierType type);
inline void Dsb(BarrierDomain domain, BarrierType type);
inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
inline void Extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb);
inline void Fabs(const FPRegister& fd, const FPRegister& fn);
inline void Fadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fccmp(const FPRegister& fn,
const FPRegister& fm,
StatusFlags nzcv,
Condition cond);
inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
inline void Fcmp(const FPRegister& fn, double value);
inline void Fcsel(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
Condition cond);
inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
inline void Fcvtas(const Register& rd, const FPRegister& fn);
inline void Fcvtau(const Register& rd, const FPRegister& fn);
inline void Fcvtms(const Register& rd, const FPRegister& fn);
inline void Fcvtmu(const Register& rd, const FPRegister& fn);
inline void Fcvtns(const Register& rd, const FPRegister& fn);
inline void Fcvtnu(const Register& rd, const FPRegister& fn);
inline void Fcvtzs(const Register& rd, const FPRegister& fn);
inline void Fcvtzu(const Register& rd, const FPRegister& fn);
inline void Fdiv(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fmax(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmaxnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmin(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fminnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fmov(FPRegister fd, FPRegister fn);
inline void Fmov(FPRegister fd, Register rn);
// Provide explicit double and float interfaces for FP immediate moves, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of fd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
inline void Fmov(FPRegister fd, double imm);
inline void Fmov(FPRegister fd, float imm);
// Provide a template to allow other types to be converted automatically.
template<typename T>
void Fmov(FPRegister fd, T imm) {
ASSERT(allow_macro_instructions_);
Fmov(fd, static_cast<double>(imm));
}
inline void Fmov(Register rd, FPRegister fn);
inline void Fmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fmul(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Fneg(const FPRegister& fd, const FPRegister& fn);
inline void Fnmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Fnmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
inline void Frinta(const FPRegister& fd, const FPRegister& fn);
inline void Frintn(const FPRegister& fd, const FPRegister& fn);
inline void Frintz(const FPRegister& fd, const FPRegister& fn);
inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
inline void Fsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm);
inline void Hint(SystemHint code);
inline void Hlt(int code);
inline void Isb();
inline void Ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src);
inline void Ldp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src);
inline void Ldpsw(const Register& rt,
const Register& rt2,
const MemOperand& src);
// Provide both double and float interfaces for FP immediate loads, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of fd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
inline void Ldr(const FPRegister& ft, double imm);
inline void Ldr(const FPRegister& ft, float imm);
inline void Ldr(const Register& rt, uint64_t imm);
inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
inline void Madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
inline void Mov(const Register& rd, const Register& rm);
inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
inline void Mrs(const Register& rt, SystemRegister sysreg);
inline void Msr(SystemRegister sysreg, const Register& rt);
inline void Msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Mul(const Register& rd, const Register& rn, const Register& rm);
inline void Nop() { nop(); }
inline void Rbit(const Register& rd, const Register& rn);
inline void Ret(const Register& xn = lr);
inline void Rev(const Register& rd, const Register& rn);
inline void Rev16(const Register& rd, const Register& rn);
inline void Rev32(const Register& rd, const Register& rn);
inline void Ror(const Register& rd, const Register& rs, unsigned shift);
inline void Ror(const Register& rd, const Register& rn, const Register& rm);
inline void Sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Sbfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Scvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits = 0);
inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
inline void Smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Smull(const Register& rd,
const Register& rn,
const Register& rm);
inline void Smulh(const Register& rd,
const Register& rn,
const Register& rm);
inline void Stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst);
inline void Stp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst);
inline void Sxtb(const Register& rd, const Register& rn);
inline void Sxth(const Register& rd, const Register& rn);
inline void Sxtw(const Register& rd, const Register& rn);
void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
void Tbz(const Register& rt, unsigned bit_pos, Label* label);
inline void Ubfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Ubfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width);
inline void Ucvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits = 0);
inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
inline void Umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
inline void Uxtb(const Register& rd, const Register& rn);
inline void Uxth(const Register& rd, const Register& rn);
inline void Uxtw(const Register& rd, const Register& rn);
// Pseudo-instructions ------------------------------------------------------
// Compute rd = abs(rm).
// This function clobbers the condition flags.
//
// If rm is the minimum representable value, the result is not representable.
// Handlers for each case can be specified using the relevant labels.
void Abs(const Register& rd, const Register& rm,
Label * is_not_representable = NULL,
Label * is_representable = NULL);
// Push or pop up to 4 registers of the same width to or from the stack,
// using the current stack pointer as set by SetStackPointer.
//
// If an argument register is 'NoReg', all further arguments are also assumed
// to be 'NoReg', and are thus not pushed or popped.
//
// Arguments are ordered such that "Push(a, b);" is functionally equivalent
// to "Push(a); Push(b);".
//
// It is valid to push the same register more than once, and there is no
// restriction on the order in which registers are specified.
//
// It is not valid to pop into the same register more than once in one
// operation, not even into the zero register.
//
// If the current stack pointer (as set by SetStackPointer) is csp, then it
// must be aligned to 16 bytes on entry and the total size of the specified
// registers must also be a multiple of 16 bytes.
//
// Even if the current stack pointer is not the system stack pointer (csp),
// Push (and derived methods) will still modify the system stack pointer in
// order to comply with ABI rules about accessing memory below the system
// stack pointer.
