v8/test/unittests/wasm/function-body-decoder-unittest.cc

2848 lines
95 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/v8.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/local-decl-encoder.h"
#include "src/wasm/signature-map.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
using namespace v8::internal;
using namespace v8::internal::wasm;
using namespace v8::internal::wasm::testing;
#define B1(a) WASM_BLOCK(a)
#define B2(a, b) WASM_BLOCK(a, b)
#define B3(a, b, c) WASM_BLOCK(a, b, c)
#define WASM_IF_OP kExprIf, kLocalVoid
#define WASM_LOOP_OP kExprLoop, kLocalVoid
static const byte kCodeGetLocal0[] = {kExprGetLocal, 0};
static const byte kCodeGetLocal1[] = {kExprGetLocal, 1};
static const byte kCodeSetLocal0[] = {WASM_SET_LOCAL(0, WASM_ZERO)};
static const byte kCodeTeeLocal0[] = {WASM_TEE_LOCAL(0, WASM_ZERO)};
static const ValueType kValueTypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64};
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
static const WasmOpcode kInt32BinopOpcodes[] = {
kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU,
kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor,
kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS,
kExprI32LeS, kExprI32LtU, kExprI32LeU};
#define WASM_BRV_IF_ZERO(depth, val) \
val, WASM_ZERO, kExprBrIf, static_cast<byte>(depth)
#define EXPECT_VERIFIES_C(sig, x) Verify(true, sigs.sig(), x, x + arraysize(x))
#define EXPECT_FAILURE_C(sig, x) Verify(false, sigs.sig(), x, x + arraysize(x))
#define EXPECT_VERIFIES_SC(sig, x) Verify(true, sig, x, x + arraysize(x))
#define EXPECT_FAILURE_SC(sig, x) Verify(false, sig, x, x + arraysize(x))
#define EXPECT_VERIFIES_S(env, ...) \
do { \
static byte code[] = {__VA_ARGS__}; \
Verify(true, env, code, code + arraysize(code)); \
} while (false)
#define EXPECT_FAILURE_S(env, ...) \
do { \
static byte code[] = {__VA_ARGS__}; \
Verify(false, env, code, code + arraysize(code)); \
} while (false)
#define EXPECT_VERIFIES(sig, ...) \
do { \
static const byte code[] = {__VA_ARGS__}; \
Verify(true, sigs.sig(), code, code + sizeof(code)); \
} while (false)
#define EXPECT_FAILURE(sig, ...) \
do { \
static const byte code[] = {__VA_ARGS__}; \
Verify(false, sigs.sig(), code, code + sizeof(code)); \
} while (false)
class FunctionBodyDecoderTest : public TestWithZone {
public:
typedef std::pair<uint32_t, ValueType> LocalsDecl;
FunctionBodyDecoderTest() : module(nullptr), local_decls(zone()) {}
TestSignatures sigs;
ModuleEnv* module;
LocalDeclEncoder local_decls;
void AddLocals(ValueType type, uint32_t count) {
local_decls.AddLocals(count, type);
}
void PrepareBytecode(const byte** startp, const byte** endp) {
const byte* start = *startp;
const byte* end = *endp;
size_t locals_size = local_decls.Size();
size_t total_size = end - start + locals_size + 1;
byte* buffer = static_cast<byte*>(zone()->New(total_size));
// Prepend the local decls to the code.
local_decls.Emit(buffer);
// Emit the code.
memcpy(buffer + locals_size, start, end - start);
// Append an extra end opcode.
buffer[total_size - 1] = kExprEnd;
*startp = buffer;
*endp = buffer + total_size;
}
// Prepends local variable declarations and renders nice error messages for
// verification failures.
void Verify(bool expected_success, FunctionSig* sig, const byte* start,
const byte* end) {
PrepareBytecode(&start, &end);
// Verify the code.
DecodeResult result = VerifyWasmCode(
zone()->allocator(), module == nullptr ? nullptr : module->module, sig,
start, end);
uint32_t pc = result.error_offset();
std::ostringstream str;
if (expected_success) {
str << "Verification failed: pc = +" << pc
<< ", msg = " << result.error_msg();
} else {
str << "Verification successed, expected failure; pc = +" << pc;
}
EXPECT_EQ(result.ok(), expected_success) << str.str();
}
void TestBinop(WasmOpcode opcode, FunctionSig* success) {
// op(local[0], local[1])
byte code[] = {WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
EXPECT_VERIFIES_SC(success, code);
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
for (size_t k = 0; k < arraysize(kValueTypes); k++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j], kValueTypes[k]};
if (types[0] != success->GetReturn(0) ||
types[1] != success->GetParam(0) ||
types[2] != success->GetParam(1)) {
// Test signature mismatch.
FunctionSig sig(1, 2, types);
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
}
void TestUnop(WasmOpcode opcode, FunctionSig* success) {
TestUnop(opcode, success->GetReturn(), success->GetParam(0));
}
void TestUnop(WasmOpcode opcode, ValueType ret_type, ValueType param_type) {
// Return(op(local[0]))
byte code[] = {WASM_UNOP(opcode, WASM_GET_LOCAL(0))};
{
ValueType types[] = {ret_type, param_type};
FunctionSig sig(1, 1, types);
EXPECT_VERIFIES_SC(&sig, code);
}
// Try all combinations of return and parameter types.
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[j]};
if (types[0] != ret_type || types[1] != param_type) {
// Test signature mismatch.
FunctionSig sig(1, 1, types);
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
};
namespace {
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
constexpr size_t kMaxByteSizedLeb128 = 127;
// A helper for tests that require a module environment for functions,
// globals, or memories.