//
// Other than the registers passed into Pop, the stack pointer and (possibly)
// the system stack pointer, these methods do not modify any other registers.
void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
void Push(const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3,
const CPURegister& src4, const CPURegister& src5 = NoReg,
const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered
// registers are associated with higher memory addresses (as in the A32 push
// and pop instructions).
//
// (Push|Pop)SizeRegList allow you to specify the register size as a
// parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
// kSRegSizeInBits are supported.
//
// Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
void PushCPURegList(CPURegList registers);
void PopCPURegList(CPURegList registers);
inline void PushSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PushCPURegList(CPURegList(type, reg_size, registers));
}
inline void PopSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PopCPURegList(CPURegList(type, reg_size, registers));
}
inline void PushXRegList(RegList regs) {
PushSizeRegList(regs, kXRegSizeInBits);
}
inline void PopXRegList(RegList regs) {
PopSizeRegList(regs, kXRegSizeInBits);
}
inline void PushWRegList(RegList regs) {
PushSizeRegList(regs, kWRegSizeInBits);
}
inline void PopWRegList(RegList regs) {
PopSizeRegList(regs, kWRegSizeInBits);
}
inline void PushDRegList(RegList regs) {
PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
}
inline void PopDRegList(RegList regs) {
PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
}
inline void PushSRegList(RegList regs) {
PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
}
inline void PopSRegList(RegList regs) {
PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
}
// Push the specified register 'count' times.
void PushMultipleTimes(CPURegister src, Register count);
void PushMultipleTimes(CPURegister src, int count);
// This is a convenience method for pushing a single Handle<Object>.
inline void Push(Handle<Object> handle);
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
// Aliases of Push and Pop, required for V8 compatibility.
inline void push(Register src) {
Push(src);
}
inline void pop(Register dst) {
Pop(dst);
}
// Sometimes callers need to push or pop multiple registers in a way that is
// difficult to structure efficiently for fixed Push or Pop calls. This scope
// allows push requests to be queued up, then flushed at once. The
// MacroAssembler will try to generate the most efficient sequence required.
//
// Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
// register sizes and types.
class PushPopQueue {
public:
explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
~PushPopQueue() {
ASSERT(queued_.empty());
}
void Queue(const CPURegister& rt) {
size_ += rt.SizeInBytes();
queued_.push_back(rt);
}
void PushQueued();
void PopQueued();
private:
MacroAssembler* masm_;
int size_;
std::vector<CPURegister> queued_;
};
// Poke 'src' onto the stack. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Poke(const CPURegister& src, const Operand& offset);
// Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Peek(const CPURegister& dst, const Operand& offset);
// Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
// with 'src2' at a higher address than 'src1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
// Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
// values peeked will be adjacent, with the value in 'dst2' being from a
// higher address than 'dst1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
// Claim or drop stack space without actually accessing memory.
//
// In debug mode, both of these will write invalid data into the claimed or
// dropped space.
//
// If the current stack pointer (according to StackPointer()) is csp, then it
// must be aligned to 16 bytes and the size claimed or dropped must be a
// multiple of 16 bytes.
//
// Note that unit_size must be specified in bytes. For variants which take a
// Register count, the unit size must be a power of two.
inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
inline void Claim(const Register& count,
uint64_t unit_size = kXRegSize);
inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
inline void Drop(const Register& count,
uint64_t unit_size = kXRegSize);
// Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
// register.
inline void ClaimBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
inline void DropBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
// Compare a register with an operand, and branch to label depending on the
// condition. May corrupt the status flags.
inline void CompareAndBranch(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* label);
// Test the bits of register defined by bit_pattern, and branch if ANY of
// those bits are set. May corrupt the status flags.
inline void TestAndBranchIfAnySet(const Register& reg,
const uint64_t bit_pattern,
Label* label);
// Test the bits of register defined by bit_pattern, and branch if ALL of
// those bits are clear (ie. not set.) May corrupt the status flags.
inline void TestAndBranchIfAllClear(const Register& reg,
const uint64_t bit_pattern,
Label* label);
// Insert one or more instructions into the instruction stream that encode
// some caller-defined data. The instructions used will be executable with no
// side effects.
inline void InlineData(uint64_t data);
// Insert an instrumentation enable marker into the instruction stream.
inline void EnableInstrumentation();
// Insert an instrumentation disable marker into the instruction stream.
inline void DisableInstrumentation();
// Insert an instrumentation event marker into the instruction stream. These
// will be picked up by the instrumentation system to annotate an instruction
// profile. The argument marker_name must be a printable two character string;
// it will be encoded in the event marker.
inline void AnnotateInstrumentation(const char* marker_name);
// If emit_debug_code() is true, emit a run-time check to ensure that
// StackPointer() does not point below the system stack pointer.
//
// Whilst it is architecturally legal for StackPointer() to point below csp,
// it can be evidence of a potential bug because the ABI forbids accesses
// below csp.
//
// If emit_debug_code() is false, this emits no code.
//
// If StackPointer() is the system stack pointer, this emits no code.
void AssertStackConsistency();
// Preserve the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are pushed before lower-numbered registers, and
// thus get higher addresses.
// Floating-point registers are pushed before general-purpose registers, and
// thus get higher addresses.
//
// Note that registers are not checked for invalid values. Use this method
// only if you know that the GC won't try to examine the values on the stack.
//
// This method must not be called unless the current stack pointer (as set by
// SetStackPointer) is the system stack pointer (csp), and is aligned to
// ActivationFrameAlignment().
void PushCalleeSavedRegisters();
// Restore the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are popped after lower-numbered registers, and
// thus come from higher addresses.
// Floating-point registers are popped after general-purpose registers, and
// thus come from higher addresses.
//
// This method must not be called unless the current stack pointer (as set by
// SetStackPointer) is the system stack pointer (csp), and is aligned to
// ActivationFrameAlignment().
void PopCalleeSavedRegisters();
// Set the current stack pointer, but don't generate any code.
inline void SetStackPointer(const Register& stack_pointer) {
ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
sp_ = stack_pointer;
}
// Return the current stack pointer, as set by SetStackPointer.
inline const Register& StackPointer() const {
return sp_;
}
// Align csp for a frame, as per ActivationFrameAlignment, and make it the
// current stack pointer.
inline void AlignAndSetCSPForFrame() {
int sp_alignment = ActivationFrameAlignment();
// AAPCS64 mandates at least 16-byte alignment.
ASSERT(sp_alignment >= 16);
ASSERT(IsPowerOf2(sp_alignment));
Bic(csp, StackPointer(), sp_alignment - 1);
SetStackPointer(csp);
}
// Push the system stack pointer (csp) down to allow the same to be done to
// the current stack pointer (according to StackPointer()). This must be
// called _before_ accessing the memory.
//
// This is necessary when pushing or otherwise adding things to the stack, to
// satisfy the AAPCS64 constraint that the memory below the system stack
// pointer is not accessed.
//
// This method asserts that StackPointer() is not csp, since the call does
// not make sense in that context.
inline void BumpSystemStackPointer(const Operand& space);
// Helpers ------------------------------------------------------------------
// Root register.
inline void InitializeRootRegister();
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index);
// Store an object to the root table.
void StoreRoot(Register source,
Heap::RootListIndex index);
// Load both TrueValue and FalseValue roots.
void LoadTrueFalseRoots(Register true_root, Register false_root);
void LoadHeapObject(Register dst, Handle<HeapObject> object);
void LoadObject(Register result, Handle<Object> object) {
AllowDeferredHandleDereference heap_object_check;
if (object->IsHeapObject()) {
LoadHeapObject(result, Handle<HeapObject>::cast(object));
} else {
ASSERT(object->IsSmi());
Mov(result, Operand(object));
}
}
static int SafepointRegisterStackIndex(int reg_code);
// This is required for compatibility with architecture independant code.
// Remove if not needed.
inline void Move(Register dst, Register src) { Mov(dst, src); }
void LoadInstanceDescriptors(Register map,
Register descriptors);
void EnumLengthUntagged(Register dst, Register map);
void EnumLengthSmi(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
template<typename Field>
void DecodeField(Register reg) {
static const uint64_t shift = Field::kShift + kSmiShift;
static const uint64_t setbits = CountSetBits(Field::kMask, 32);
Ubfx(reg, reg, shift, setbits);
}
// ---- SMI and Number Utilities ----
inline void SmiTag(Register dst, Register src);
inline void SmiTag(Register smi);
inline void SmiUntag(Register dst, Register src);
inline void SmiUntag(Register smi);
inline void SmiUntagToDouble(FPRegister dst,
Register src,
UntagMode mode = kNotSpeculativeUntag);
inline void SmiUntagToFloat(FPRegister dst,
Register src,
UntagMode mode = kNotSpeculativeUntag);
// Compute the absolute value of 'smi' and leave the result in 'smi'
// register. If 'smi' is the most negative SMI, the absolute value cannot
// be represented as a SMI and a jump to 'slow' is done.
void SmiAbs(const Register& smi, Label* slow);
inline void JumpIfSmi(Register value,
Label* smi_label,
Label* not_smi_label = NULL);
inline void JumpIfNotSmi(Register value, Label* not_smi_label);
inline void JumpIfBothSmi(Register value1,
Register value2,
Label* both_smi_label,
Label* not_smi_label = NULL);
inline void JumpIfEitherSmi(Register value1,
Register value2,
Label* either_smi_label,
Label* not_smi_label = NULL);
inline void JumpIfEitherNotSmi(Register value1,
Register value2,
Label* not_smi_label);
inline void JumpIfBothNotSmi(Register value1,
Register value2,
Label* not_smi_label);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
void JumpForHeapNumber(Register object,
Register heap_number_map,
Label* on_heap_number,
Label* on_not_heap_number = NULL);
void JumpIfHeapNumber(Register object,
Label* on_heap_number,
Register heap_number_map = NoReg);
void JumpIfNotHeapNumber(Register object,
Label* on_not_heap_number,
Register heap_number_map = NoReg);
// Sets the vs flag if the input is -0.0.
void TestForMinusZero(DoubleRegister input);
// Jump to label if the input double register contains -0.0.
void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
void LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found);
// Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
// output.
void ClampInt32ToUint8(Register in_out);
void ClampInt32ToUint8(Register output, Register input);
// Saturate a double in input to an unsigned 8-bit integer in output.
void ClampDoubleToUint8(Register output,
DoubleRegister input,
DoubleRegister dbl_scratch);
// Try to convert a double to a signed 32-bit int.
// This succeeds if the result compares equal to the input, so inputs of -0.0
// are converted to 0 and handled as a success.
//
// On output the Z flag is set if the conversion was successful.
void TryConvertDoubleToInt32(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL) {
ASSERT(as_int.Is32Bits());
TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
on_failed_conversion);
}
// Try to convert a double to a signed 64-bit int.