class TestModuleEnv : public ModuleEnv {
public:
explicit TestModuleEnv(ModuleOrigin origin = kWasmOrigin)
: ModuleEnv(&mod, nullptr) {
mod.set_origin(origin);
}
byte AddGlobal(ValueType type, bool mutability = true) {
mod.globals.push_back({type, mutability, WasmInitExpr(), 0, false, false});
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
CHECK(mod.globals.size() <= kMaxByteSizedLeb128);
return static_cast<byte>(mod.globals.size() - 1);
}
byte AddSignature(FunctionSig* sig) {
mod.signatures.push_back(sig);
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
CHECK(mod.signatures.size() <= kMaxByteSizedLeb128);
return static_cast<byte>(mod.signatures.size() - 1);
}
byte AddFunction(FunctionSig* sig) {
mod.functions.push_back({sig, // sig
0, // func_index
0, // sig_index
{0, 0}, // name
{0, 0}, // code
false, // import
false}); // export
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
CHECK(mod.functions.size() <= kMaxByteSizedLeb128);
return static_cast<byte>(mod.functions.size() - 1);
}
byte AddImport(FunctionSig* sig) {
byte result = AddFunction(sig);
mod.functions[result].imported = true;
return result;
}
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
byte AddException(WasmExceptionSig* sig) {
mod.exceptions.emplace_back(sig);
CHECK(mod.signatures.size() <= kMaxByteSizedLeb128);
return static_cast<byte>(mod.exceptions.size() - 1);
}
void InitializeMemory() {
mod.has_memory = true;
mod.min_mem_pages = 1;
mod.max_mem_pages = 100;
}
void InitializeFunctionTable() { mod.function_tables.emplace_back(); }
private:
WasmModule mod;
};
} // namespace
TEST_F(FunctionBodyDecoderTest, Int32Const1) {
byte code[] = {kExprI32Const, 0};
for (int i = -64; i <= 63; i++) {
code[1] = static_cast<byte>(i & 0x7F);
EXPECT_VERIFIES_C(i_i, code);
}
}
TEST_F(FunctionBodyDecoderTest, EmptyFunction) {
byte code[] = {0};
Verify(true, sigs.v_v(), code, code);
Verify(false, sigs.i_i(), code, code);
}
TEST_F(FunctionBodyDecoderTest, IncompleteIf1) {
byte code[] = {kExprIf};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru) {
EXPECT_VERIFIES(i_i, WASM_I32V_1(0));
}
TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru2) {
EXPECT_FAILURE(i_i, WASM_I32V_1(0), WASM_I32V_1(1));
}
TEST_F(FunctionBodyDecoderTest, Int32Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
// TODO(binji): expand test for other sized int32s; 1 through 5 bytes.
byte code[] = {WASM_I32V(i)};
EXPECT_VERIFIES_C(i_i, code);
}
}
TEST_F(FunctionBodyDecoderTest, Int64Const) {
const int kInc = 4498211;
for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) {
byte code[] = {WASM_I64V((static_cast<int64_t>(i) << 32) | i)};
EXPECT_VERIFIES_C(l_l, code);
}
}
TEST_F(FunctionBodyDecoderTest, Float32Const) {
byte code[] = {kExprF32Const, 0, 0, 0, 0};
float* ptr = reinterpret_cast<float*>(code + 1);
for (int i = 0; i < 30; i++) {
WriteLittleEndianValue<float>(ptr, i * -7.75f);
EXPECT_VERIFIES_C(f_ff, code);
}
}
TEST_F(FunctionBodyDecoderTest, Float64Const) {
byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0};
double* ptr = reinterpret_cast<double*>(code + 1);
for (int i = 0; i < 30; i++) {
WriteLittleEndianValue<double>(ptr, i * 33.45);
EXPECT_VERIFIES_C(d_dd, code);
}
}
TEST_F(FunctionBodyDecoderTest, Int32Const_off_end) {
byte code[] = {kExprI32Const, 0xaa, 0xbb, 0xcc, 0x44};
for (int size = 1; size <= 4; size++) {
Verify(false, sigs.i_i(), code, code + size);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param) {
EXPECT_VERIFIES_C(i_i, kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_local) {
AddLocals(kWasmI32, 1);
EXPECT_VERIFIES_C(i_v, kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TooManyLocals) {
AddLocals(kWasmI32, 4034986500);
EXPECT_FAILURE_C(i_v, kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_param_n) {
FunctionSig* array[] = {sigs.i_i(), sigs.i_ii(), sigs.i_iii()};
for (size_t i = 0; i < arraysize(array); i++) {
EXPECT_VERIFIES_SC(array[i], kCodeGetLocal0);
}
}
TEST_F(FunctionBodyDecoderTest, GetLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
byte code[] = {kExprGetLocal, j};
EXPECT_VERIFIES_C(i_v, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, GetLocal0_fail_no_params) {
EXPECT_FAILURE_C(i_v, kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, GetLocal1_fail_no_locals) {
EXPECT_FAILURE_C(i_i, kCodeGetLocal1);
}
TEST_F(FunctionBodyDecoderTest, GetLocal_off_end) {
static const byte code[] = {kExprGetLocal};
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, NumLocalBelowLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1);
EXPECT_VERIFIES(v_v, WASM_NOP);
}
TEST_F(FunctionBodyDecoderTest, NumLocalAtLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals);
EXPECT_VERIFIES(v_v, WASM_NOP);
}
TEST_F(FunctionBodyDecoderTest, NumLocalAboveLimit) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals + 1);
EXPECT_FAILURE(v_v, WASM_NOP);
}
TEST_F(FunctionBodyDecoderTest, GetLocal_varint) {
const int kMaxLocals = kV8MaxWasmFunctionLocals - 1;
AddLocals(kWasmI32, kMaxLocals);
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_1(66));
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_2(7777));
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_3(8888));
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_4(9999));
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_5(kMaxLocals - 1));
EXPECT_FAILURE(i_i, kExprGetLocal, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_4(kMaxLocals - 1));
EXPECT_VERIFIES(i_i, kExprGetLocal, U32V_4(kMaxLocals));
EXPECT_FAILURE(i_i, kExprGetLocal, U32V_4(kMaxLocals + 1));