// This succeeds if the result compares equal to the input, so inputs of -0.0
// are converted to 0 and handled as a success.
//
// On output the Z flag is set if the conversion was successful.
void TryConvertDoubleToInt64(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL) {
ASSERT(as_int.Is64Bits());
TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
on_failed_conversion);
}
// ---- Object Utilities ----
// Copy fields from 'src' to 'dst', where both are tagged objects.
// The 'temps' list is a list of X registers which can be used for scratch
// values. The temps list must include at least one register.
//
// Currently, CopyFields cannot make use of more than three registers from
// the 'temps' list.
//
// CopyFields expects to be able to take at least two registers from
// MacroAssembler::TmpList().
void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
// Starting at address in dst, initialize field_count 64-bit fields with
// 64-bit value in register filler. Register dst is corrupted.
void FillFields(Register dst,
Register field_count,
Register filler);
// Copies a number of bytes from src to dst. All passed registers are
// clobbered. On exit src and dst will point to the place just after where the
// last byte was read or written and length will be zero. Hint may be used to
// determine which is the most efficient algorithm to use for copying.
void CopyBytes(Register dst,
Register src,
Register length,
Register scratch,
CopyHint hint = kCopyUnknown);
// ---- String Utilities ----
// Jump to label if either object is not a sequential ASCII string.
// Optionally perform a smi check on the objects first.
void JumpIfEitherIsNotSequentialAsciiStrings(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure,
SmiCheckType smi_check = DO_SMI_CHECK);
// Check if instance type is sequential ASCII string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure);
// Checks if both instance types are sequential ASCII strings and jumps to
// label if either is not.
void JumpIfEitherInstanceTypeIsNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both instance types are sequential ASCII strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* failure);
void JumpIfNotUniqueName(Register type, Label* not_unique_name);
// ---- Calling / Jumping helpers ----
// This is required for compatibility in architecture indepenedant code.
inline void jmp(Label* L) { B(L); }
// Passes thrown value to the handler of top of the try handler chain.
// Register value must be x0.
void Throw(Register value,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
// Propagates an uncatchable exception to the top of the current JS stack's
// handler chain. Register value must be x0.
void ThrowUncatchable(Register value,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
// Throw a message string as an exception.
void Throw(BailoutReason reason);
// Throw a message string as an exception if a condition is not true.
void ThrowIf(Condition cc, BailoutReason reason);
// Throw a message string as an exception if the value is a smi.
void ThrowIfSmi(const Register& value, BailoutReason reason);
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
void TailCallStub(CodeStub* stub);
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
}
void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
int ActivationFrameAlignment();
// Calls a C function.
// The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function,
int num_reg_arguments);
void CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments);
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.
// 'stack_space' is the space to be unwound on exit (includes the call JS
// arguments space and the additional space allocated for the fast call).
// 'spill_offset' is the offset from the stack pointer where
// CallApiFunctionAndReturn can spill registers.
void CallApiFunctionAndReturn(Register function_address,
ExternalReference thunk_ref,
int stack_space,
int spill_offset,
MemOperand return_value_operand,
MemOperand* context_restore_operand);
// The number of register that CallApiFunctionAndReturn will need to save on
// the stack. The space for these registers need to be allocated in the
// ExitFrame before calling CallApiFunctionAndReturn.
static const int kCallApiFunctionSpillSpace = 4;
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper = NullCallWrapper());
// Store the code object for the given builtin in the target register and
// setup the function in the function register.
void GetBuiltinEntry(Register target,
Register function,
Builtins::JavaScript id);
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
void Jump(Register target);
void Jump(Address target, RelocInfo::Mode rmode);
void Jump(Handle<Code> code, RelocInfo::Mode rmode);
void Jump(intptr_t target, RelocInfo::Mode rmode);
void Call(Register target);
void Call(Label* target);
void Call(Address target, RelocInfo::Mode rmode);
void Call(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// For every Call variant, there is a matching CallSize function that returns
// the size (in bytes) of the call sequence.
static int CallSize(Register target);
static int CallSize(Label* target);
static int CallSize(Address target, RelocInfo::Mode rmode);
static int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None());
// Registers used through the invocation chain are hard-coded.
// We force passing the parameters to ensure the contracts are correctly
// honoured by the caller.
// 'function' must be x1.
// 'actual' must use an immediate or x0.
// 'expected' must use an immediate or x2.
// 'call_kind' must be x5.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag,
bool* definitely_mismatches,
const CallWrapper& call_wrapper);
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// Invoke the JavaScript function in the given register.
// Changes the current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper);
// ---- Floating point helpers ----
// Perform a conversion from a double to a signed int64. If the input fits in
// range of the 64-bit result, execution branches to done. Otherwise,
// execution falls through, and the sign of the result can be used to
// determine if overflow was towards positive or negative infinity.
//
// On successful conversion, the least significant 32 bits of the result are
// equivalent to the ECMA-262 operation "ToInt32".
//
// Only public for the test code in test-code-stubs-a64.cc.
void TryConvertDoubleToInt64(Register result,
DoubleRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Register result, DoubleRegister double_input);
// Performs a truncating conversion of a heap number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
// must be different registers. Exits with 'result' holding the answer.
void TruncateHeapNumberToI(Register result, Register object);
// Converts the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
// different registers.
void TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Label* not_int32);
// ---- Code generation helpers ----
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() const { return generating_stub_; }
#if DEBUG
void set_allow_macro_instructions(bool value) {
allow_macro_instructions_ = value;
}
bool allow_macro_instructions() const { return allow_macro_instructions_; }
#endif
bool use_real_aborts() const { return use_real_aborts_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() const { return has_frame_; }
bool AllowThisStubCall(CodeStub* stub);
class NoUseRealAbortsScope {
public:
explicit NoUseRealAbortsScope(MacroAssembler* masm) :
saved_(masm->use_real_aborts_), masm_(masm) {
masm_->use_real_aborts_ = false;
}
~NoUseRealAbortsScope() {
masm_->use_real_aborts_ = saved_;
}
private:
bool saved_;
MacroAssembler* masm_;
};
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
#endif
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
void PushTryHandler(StackHandler::Kind kind, int handler_index);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old pointer space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. The allocated object is returned in result.
//
// If the new space is exhausted control continues at the gc_required label.
// In this case, the result and scratch registers may still be clobbered.
// If flags includes TAG_OBJECT, the result is tagged as as a heap object.
void Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed.
// All registers are clobbered.
// If no heap_number_map register is provided, the function will take care of
// loading it.
void AllocateHeapNumber(Register result,
Label* gc_required,
Register scratch1,
Register scratch2,
Register heap_number_map = NoReg);
void AllocateHeapNumberWithValue(Register result,
DoubleRegister value,
Label* gc_required,
Register scratch1,
Register scratch2,
Register heap_number_map = NoReg);
// ---------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in the
// result register. Checks that the function really is a function and jumps
// to the miss label if the fast checks fail. The function register will be
// untouched; the other registers may be clobbered.
enum BoundFunctionAction {
kMissOnBoundFunction,
kDontMissOnBoundFunction
};
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
BoundFunctionAction action =
kDontMissOnBoundFunction);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare object type for heap object, and branch if equal (or not.)
// heap_object contains a non-Smi whose object type should be compared with
// the given type. This both sets the flags and leaves the object type in
// the type_reg register. It leaves the map in the map register (unless the
// type_reg and map register are the same register). It leaves the heap
// object in the heap_object register unless the heap_object register is the
// same register as one of the other registers.
void JumpIfObjectType(Register object,
Register map,
Register type_reg,
InstanceType type,
Label* if_cond_pass,
Condition cond = eq);
void JumpIfNotObjectType(Register object,
Register map,
Register type_reg,
InstanceType type,
Label* if_not_object);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Compare an object's map with the specified map. Condition flags are set
// with result of map compare.
void CompareMap(Register obj,
Register scratch,
Handle<Map> map);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMap(Register obj_map,
Handle<Map> map);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type);
// As above, but the map of the object is already loaded into obj_map, and is
// preserved.
void CheckMap(Register obj_map,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified map and branch to a
// specified target if equal. Skip the smi check if not required (object is
// known to be a heap object)
void DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type);
// Test the bitfield of the heap object map with mask and set the condition
// flags. The object register is preserved.
void TestMapBitfield(Register object, uint64_t mask);
// Load the elements kind field of an object, and return it in the result
// register.
void LoadElementsKind(Register result, Register object);
// Compare the object in a register to a value from the root list.
void CompareRoot(const Register& obj, Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_equal);
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_not_equal);
// Load and check the instance type of an object for being a unique name.
// Loads the type into the second argument register.
// The object and type arguments can be the same register; in that case it
// will be overwritten with the type.
// Fall-through if the object was a string and jump on fail otherwise.
inline void IsObjectNameType(Register object, Register type, Label* fail);
inline void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
// Check the instance type in the given map to see if it corresponds to a
// JS object type. Jump to the fail label if this is not the case and fall
// through otherwise. However if fail label is NULL, no branch will be
// performed and the flag will be updated. You can test the flag for "le"
// condition to test if it is a valid JS object type.
inline void IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// The object and type arguments can be the same register; in that case it
// will be overwritten with the type.
// Jumps to not_string or string appropriate. If the appropriate label is
// NULL, fall through.
inline void IsObjectJSStringType(Register object, Register type,
Label* not_string, Label* string = NULL);
// Compare the contents of a register with an operand, and branch to true,
// false or fall through, depending on condition.
void CompareAndSplit(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* if_true,
Label* if_false,
Label* fall_through);
// Test the bits of register defined by bit_pattern, and branch to
// if_any_set, if_all_clear or fall_through accordingly.
void TestAndSplit(const Register& reg,
uint64_t bit_pattern,
Label* if_all_clear,
Label* if_any_set,
Label* fall_through);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map,
Register scratch,
Label* fail);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map, Register scratch, Label* fail);
// Check to see if number can be stored as a double in FastDoubleElements.
// If it can, store it at the index specified by key_reg in the array,
// otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
FPRegister fpscratch1,
FPRegister fpscratch2,
Label* fail,
int elements_offset = 0);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// ---------------------------------------------------------------------------
// Inline caching support.
void EmitSeqStringSetCharCheck(Register string,
Register index,
SeqStringSetCharCheckIndexType index_type,
Register scratch,
uint32_t encoding_mask);
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch1,
Register scratch2,
Label* miss);
// Hash the interger value in 'key' register.
// It uses the same algorithm as ComputeIntegerHash in utils.h.
void GetNumberHash(Register key, Register scratch);
// Load value from the dictionary.
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
void LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register scratch0,
Register scratch1,
Register scratch2,
Register scratch3);
// ---------------------------------------------------------------------------
// Frames.