EXPECT_FAILURE(i_v, kExprGetLocal, U32V_4(kMaxLocals));
EXPECT_FAILURE(i_v, kExprGetLocal, U32V_4(kMaxLocals + 1));
}
TEST_F(FunctionBodyDecoderTest, GetLocal_toomany) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 100);
AddLocals(kWasmI32, 100);
EXPECT_VERIFIES(i_v, kExprGetLocal, U32V_1(66));
EXPECT_FAILURE(i_i, kExprGetLocal, U32V_1(66));
}
TEST_F(FunctionBodyDecoderTest, Binops_off_end) {
byte code1[] = {0}; // [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code1[0] = kInt32BinopOpcodes[i];
EXPECT_FAILURE_C(i_i, code1);
}
byte code3[] = {kExprGetLocal, 0, 0}; // [expr] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code3[2] = kInt32BinopOpcodes[i];
EXPECT_FAILURE_C(i_i, code3);
}
byte code4[] = {kExprGetLocal, 0, 0, 0}; // [expr] [opcode] [opcode]
for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) {
code4[2] = kInt32BinopOpcodes[i];
code4[3] = kInt32BinopOpcodes[i];
EXPECT_FAILURE_C(i_i, code4);
}
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock1) {
static const byte code[] = {WASM_ZERO, kExprBlock, kLocalI32,
WASM_ZERO, kExprI32Add, kExprEnd};
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock2) {
static const byte code[] = {WASM_ZERO, WASM_ZERO, kExprBlock,
kLocalI32, kExprI32Add, kExprEnd};
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock3) {
static const byte code[] = {WASM_ZERO, WASM_ZERO, kExprIf, kLocalI32,
kExprI32Add, kExprElse, kExprI32Add, kExprEnd};
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, Nop) {
static const byte code[] = {kExprNop};
EXPECT_VERIFIES_C(v_v, code);
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_void) {
EXPECT_FAILURE(i_i, WASM_SET_LOCAL(0, WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_param) {
EXPECT_FAILURE_C(i_i, kCodeSetLocal0);
EXPECT_FAILURE_C(f_ff, kCodeSetLocal0);
EXPECT_FAILURE_C(d_dd, kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_param) {
EXPECT_VERIFIES_C(i_i, kCodeTeeLocal0);
EXPECT_FAILURE_C(f_ff, kCodeTeeLocal0);
EXPECT_FAILURE_C(d_dd, kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, SetLocal0_local) {
EXPECT_FAILURE_C(i_v, kCodeSetLocal0);
EXPECT_FAILURE_C(v_v, kCodeSetLocal0);
AddLocals(kWasmI32, 1);
EXPECT_FAILURE_C(i_v, kCodeSetLocal0);
EXPECT_VERIFIES_C(v_v, kCodeSetLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocal0_local) {
EXPECT_FAILURE_C(i_v, kCodeTeeLocal0);
AddLocals(kWasmI32, 1);
EXPECT_VERIFIES_C(i_v, kCodeTeeLocal0);
}
TEST_F(FunctionBodyDecoderTest, TeeLocalN_local) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI32, 1);
for (byte j = 0; j < i; j++) {
EXPECT_FAILURE(v_v, WASM_TEE_LOCAL(j, WASM_I32V_1(i)));
EXPECT_VERIFIES(i_i, WASM_TEE_LOCAL(j, WASM_I32V_1(i)));
}
}
}
TEST_F(FunctionBodyDecoderTest, BlockN) {
const int kMaxSize = 200;
byte buffer[kMaxSize + 3];
for (int i = 0; i <= kMaxSize; i++) {
memset(buffer, kExprNop, sizeof(buffer));
buffer[0] = kExprBlock;
buffer[1] = kLocalVoid;
buffer[i + 2] = kExprEnd;
Verify(true, sigs.v_i(), buffer, buffer + i + 3);
}
}
#define WASM_EMPTY_BLOCK kExprBlock, kLocalVoid, kExprEnd
TEST_F(FunctionBodyDecoderTest, Block0) {
static const byte code[] = {WASM_EMPTY_BLOCK};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, Block0_fallthru1) {
static const byte code[] = {WASM_BLOCK(WASM_EMPTY_BLOCK)};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, Block0Block0) {
static const byte code[] = {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, Block0_end) {
EXPECT_FAILURE(v_v, WASM_EMPTY_BLOCK, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, Block1) {
byte code[] = {WASM_BLOCK_I(WASM_GET_LOCAL(0))};
EXPECT_VERIFIES_C(i_i, code);
EXPECT_FAILURE_C(v_i, code);
EXPECT_FAILURE_C(d_dd, code);
EXPECT_FAILURE_C(i_f, code);
EXPECT_FAILURE_C(i_d, code);
}
TEST_F(FunctionBodyDecoderTest, Block1_i) {
byte code[] = {WASM_BLOCK_I(WASM_ZERO)};
EXPECT_VERIFIES_C(i_i, code);
EXPECT_FAILURE_C(f_ff, code);
EXPECT_FAILURE_C(d_dd, code);
EXPECT_FAILURE_C(l_ll, code);
}
TEST_F(FunctionBodyDecoderTest, Block1_f) {
byte code[] = {WASM_BLOCK_F(WASM_F32(0))};
EXPECT_FAILURE_C(i_i, code);
EXPECT_VERIFIES_C(f_ff, code);
EXPECT_FAILURE_C(d_dd, code);
EXPECT_FAILURE_C(l_ll, code);
}
TEST_F(FunctionBodyDecoderTest, Block1_continue) {
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_BR(0)));
}
TEST_F(FunctionBodyDecoderTest, Block1_br) {
EXPECT_VERIFIES(v_v, B1(WASM_BR(0)));
EXPECT_VERIFIES(v_v, B1(WASM_BR(1)));
EXPECT_FAILURE(v_v, B1(WASM_BR(2)));
}
TEST_F(FunctionBodyDecoderTest, Block2_br) {
EXPECT_VERIFIES(v_v, B2(WASM_NOP, WASM_BR(0)));
EXPECT_VERIFIES(v_v, B2(WASM_BR(0), WASM_NOP));
EXPECT_VERIFIES(v_v, B2(WASM_BR(0), WASM_BR(0)));
}
TEST_F(FunctionBodyDecoderTest, Block2) {
EXPECT_FAILURE(i_i, WASM_BLOCK(WASM_NOP, WASM_NOP));
EXPECT_FAILURE(i_i, WASM_BLOCK_I(WASM_NOP, WASM_NOP));
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_NOP, WASM_ZERO));
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_ZERO, WASM_NOP));
EXPECT_FAILURE(i_i, WASM_BLOCK_I(WASM_ZERO, WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, Block2b) {
byte code[] = {WASM_BLOCK_I(WASM_SET_LOCAL(0, WASM_ZERO), WASM_ZERO)};
EXPECT_VERIFIES_C(i_i, code);
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(f_ff, code);
}
TEST_F(FunctionBodyDecoderTest, Block2_fallthru) {
EXPECT_VERIFIES(
i_i, B2(WASM_SET_LOCAL(0, WASM_ZERO), WASM_SET_LOCAL(0, WASM_ZERO)),
WASM_I32V_1(23));
}
TEST_F(FunctionBodyDecoderTest, Block3) {
EXPECT_VERIFIES(i_i,
WASM_BLOCK_I(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO), WASM_I32V_1(11)));
}
TEST_F(FunctionBodyDecoderTest, Block5) {
EXPECT_FAILURE(v_i, WASM_BLOCK(WASM_ZERO));
EXPECT_FAILURE(v_i, WASM_BLOCK(WASM_ZERO, WASM_ZERO));
EXPECT_FAILURE(v_i, WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO));
EXPECT_FAILURE(v_i, WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO));
EXPECT_FAILURE(
v_i, WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, BlockType) {
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(l_l, WASM_BLOCK_L(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(f_f, WASM_BLOCK_F(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(d_d, WASM_BLOCK_D(WASM_GET_LOCAL(0)));
}
TEST_F(FunctionBodyDecoderTest, BlockType_fail) {
EXPECT_FAILURE(i_i, WASM_BLOCK_L(WASM_I64V_1(0)));
EXPECT_FAILURE(i_i, WASM_BLOCK_F(WASM_F32(0.0)));
EXPECT_FAILURE(i_i, WASM_BLOCK_D(WASM_F64(1.1)));
EXPECT_FAILURE(l_l, WASM_BLOCK_I(WASM_ZERO));
EXPECT_FAILURE(l_l, WASM_BLOCK_F(WASM_F32(0.0)));
EXPECT_FAILURE(l_l, WASM_BLOCK_D(WASM_F64(1.1)));
EXPECT_FAILURE(f_ff, WASM_BLOCK_I(WASM_ZERO));
EXPECT_FAILURE(f_ff, WASM_BLOCK_L(WASM_I64V_1(0)));
EXPECT_FAILURE(f_ff, WASM_BLOCK_D(WASM_F64(1.1)));
EXPECT_FAILURE(d_dd, WASM_BLOCK_I(WASM_ZERO));
EXPECT_FAILURE(d_dd, WASM_BLOCK_L(WASM_I64V_1(0)));
EXPECT_FAILURE(d_dd, WASM_BLOCK_F(WASM_F32(0.0)));
}
TEST_F(FunctionBodyDecoderTest, BlockF32) {
static const byte code[] = {WASM_BLOCK_F(kExprF32Const, 0, 0, 0, 0)};
EXPECT_VERIFIES_C(f_ff, code);
EXPECT_FAILURE_C(i_i, code);
EXPECT_FAILURE_C(d_dd, code);
}
TEST_F(FunctionBodyDecoderTest, BlockN_off_end) {
byte code[] = {WASM_BLOCK(kExprNop, kExprNop, kExprNop, kExprNop)};
EXPECT_VERIFIES_C(v_v, code);
for (size_t i = 1; i < arraysize(code); i++) {
Verify(false, sigs.v_v(), code, code + i);
}
}
TEST_F(FunctionBodyDecoderTest, Block2_continue) {
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_NOP, WASM_BR(0)));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_NOP, WASM_BR(1)));
EXPECT_FAILURE(v_v, WASM_LOOP(WASM_NOP, WASM_BR(2)));
}
TEST_F(FunctionBodyDecoderTest, Block3_continue) {
EXPECT_VERIFIES(v_v, B1(WASM_LOOP(WASM_NOP, WASM_BR(0))));
EXPECT_VERIFIES(v_v, B1(WASM_LOOP(WASM_NOP, WASM_BR(1))));
EXPECT_VERIFIES(v_v, B1(WASM_LOOP(WASM_NOP, WASM_BR(2))));
EXPECT_FAILURE(v_v, B1(WASM_LOOP(WASM_NOP, WASM_BR(3))));
}
TEST_F(FunctionBodyDecoderTest, NestedBlock_return) {
EXPECT_VERIFIES(i_i, B1(B1(WASM_RETURN1(WASM_ZERO))), WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, BlockBrBinop) {
EXPECT_VERIFIES(i_i, WASM_I32_AND(WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(1))),
WASM_I32V_1(2)));
}
TEST_F(FunctionBodyDecoderTest, If_empty1) {
EXPECT_VERIFIES(v_v, WASM_ZERO, WASM_IF_OP, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, If_empty2) {
EXPECT_VERIFIES(v_v, WASM_ZERO, WASM_IF_OP, kExprElse, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, If_empty3) {
EXPECT_VERIFIES(v_v, WASM_ZERO, WASM_IF_OP, WASM_NOP, kExprElse, kExprEnd);
EXPECT_FAILURE(v_v, WASM_ZERO, WASM_IF_OP, WASM_ZERO, kExprElse, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, If_empty4) {
EXPECT_VERIFIES(v_v, WASM_ZERO, WASM_IF_OP, kExprElse, WASM_NOP, kExprEnd);
EXPECT_FAILURE(v_v, WASM_ZERO, WASM_IF_OP, kExprElse, WASM_ZERO, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, If_empty_stack) {
byte code[] = {kExprIf};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete1) {
byte code[] = {kExprI32Const, 0, kExprIf};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, If_incomplete2) {
byte code[] = {kExprI32Const, 0, kExprIf, kExprNop};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, If_else_else) {
byte code[] = {kExprI32Const, 0, WASM_IF_OP, kExprElse, kExprElse, kExprEnd};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, IfEmpty) {
EXPECT_VERIFIES(v_i, kExprGetLocal, 0, WASM_IF_OP, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, IfSet) {
EXPECT_VERIFIES(v_i,
WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO)));
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_ZERO), WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, IfElseEmpty) {
EXPECT_VERIFIES(v_i, WASM_GET_LOCAL(0), WASM_IF_OP, kExprElse, kExprEnd);
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable1) {
EXPECT_VERIFIES(i_i, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_UNREACHABLE,
WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(i_i, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0),
WASM_UNREACHABLE));
}
TEST_F(FunctionBodyDecoderTest, IfElseUnreachable2) {
static const byte code[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_UNREACHABLE, WASM_GET_LOCAL(0))};
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType types[] = {kWasmI32, kValueTypes[i]};
FunctionSig sig(1, 1, types);
if (kValueTypes[i] == kWasmI32) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, IfBreak) {
EXPECT_VERIFIES(v_i, WASM_IF(WASM_GET_LOCAL(0), WASM_BR(0)));
EXPECT_VERIFIES(v_i, WASM_IF(WASM_GET_LOCAL(0), WASM_BR(1)));
EXPECT_FAILURE(v_i, WASM_IF(WASM_GET_LOCAL(0), WASM_BR(2)));
}
TEST_F(FunctionBodyDecoderTest, IfElseBreak) {
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(0)));
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(1)));
EXPECT_FAILURE(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_BR(2)));
}
TEST_F(FunctionBodyDecoderTest, Block_else) {
byte code[] = {kExprI32Const, 0, kExprBlock, kExprElse, kExprEnd};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, IfNop) {
EXPECT_VERIFIES(v_i, WASM_IF(WASM_GET_LOCAL(0), WASM_NOP));
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, If_end) {