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
// Returns map with validated enum cache in object register.
void CheckEnumCache(Register object,
Register null_value,
Register scratch0,
Register scratch1,
Register scratch2,
Register scratch3,
Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver should point to the array object.
// If allocation info is present, the Z flag is set (so that the eq
// condition will pass).
void TestJSArrayForAllocationMemento(Register receiver,
Register scratch1,
Register scratch2,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver,
Register scratch1,
Register scratch2,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
&no_memento_found);
B(eq, memento_found);
Bind(&no_memento_found);
}
// The stack pointer has to switch between csp and jssp when setting up and
// destroying the exit frame. Hence preserving/restoring the registers is
// slightly more complicated than simple push/pop operations.
void ExitFramePreserveFPRegs();
void ExitFrameRestoreFPRegs();
// Generates function and stub prologue code.
void Prologue(PrologueFrameMode frame_mode);
// Enter exit frame. Exit frames are used when calling C code from generated
// (JavaScript) code.
//
// The stack pointer must be jssp on entry, and will be set to csp by this
// function. The frame pointer is also configured, but the only other
// registers modified by this function are the provided scratch register, and
// jssp.
//
// The 'extra_space' argument can be used to allocate some space in the exit
// frame that will be ignored by the GC. This space will be reserved in the
// bottom of the frame immediately above the return address slot.
//
// Set up a stack frame and registers as follows:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: SPOffset (new csp)
// fp[-16]: CodeObject()
// fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
// csp[8]: Memory reserved for the caller if extra_space != 0.
// Alignment padding, if necessary.
// csp -> csp[0]: Space reserved for the return address.
//
// This function also stores the new frame information in the top frame, so
// that the new frame becomes the current frame.
void EnterExitFrame(bool save_doubles,
const Register& scratch,
int extra_space = 0);
// Leave the current exit frame, after a C function has returned to generated
// (JavaScript) code.
//
// This effectively unwinds the operation of EnterExitFrame:
// * Preserved doubles are restored (if restore_doubles is true).
// * The frame information is removed from the top frame.
// * The exit frame is dropped.
// * The stack pointer is reset to jssp.
//
// The stack pointer must be csp on entry.
void LeaveExitFrame(bool save_doubles,
const Register& scratch,
bool restore_context);
void LoadContext(Register dst, int context_chain_length);
// Emit code for a flooring division by a constant. The dividend register is
// unchanged. Dividend and result must be different.
void FlooringDiv(Register result, Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Garbage collector support (GC).
enum RememberedSetFinalAction {
kReturnAtEnd,
kFallThroughAtEnd
};
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr,
Register scratch1,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
void PushSafepointFPRegisters();
void PopSafepointFPRegisters();
// Store value in register src in the safepoint stack slot for register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst) {
Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
}
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src) {
Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
}
void CheckPageFlagSet(const Register& object,
const Register& scratch,
int mask,
Label* if_any_set);
void CheckPageFlagClear(const Register& object,
const Register& scratch,
int mask,
Label* if_all_clear);
void CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated);
// Check if object is in new space and jump accordingly.
// Register 'object' is preserved.
void JumpIfNotInNewSpace(Register object,
Label* branch) {
InNewSpace(object, ne, branch);
}
void JumpIfInNewSpace(Register object,
Label* branch) {
InNewSpace(object, eq, branch);
}
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context,
int offset,
Register value,
Register scratch,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK) {
RecordWriteField(context,
offset + kHeapObjectTag,
value,
scratch,
lr_status,
save_fp,
remembered_set_action,
smi_check);
}
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// Checks the color of an object. If the object is already grey or black
// then we just fall through, since it is already live. If it is white and
// we can determine that it doesn't need to be scanned, then we just mark it
// black and fall through. For the rest we jump to the label so the
// incremental marker can fix its assumptions.
void EnsureNotWhite(Register object,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* object_is_white_and_not_data);
// Detects conservatively whether an object is data-only, i.e. it does need to
// be scanned by the garbage collector.
void JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object);
// Helper for finding the mark bits for an address.
// Note that the behaviour slightly differs from other architectures.
// On exit:
// - addr_reg is unchanged.
// - The bitmap register points at the word with the mark bits.
// - The shift register contains the index of the first color bit for this
// object in the bitmap.
inline void GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register shift_reg);
// Check if an object has a given incremental marking color.
void HasColor(Register object,
Register scratch0,
Register scratch1,
Label* has_color,
int first_bit,
int second_bit);
void JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black);
// Get the location of a relocated constant (its address in the constant pool)
// from its load site.
void GetRelocatedValueLocation(Register ldr_location,
Register result);
// ---------------------------------------------------------------------------
// Debugging.
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, BailoutReason reason);
void AssertRegisterIsClear(Register reg, BailoutReason reason);
void AssertRegisterIsRoot(
Register reg,
Heap::RootListIndex index,
BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
void AssertFastElements(Register elements);
// Abort if the specified register contains the invalid color bit pattern.
// The pattern must be in bits [1:0] of 'reg' register.
//
// If emit_debug_code() is false, this emits no code.
void AssertHasValidColor(const Register& reg);
// Abort if 'object' register doesn't point to a string object.