EXPECT_VERIFIES(v_i, kExprGetLocal, 0, WASM_IF_OP, kExprEnd);
EXPECT_FAILURE(v_i, kExprGetLocal, 0, WASM_IF_OP, kExprEnd, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, If_falloff1) {
EXPECT_FAILURE(v_i, kExprGetLocal, 0, kExprIf);
EXPECT_FAILURE(v_i, kExprGetLocal, 0, WASM_IF_OP);
EXPECT_FAILURE(v_i, kExprGetLocal, 0, WASM_IF_OP, kExprNop, kExprElse);
}
TEST_F(FunctionBodyDecoderTest, IfElseNop) {
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_ZERO), WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, IfBlock1) {
EXPECT_VERIFIES(
v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), B1(WASM_SET_LOCAL(0, WASM_ZERO)),
WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, IfBlock1b) {
EXPECT_VERIFIES(v_i,
WASM_IF(WASM_GET_LOCAL(0), B1(WASM_SET_LOCAL(0, WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, IfBlock2a) {
EXPECT_VERIFIES(v_i,
WASM_IF(WASM_GET_LOCAL(0), B2(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, IfBlock2b) {
EXPECT_VERIFIES(
v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), B2(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO)),
WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, IfElseSet) {
EXPECT_VERIFIES(v_i,
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_I32V_1(1))));
}
TEST_F(FunctionBodyDecoderTest, Loop0) {
EXPECT_VERIFIES(v_v, WASM_LOOP_OP, kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, Loop1) {
static const byte code[] = {WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO))};
EXPECT_VERIFIES_C(v_i, code);
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(f_ff, code);
}
TEST_F(FunctionBodyDecoderTest, Loop2) {
EXPECT_VERIFIES(v_i, WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO),
WASM_SET_LOCAL(0, WASM_ZERO)));
}
TEST_F(FunctionBodyDecoderTest, Loop1_continue) {
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_BR(0)));
}
TEST_F(FunctionBodyDecoderTest, Loop1_break) {
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_BR(1)));
}
TEST_F(FunctionBodyDecoderTest, Loop2_continue) {
EXPECT_VERIFIES(v_i, WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO), WASM_BR(0)));
}
TEST_F(FunctionBodyDecoderTest, Loop2_break) {
EXPECT_VERIFIES(v_i, WASM_LOOP(WASM_SET_LOCAL(0, WASM_ZERO), WASM_BR(1)));
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop1) {
EXPECT_VERIFIES(i_i, WASM_LOOP(WASM_BR(0)), WASM_ZERO);
EXPECT_VERIFIES(i_i, WASM_LOOP(WASM_BR(0)), WASM_ZERO);
EXPECT_VERIFIES(i_i, WASM_LOOP_I(WASM_BRV(1, WASM_ZERO)));
}
TEST_F(FunctionBodyDecoderTest, InfiniteLoop2) {
EXPECT_FAILURE(i_i, WASM_LOOP(WASM_BR(0), WASM_ZERO), WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, Loop2_unreachable) {
EXPECT_VERIFIES(i_i, WASM_LOOP_I(WASM_BR(0), WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, LoopType) {
EXPECT_VERIFIES(i_i, WASM_LOOP_I(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(l_l, WASM_LOOP_L(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(f_f, WASM_LOOP_F(WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(d_d, WASM_LOOP_D(WASM_GET_LOCAL(0)));
}
TEST_F(FunctionBodyDecoderTest, LoopType_void) {
EXPECT_FAILURE(v_v, WASM_LOOP_I(WASM_ZERO));
EXPECT_FAILURE(v_v, WASM_LOOP_L(WASM_I64V_1(0)));
EXPECT_FAILURE(v_v, WASM_LOOP_F(WASM_F32(0.0)));
EXPECT_FAILURE(v_v, WASM_LOOP_D(WASM_F64(1.1)));
}
TEST_F(FunctionBodyDecoderTest, LoopType_fail) {
EXPECT_FAILURE(i_i, WASM_LOOP_L(WASM_I64V_1(0)));
EXPECT_FAILURE(i_i, WASM_LOOP_F(WASM_F32(0.0)));
EXPECT_FAILURE(i_i, WASM_LOOP_D(WASM_F64(1.1)));
EXPECT_FAILURE(l_l, WASM_LOOP_I(WASM_ZERO));
EXPECT_FAILURE(l_l, WASM_LOOP_F(WASM_F32(0.0)));
EXPECT_FAILURE(l_l, WASM_LOOP_D(WASM_F64(1.1)));
EXPECT_FAILURE(f_ff, WASM_LOOP_I(WASM_ZERO));
EXPECT_FAILURE(f_ff, WASM_LOOP_L(WASM_I64V_1(0)));
EXPECT_FAILURE(f_ff, WASM_LOOP_D(WASM_F64(1.1)));
EXPECT_FAILURE(d_dd, WASM_LOOP_I(WASM_ZERO));
EXPECT_FAILURE(d_dd, WASM_LOOP_L(WASM_I64V_1(0)));
EXPECT_FAILURE(d_dd, WASM_LOOP_F(WASM_F32(0.0)));
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid1) {
static const byte code[] = {kExprNop};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
EXPECT_FAILURE_C(i_f, code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid2) {
static const byte code[] = {WASM_BLOCK(WASM_BR(0))};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
EXPECT_FAILURE_C(i_f, code);
}
TEST_F(FunctionBodyDecoderTest, ReturnVoid3) {
EXPECT_FAILURE(v_v, kExprI32Const, 0);
EXPECT_FAILURE(v_v, kExprI64Const, 0);
EXPECT_FAILURE(v_v, kExprF32Const, 0, 0, 0, 0);
EXPECT_FAILURE(v_v, kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0);
EXPECT_FAILURE(v_i, kExprGetLocal, 0);
}
TEST_F(FunctionBodyDecoderTest, Unreachable1) {
EXPECT_VERIFIES(v_v, WASM_UNREACHABLE);
EXPECT_VERIFIES(v_v, WASM_UNREACHABLE, WASM_UNREACHABLE);
EXPECT_VERIFIES(i_i, WASM_UNREACHABLE, WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, Unreachable2) {
EXPECT_FAILURE(v_v, B2(WASM_UNREACHABLE, WASM_ZERO));
EXPECT_FAILURE(v_v, B2(WASM_BR(0), WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, UnreachableLoop1) {
EXPECT_FAILURE(v_v, WASM_LOOP(WASM_UNREACHABLE, WASM_ZERO));
EXPECT_FAILURE(v_v, WASM_LOOP(WASM_BR(0), WASM_ZERO));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_UNREACHABLE, WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_BR(0), WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop1) {
EXPECT_VERIFIES(i_i, WASM_I32_AND(WASM_ZERO, WASM_UNREACHABLE));
EXPECT_VERIFIES(i_i, WASM_I32_AND(WASM_UNREACHABLE, WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, Unreachable_binop2) {
EXPECT_VERIFIES(i_i, WASM_I32_AND(WASM_F32(0.0), WASM_UNREACHABLE));
EXPECT_FAILURE(i_i, WASM_I32_AND(WASM_UNREACHABLE, WASM_F32(0.0)));
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select1) {
EXPECT_VERIFIES(i_i, WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_ZERO));
EXPECT_VERIFIES(i_i, WASM_SELECT(WASM_ZERO, WASM_UNREACHABLE, WASM_ZERO));
EXPECT_VERIFIES(i_i, WASM_SELECT(WASM_ZERO, WASM_ZERO, WASM_UNREACHABLE));
}
TEST_F(FunctionBodyDecoderTest, Unreachable_select2) {
EXPECT_VERIFIES(i_i, WASM_SELECT(WASM_F32(0.0), WASM_UNREACHABLE, WASM_ZERO));
EXPECT_FAILURE(i_i, WASM_SELECT(WASM_UNREACHABLE, WASM_F32(0.0), WASM_ZERO));
EXPECT_FAILURE(i_i, WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_F32(0.0)));
}
TEST_F(FunctionBodyDecoderTest, If1) {
EXPECT_VERIFIES(
i_i, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9), WASM_I32V_1(8)));
EXPECT_VERIFIES(i_i, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9),
WASM_GET_LOCAL(0)));
EXPECT_VERIFIES(i_i, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0),
WASM_I32V_1(8)));
}
TEST_F(FunctionBodyDecoderTest, If_off_end) {
static const byte kCode[] = {
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))};
for (size_t len = 3; len < arraysize(kCode); len++) {
Verify(false, sigs.i_i(), kCode, kCode + len);
}
}
TEST_F(FunctionBodyDecoderTest, If_type1) {
// float|double ? 1 : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(0), WASM_I32V_1(2))};
EXPECT_VERIFIES_C(i_i, kCode);
EXPECT_FAILURE_C(i_f, kCode);
EXPECT_FAILURE_C(i_d, kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type2) {
// 1 ? float|double : 2
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_I32V_1(1), WASM_GET_LOCAL(0), WASM_I32V_1(1))};
EXPECT_VERIFIES_C(i_i, kCode);
EXPECT_FAILURE_C(i_f, kCode);
EXPECT_FAILURE_C(i_d, kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type3) {
// stmt ? 0 : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_NOP, WASM_I32V_1(0), WASM_I32V_1(1))};
EXPECT_FAILURE_C(i_i, kCode);
EXPECT_FAILURE_C(i_f, kCode);
EXPECT_FAILURE_C(i_d, kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type4) {
// 0 ? stmt : 1
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_NOP, WASM_I32V_1(1))};
EXPECT_FAILURE_C(i_i, kCode);
EXPECT_FAILURE_C(i_f, kCode);
EXPECT_FAILURE_C(i_d, kCode);
}
TEST_F(FunctionBodyDecoderTest, If_type5) {
// 0 ? 1 : stmt
static const byte kCode[] = {
WASM_IF_ELSE_I(WASM_ZERO, WASM_I32V_1(1), WASM_NOP)};
EXPECT_FAILURE_C(i_i, kCode);
EXPECT_FAILURE_C(i_f, kCode);
EXPECT_FAILURE_C(i_d, kCode);
}
TEST_F(FunctionBodyDecoderTest, Int64Local_param) {
EXPECT_VERIFIES_C(l_l, kCodeGetLocal0);
}
TEST_F(FunctionBodyDecoderTest, Int64Locals) {
for (byte i = 1; i < 8; i++) {
AddLocals(kWasmI64, 1);
for (byte j = 0; j < i; j++) {
EXPECT_VERIFIES(l_v, WASM_GET_LOCAL(j));
}
}
}
TEST_F(FunctionBodyDecoderTest, Int32Binops) {
TestBinop(kExprI32Add, sigs.i_ii());
TestBinop(kExprI32Sub, sigs.i_ii());
TestBinop(kExprI32Mul, sigs.i_ii());
TestBinop(kExprI32DivS, sigs.i_ii());
TestBinop(kExprI32DivU, sigs.i_ii());
TestBinop(kExprI32RemS, sigs.i_ii());
TestBinop(kExprI32RemU, sigs.i_ii());
TestBinop(kExprI32And, sigs.i_ii());
TestBinop(kExprI32Ior, sigs.i_ii());
TestBinop(kExprI32Xor, sigs.i_ii());
TestBinop(kExprI32Shl, sigs.i_ii());
TestBinop(kExprI32ShrU, sigs.i_ii());
TestBinop(kExprI32ShrS, sigs.i_ii());
TestBinop(kExprI32Eq, sigs.i_ii());
TestBinop(kExprI32LtS, sigs.i_ii());
TestBinop(kExprI32LeS, sigs.i_ii());
TestBinop(kExprI32LtU, sigs.i_ii());
TestBinop(kExprI32LeU, sigs.i_ii());
}
TEST_F(FunctionBodyDecoderTest, DoubleBinops) {
TestBinop(kExprF64Add, sigs.d_dd());
TestBinop(kExprF64Sub, sigs.d_dd());
TestBinop(kExprF64Mul, sigs.d_dd());
TestBinop(kExprF64Div, sigs.d_dd());
TestBinop(kExprF64Eq, sigs.i_dd());
TestBinop(kExprF64Lt, sigs.i_dd());
TestBinop(kExprF64Le, sigs.i_dd());
}
TEST_F(FunctionBodyDecoderTest, FloatBinops) {
TestBinop(kExprF32Add, sigs.f_ff());
TestBinop(kExprF32Sub, sigs.f_ff());
TestBinop(kExprF32Mul, sigs.f_ff());
TestBinop(kExprF32Div, sigs.f_ff());
TestBinop(kExprF32Eq, sigs.i_ff());
TestBinop(kExprF32Lt, sigs.i_ff());
TestBinop(kExprF32Le, sigs.i_ff());
}
TEST_F(FunctionBodyDecoderTest, TypeConversions) {
TestUnop(kExprI32SConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32SConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprI32UConvertF32, kWasmI32, kWasmF32);
TestUnop(kExprI32UConvertF64, kWasmI32, kWasmF64);
TestUnop(kExprF64SConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64UConvertI32, kWasmF64, kWasmI32);
TestUnop(kExprF64ConvertF32, kWasmF64, kWasmF32);
TestUnop(kExprF32SConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32UConvertI32, kWasmF32, kWasmI32);
TestUnop(kExprF32ConvertF64, kWasmF32, kWasmF64);
}
TEST_F(FunctionBodyDecoderTest, MacrosStmt) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
EXPECT_VERIFIES(v_i, WASM_SET_LOCAL(0, WASM_I32V_3(87348)));
EXPECT_VERIFIES(v_i, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(24),
WASM_I32V_1(40)));
EXPECT_VERIFIES(v_i, WASM_IF(WASM_GET_LOCAL(0), WASM_NOP));
EXPECT_VERIFIES(v_i, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_NOP);
EXPECT_VERIFIES(v_v, B1(WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_BR(0)));
}
TEST_F(FunctionBodyDecoderTest, MacrosContinue) {
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_CONTINUE(0)));
}
TEST_F(FunctionBodyDecoderTest, MacrosVariadic) {
EXPECT_VERIFIES(v_v, B2(WASM_NOP, WASM_NOP));
EXPECT_VERIFIES(v_v, B3(WASM_NOP, WASM_NOP, WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_NOP, WASM_NOP));