//
// If emit_debug_code() is false, this emits no code.
void AssertIsString(const Register& object);
// Like Assert(), but always enabled.
void Check(Condition cond, BailoutReason reason);
void CheckRegisterIsClear(Register reg, BailoutReason reason);
// Print a message to stderr and abort execution.
void Abort(BailoutReason reason);
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch1,
Register scratch2,
Label* no_map_match);
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers function and
// map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch);
CPURegList* TmpList() { return &tmp_list_; }
CPURegList* FPTmpList() { return &fptmp_list_; }
// Like printf, but print at run-time from generated code.
//
// The caller must ensure that arguments for floating-point placeholders
// (such as %e, %f or %g) are FPRegisters, and that arguments for integer
// placeholders are Registers.
//
// A maximum of four arguments may be given to any single Printf call. The
// arguments must be of the same type, but they do not need to have the same
// size.
//
// The following registers cannot be printed:
// StackPointer(), csp.
//
// This function automatically preserves caller-saved registers so that
// calling code can use Printf at any point without having to worry about
// corruption. The preservation mechanism generates a lot of code. If this is
// a problem, preserve the important registers manually and then call
// PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
// implicitly preserved.
//
// Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be
// preserved, and can be printed. This allows Printf to be used during debug
// code.
//
// This function assumes (and asserts) that the current stack pointer is
// callee-saved, not caller-saved. This is most likely the case anyway, as a
// caller-saved stack pointer doesn't make a lot of sense.
void Printf(const char * format,
const CPURegister& arg0 = NoCPUReg,
const CPURegister& arg1 = NoCPUReg,
const CPURegister& arg2 = NoCPUReg,
const CPURegister& arg3 = NoCPUReg);
// Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
//
// The return code from the system printf call will be returned in x0.
void PrintfNoPreserve(const char * format,
const CPURegister& arg0 = NoCPUReg,
const CPURegister& arg1 = NoCPUReg,
const CPURegister& arg2 = NoCPUReg,
const CPURegister& arg3 = NoCPUReg);
// Code ageing support functions.
// Code ageing on A64 works similarly to on ARM. When V8 wants to mark a
// function as old, it replaces some of the function prologue (generated by
// FullCodeGenerator::Generate) with a call to a special stub (ultimately
// generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
// function prologue to its initial young state (indicating that it has been
// recently run) and continues. A young function is therefore one which has a
// normal frame setup sequence, and an old function has a code age sequence
// which calls a code ageing stub.
// Set up a basic stack frame for young code (or code exempt from ageing) with
// type FUNCTION. It may be patched later for code ageing support. This is
// done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
//
// This function takes an Assembler so it can be called from either a
// MacroAssembler or a PatchingAssembler context.
static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
// Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
void EmitFrameSetupForCodeAgePatching();
// Emit a code age sequence that calls the relevant code age stub. The code
// generated by this sequence is expected to replace the code generated by
// EmitFrameSetupForCodeAgePatching, and represents an old function.
//
// If stub is NULL, this function generates the code age sequence but omits
// the stub address that is normally embedded in the instruction stream. This
// can be used by debug code to verify code age sequences.
static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
// Call EmitCodeAgeSequence from a MacroAssembler context.
void EmitCodeAgeSequence(Code* stub);
// Return true if the sequence is a young sequence geneated by
// EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
// sequence is a code age sequence (emitted by EmitCodeAgeSequence).
static bool IsYoungSequence(byte* sequence);
#ifdef DEBUG
// Return true if the sequence is a code age sequence generated by
// EmitCodeAgeSequence.
static bool IsCodeAgeSequence(byte* sequence);
#endif
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
// Helpers for CopyFields.
// These each implement CopyFields in a different way.
void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3, Register scratch4,
Register scratch5);
void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3, Register scratch4);
void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
Register scratch1, Register scratch2,
Register scratch3);
// The actual Push and Pop implementations. These don't generate any code
// other than that required for the push or pop. This allows
// (Push|Pop)CPURegList to bundle together run-time assertions for a large
// block of registers.
//
// Note that size is per register, and is specified in bytes.
void PushHelper(int count, int size,
const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3);
void PopHelper(int count, int size,
const CPURegister& dst0, const CPURegister& dst1,
const CPURegister& dst2, const CPURegister& dst3);
// Perform necessary maintenance operations before a push or pop.
//
// Note that size is specified in bytes.
void PrepareForPush(Operand total_size);
void PrepareForPop(Operand total_size);
void PrepareForPush(int count, int size) { PrepareForPush(count * size); }
void PrepareForPop(int count, int size) { PrepareForPop(count * size); }
// Call Printf. On a native build, a simple call will be generated, but if the
// simulator is being used then a suitable pseudo-instruction is used. The
// arguments and stack (csp) must be prepared by the caller as for a normal
// AAPCS64 call to 'printf'.
//
// The 'type' argument specifies the type of the optional arguments.
void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister);
// Helper for throwing exceptions. Compute a handler address and jump to
// it. See the implementation for register usage.
void JumpToHandlerEntry(Register exception,
Register object,
Register state,
Register scratch1,
Register scratch2);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Try to convert a double to an int so that integer fast-paths may be
// used. Not every valid integer value is guaranteed to be caught.
// It supports both 32-bit and 64-bit integers depending whether 'as_int'
// is a W or X register.
//
// This does not distinguish between +0 and -0, so if this distinction is
// important it must be checked separately.