EXPECT_VERIFIES(v_v, WASM_LOOP(WASM_NOP, WASM_NOP, WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, MacrosNestedBlocks) {
EXPECT_VERIFIES(v_v, B2(WASM_NOP, B2(WASM_NOP, WASM_NOP)));
EXPECT_VERIFIES(v_v, B3(WASM_NOP, // --
B2(WASM_NOP, WASM_NOP), // --
B2(WASM_NOP, WASM_NOP))); // --
EXPECT_VERIFIES(v_v, B1(B1(B2(WASM_NOP, WASM_NOP))));
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
EXPECT_VERIFIES_S(&sig_ii_v, WASM_RETURNN(2, WASM_ZERO, WASM_ONE));
EXPECT_FAILURE_S(&sig_ii_v, WASM_RETURNN(1, WASM_ZERO));
FunctionSig sig_iii_v(3, 0, kIntTypes5);
EXPECT_VERIFIES_S(&sig_iii_v,
WASM_RETURNN(3, WASM_ZERO, WASM_ONE, WASM_I32V_1(44)));
EXPECT_FAILURE_S(&sig_iii_v, WASM_RETURNN(2, WASM_ZERO, WASM_ONE));
}
TEST_F(FunctionBodyDecoderTest, MultipleReturn_fallthru) {
static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32,
kWasmI32};
FunctionSig sig_ii_v(2, 0, kIntTypes5);
EXPECT_VERIFIES_S(&sig_ii_v, WASM_ZERO, WASM_ONE);
EXPECT_FAILURE_S(&sig_ii_v, WASM_ZERO);
FunctionSig sig_iii_v(3, 0, kIntTypes5);
EXPECT_VERIFIES_S(&sig_iii_v, WASM_ZERO, WASM_ONE, WASM_I32V_1(44));
EXPECT_FAILURE_S(&sig_iii_v, WASM_ZERO, WASM_ONE);
}
TEST_F(FunctionBodyDecoderTest, MacrosInt32) {
EXPECT_VERIFIES(i_i, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_I32V_1(12)));
EXPECT_VERIFIES(i_i, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V_1(13)));
EXPECT_VERIFIES(i_i, WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_I32V_1(14)));
EXPECT_VERIFIES(i_i, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I32V_1(15)));
EXPECT_VERIFIES(i_i, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(16)));
EXPECT_VERIFIES(i_i, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_I32V_1(17)));
EXPECT_VERIFIES(i_i, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_I32V_1(18)));
EXPECT_VERIFIES(i_i, WASM_I32_AND(WASM_GET_LOCAL(0), WASM_I32V_1(19)));
EXPECT_VERIFIES(i_i, WASM_I32_IOR(WASM_GET_LOCAL(0), WASM_I32V_1(20)));
EXPECT_VERIFIES(i_i, WASM_I32_XOR(WASM_GET_LOCAL(0), WASM_I32V_1(21)));
EXPECT_VERIFIES(i_i, WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_I32V_1(22)));
EXPECT_VERIFIES(i_i, WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_I32V_1(23)));
EXPECT_VERIFIES(i_i, WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_I32V_1(24)));
EXPECT_VERIFIES(i_i, WASM_I32_ROR(WASM_GET_LOCAL(0), WASM_I32V_1(24)));
EXPECT_VERIFIES(i_i, WASM_I32_ROL(WASM_GET_LOCAL(0), WASM_I32V_1(24)));
EXPECT_VERIFIES(i_i, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I32V_1(25)));
EXPECT_VERIFIES(i_i, WASM_I32_NE(WASM_GET_LOCAL(0), WASM_I32V_1(25)));
EXPECT_VERIFIES(i_i, WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I32V_1(26)));
EXPECT_VERIFIES(i_i, WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I32V_1(27)));
EXPECT_VERIFIES(i_i, WASM_I32_LTU(WASM_GET_LOCAL(0), WASM_I32V_1(28)));
EXPECT_VERIFIES(i_i, WASM_I32_LEU(WASM_GET_LOCAL(0), WASM_I32V_1(29)));
EXPECT_VERIFIES(i_i, WASM_I32_GTS(WASM_GET_LOCAL(0), WASM_I32V_1(26)));
EXPECT_VERIFIES(i_i, WASM_I32_GES(WASM_GET_LOCAL(0), WASM_I32V_1(27)));
EXPECT_VERIFIES(i_i, WASM_I32_GTU(WASM_GET_LOCAL(0), WASM_I32V_1(28)));
EXPECT_VERIFIES(i_i, WASM_I32_GEU(WASM_GET_LOCAL(0), WASM_I32V_1(29)));
}
TEST_F(FunctionBodyDecoderTest, MacrosInt64) {
EXPECT_VERIFIES(l_ll, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64V_1(12)));
EXPECT_VERIFIES(l_ll, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_I64V_1(13)));
EXPECT_VERIFIES(l_ll, WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_I64V_1(14)));
EXPECT_VERIFIES(l_ll, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(15)));
EXPECT_VERIFIES(l_ll, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(16)));
EXPECT_VERIFIES(l_ll, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_I64V_1(17)));
EXPECT_VERIFIES(l_ll, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_I64V_1(18)));
EXPECT_VERIFIES(l_ll, WASM_I64_AND(WASM_GET_LOCAL(0), WASM_I64V_1(19)));
EXPECT_VERIFIES(l_ll, WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
EXPECT_VERIFIES(l_ll, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64V_1(21)));
EXPECT_VERIFIES(l_ll, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(22)));
EXPECT_VERIFIES(l_ll, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(23)));
EXPECT_VERIFIES(l_ll, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
EXPECT_VERIFIES(l_ll, WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
EXPECT_VERIFIES(l_ll, WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_I64V_1(24)));
EXPECT_VERIFIES(i_ll, WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_I64V_1(26)));
EXPECT_VERIFIES(i_ll, WASM_I64_LES(WASM_GET_LOCAL(0), WASM_I64V_1(27)));
EXPECT_VERIFIES(i_ll, WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_I64V_1(28)));
EXPECT_VERIFIES(i_ll, WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_I64V_1(29)));
EXPECT_VERIFIES(i_ll, WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_I64V_1(26)));
EXPECT_VERIFIES(i_ll, WASM_I64_GES(WASM_GET_LOCAL(0), WASM_I64V_1(27)));
EXPECT_VERIFIES(i_ll, WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_I64V_1(28)));
EXPECT_VERIFIES(i_ll, WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_I64V_1(29)));
EXPECT_VERIFIES(i_ll, WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_I64V_1(25)));
EXPECT_VERIFIES(i_ll, WASM_I64_NE(WASM_GET_LOCAL(0), WASM_I64V_1(25)));
}
TEST_F(FunctionBodyDecoderTest, AllSimpleExpressions) {
// Test all simple expressions which are described by a signature.