//
// On output the Z flag is set if the conversion was successful.
void TryConvertDoubleToInt(Register as_int,
FPRegister value,
FPRegister scratch_d,
Label* on_successful_conversion = NULL,
Label* on_failed_conversion = NULL);
bool generating_stub_;
#if DEBUG
// Tell whether any of the macro instruction can be used. When false the
// MacroAssembler will assert if a method which can emit a variable number
// of instructions is called.
bool allow_macro_instructions_;
#endif
bool has_frame_;
// The Abort method should call a V8 runtime function, but the CallRuntime
// mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
// use a simpler abort mechanism that doesn't depend on CEntryStub.
//
// The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
// being generated.
bool use_real_aborts_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// The register to use as a stack pointer for stack operations.
Register sp_;
// Scratch registers available for use by the MacroAssembler.
CPURegList tmp_list_;
CPURegList fptmp_list_;
void InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2);
public:
// Far branches resolving.
//
// The various classes of branch instructions with immediate offsets have
// different ranges. While the Assembler will fail to assemble a branch
// exceeding its range, the MacroAssembler offers a mechanism to resolve
// branches to too distant targets, either by tweaking the generated code to
// use branch instructions with wider ranges or generating veneers.
//
// Currently branches to distant targets are resolved using unconditional
// branch isntructions with a range of +-128MB. If that becomes too little
// (!), the mechanism can be extended to generate special veneers for really
// far targets.
// Helps resolve branching to labels potentially out of range.
// If the label is not bound, it registers the information necessary to later
// be able to emit a veneer for this branch if necessary.
// If the label is bound, it returns true if the label (or the previous link
// in the label chain) is out of range. In that case the caller is responsible
// for generating appropriate code.
// Otherwise it returns false.
// This function also checks wether veneers need to be emitted.
bool NeedExtraInstructionsOrRegisterBranch(Label *label,
ImmBranchType branch_type);
};
// Use this scope when you need a one-to-one mapping bewteen methods and
// instructions. This scope prevents the MacroAssembler from being called and
// literal pools from being emitted. It also asserts the number of instructions
// emitted is what you specified when creating the scope.
class InstructionAccurateScope BASE_EMBEDDED {
public:
InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
: masm_(masm)
#ifdef DEBUG
,
size_(count * kInstructionSize)
#endif
{
// Before blocking the const pool, see if it needs to be emitted.
masm_->CheckConstPool(false, true);
masm_->StartBlockConstPool();
#ifdef DEBUG
if (count != 0) {
masm_->bind(&start_);
}
previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
masm_->set_allow_macro_instructions(false);
#endif
}
~InstructionAccurateScope() {
masm_->EndBlockConstPool();
#ifdef DEBUG
if (start_.is_bound()) {
ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
}
masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
#endif
}
private:
MacroAssembler* masm_;
#ifdef DEBUG
size_t size_;
Label start_;
bool previous_allow_macro_instructions_;
#endif
};
// This scope utility allows scratch registers to be managed safely. The
// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the MacroAssembler's lists will be restored to their
// original state, even if the lists were modified by some other means.
class UseScratchRegisterScope {
public:
explicit UseScratchRegisterScope(MacroAssembler* masm)
: available_(masm->TmpList()),
availablefp_(masm->FPTmpList()),
old_available_(available_->list()),
old_availablefp_(availablefp_->list()) {
ASSERT(available_->type() == CPURegister::kRegister);
ASSERT(availablefp_->type() == CPURegister::kFPRegister);
}
~UseScratchRegisterScope();
// Take a register from the appropriate temps list. It will be returned
// automatically when the scope ends.
Register AcquireW() { return AcquireNextAvailable(available_).W(); }
Register AcquireX() { return AcquireNextAvailable(available_).X(); }
FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
Register AcquireSameSizeAs(const Register& reg);
FPRegister AcquireSameSizeAs(const FPRegister& reg);
private:
static CPURegister AcquireNextAvailable(CPURegList* available);
// Available scratch registers.
CPURegList* available_; // kRegister
CPURegList* availablefp_; // kFPRegister
// The state of the available lists at the start of this scope.
RegList old_available_; // kRegister
RegList old_availablefp_; // kFPRegister
};
inline MemOperand ContextMemOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand GlobalObjectMemOperand() {
return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
}
// Encode and decode information about patchable inline SMI checks.
class InlineSmiCheckInfo {
public:
explicit InlineSmiCheckInfo(Address info);
bool HasSmiCheck() const {
return smi_check_ != NULL;
}
const Register& SmiRegister() const {
return reg_;
}
Instruction* SmiCheck() const {
return smi_check_;
}
// Use MacroAssembler::InlineData to emit information about patchable inline
// SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
// indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
//
// The generated patch information can be read using the InlineSMICheckInfo
// class.
static void Emit(MacroAssembler* masm, const Register& reg,
const Label* smi_check);
// Emit information to indicate that there is no inline SMI check.
static void EmitNotInlined(MacroAssembler* masm) {
Label unbound;
Emit(masm, NoReg, &unbound);
}
private:
Register reg_;
Instruction* smi_check_;
// Fields in the data encoded by InlineData.
// A width of 5 (Rd_width) for the SMI register preclues the use of csp,
// since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
// used in a patchable check. The Emit() method checks this.
//
// Note that the total size of the fields is restricted by the underlying
// storage size handled by the BitField class, which is a uint32_t.
class RegisterBits : public BitField<unsigned, 0, 5> {};
class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
};
} } // namespace v8::internal
#ifdef GENERATED_CODE_COVERAGE
#error "Unsupported option"
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
#endif // V8_A64_MACRO_ASSEMBLER_A64_H_