#define DECODE_TEST(name, opcode, sig) \
{ \
FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \
if (sig->parameter_count() == 1) { \
TestUnop(kExpr##name, sig); \
} else { \
TestBinop(kExpr##name, sig); \
} \
}
FOREACH_SIMPLE_OPCODE(DECODE_TEST);
#undef DECODE_TEST
}
TEST_F(FunctionBodyDecoderTest, MemorySize) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
byte code[] = {kExprMemorySize, 0};
EXPECT_VERIFIES_C(i_i, code);
EXPECT_FAILURE_C(f_ff, code);
}
TEST_F(FunctionBodyDecoderTest, LoadMemOffset) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (int offset = 0; offset < 128; offset += 7) {
byte code[] = {kExprI32Const, 0, kExprI32LoadMem, ZERO_ALIGNMENT,
static_cast<byte>(offset)};
EXPECT_VERIFIES_C(i_i, code);
}
}
TEST_F(FunctionBodyDecoderTest, LoadMemAlignment) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
struct {
WasmOpcode instruction;
uint32_t maximum_aligment;
} values[] = {
{kExprI32LoadMem8U, 0}, // --
{kExprI32LoadMem8S, 0}, // --
{kExprI32LoadMem16U, 1}, // --
{kExprI32LoadMem16S, 1}, // --
{kExprI64LoadMem8U, 0}, // --
{kExprI64LoadMem8S, 0}, // --
{kExprI64LoadMem16U, 1}, // --
{kExprI64LoadMem16S, 1}, // --
{kExprI64LoadMem32U, 2}, // --
{kExprI64LoadMem32S, 2}, // --
{kExprI32LoadMem, 2}, // --
{kExprI64LoadMem, 3}, // --
{kExprF32LoadMem, 2}, // --
{kExprF64LoadMem, 3}, // --
};
for (size_t i = 0; i < arraysize(values); i++) {
for (byte alignment = 0; alignment <= 4; alignment++) {
byte code[] = {WASM_ZERO, static_cast<byte>(values[i].instruction),
alignment, ZERO_OFFSET, WASM_DROP};
if (static_cast<uint32_t>(alignment) <= values[i].maximum_aligment) {
EXPECT_VERIFIES_C(v_i, code);
} else {
EXPECT_FAILURE_C(v_i, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (byte offset = 0; offset < 128; offset += 7) {
byte code[] = {WASM_STORE_MEM_OFFSET(MachineType::Int32(), offset,
WASM_ZERO, WASM_ZERO)};
EXPECT_VERIFIES_C(v_i, code);
}
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_void) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
EXPECT_FAILURE(i_i, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 0, WASM_ZERO,
WASM_ZERO));
}
#define BYTE0(x) ((x)&0x7F)
#define BYTE1(x) ((x >> 7) & 0x7F)
#define BYTE2(x) ((x >> 14) & 0x7F)
#define BYTE3(x) ((x >> 21) & 0x7F)
#define VARINT1(x) BYTE0(x)
#define VARINT2(x) BYTE0(x) | 0x80, BYTE1(x)
#define VARINT3(x) BYTE0(x) | 0x80, BYTE1(x) | 0x80, BYTE2(x)
#define VARINT4(x) BYTE0(x) | 0x80, BYTE1(x) | 0x80, BYTE2(x) | 0x80, BYTE3(x)
TEST_F(FunctionBodyDecoderTest, LoadMemOffset_varint) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
EXPECT_VERIFIES(i_i, WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
VARINT1(0x45));
EXPECT_VERIFIES(i_i, WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
VARINT2(0x3999));
EXPECT_VERIFIES(i_i, WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
VARINT3(0x344445));
EXPECT_VERIFIES(i_i, WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT,
VARINT4(0x36666667));
}
TEST_F(FunctionBodyDecoderTest, StoreMemOffset_varint) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
EXPECT_VERIFIES(v_i, WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT,
VARINT1(0x33));
EXPECT_VERIFIES(v_i, WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT,
VARINT2(0x1111));
EXPECT_VERIFIES(v_i, WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT,
VARINT3(0x222222));
EXPECT_VERIFIES(v_i, WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT,
VARINT4(0x44444444));
}
TEST_F(FunctionBodyDecoderTest, AllLoadMemCombinations) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_LOAD_MEM(mem_type, WASM_ZERO)};
FunctionSig sig(1, 0, &local_type);
if (local_type == WasmOpcodes::ValueTypeFor(mem_type)) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, AllStoreMemCombinations) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(machineTypes); j++) {
MachineType mem_type = machineTypes[j];
byte code[] = {WASM_STORE_MEM(mem_type, WASM_ZERO, WASM_GET_LOCAL(0))};
FunctionSig sig(0, 1, &local_type);
if (local_type == WasmOpcodes::ValueTypeFor(mem_type)) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_v());
module_env.AddFunction(sigs.i_i());
module_env.AddFunction(sigs.i_ii());
EXPECT_VERIFIES_S(sig, WASM_CALL_FUNCTION0(0));
EXPECT_VERIFIES_S(sig, WASM_CALL_FUNCTION(1, WASM_I32V_1(27)));
EXPECT_VERIFIES_S(sig,
WASM_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77)));
}
TEST_F(FunctionBodyDecoderTest, CallsWithTooFewArguments) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_i());
module_env.AddFunction(sigs.i_ii());
module_env.AddFunction(sigs.f_ff());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION0(0));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(1, WASM_ZERO));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(2, WASM_GET_LOCAL(0)));
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs2) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_i());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(17)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_F32(17.1)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_F64(17.1)));
}
TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(sigs.i_f());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_I32V_1(17)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(27)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(0, WASM_F64(37.2)));
module_env.AddFunction(sigs.i_d());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(1, WASM_I32V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(1, WASM_I64V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(1, WASM_F32(17.6)));
}
TEST_F(FunctionBodyDecoderTest, MultiReturn) {
EXPERIMENTAL_FLAG_SCOPE(mv);
ValueType storage[] = {kWasmI32, kWasmI32};
FunctionSig sig_ii_v(2, 0, storage);
FunctionSig sig_v_ii(0, 2, storage);
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(&sig_v_ii);
module_env.AddFunction(&sig_ii_v);
EXPECT_VERIFIES_S(&sig_ii_v, WASM_CALL_FUNCTION0(1));
EXPECT_VERIFIES(v_v, WASM_CALL_FUNCTION0(1), WASM_DROP, WASM_DROP);
EXPECT_VERIFIES(v_v, WASM_CALL_FUNCTION0(1), kExprCallFunction, 0);
}
TEST_F(FunctionBodyDecoderTest, MultiReturnType) {
EXPERIMENTAL_FLAG_SCOPE(mv);
for (size_t a = 0; a < arraysize(kValueTypes); a++) {
for (size_t b = 0; b < arraysize(kValueTypes); b++) {
for (size_t c = 0; c < arraysize(kValueTypes); c++) {
for (size_t d = 0; d < arraysize(kValueTypes); d++) {
ValueType storage_ab[] = {kValueTypes[a], kValueTypes[b]};
FunctionSig sig_ab_v(2, 0, storage_ab);
ValueType storage_cd[] = {kValueTypes[c], kValueTypes[d]};
FunctionSig sig_cd_v(2, 0, storage_cd);
TestModuleEnv module_env;
module = &module_env;
module_env.AddFunction(&sig_cd_v);
EXPECT_VERIFIES_S(&sig_cd_v, WASM_CALL_FUNCTION0(0));
if (a == c && b == d) {
EXPECT_VERIFIES_S(&sig_ab_v, WASM_CALL_FUNCTION0(0));
} else {
EXPECT_FAILURE_S(&sig_ab_v, WASM_CALL_FUNCTION0(0));
}
}
}
}
}
}
TEST_F(FunctionBodyDecoderTest, SimpleIndirectCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module_env.InitializeFunctionTable();
module = &module_env;
byte f0 = module_env.AddSignature(sigs.i_v());
byte f1 = module_env.AddSignature(sigs.i_i());
byte f2 = module_env.AddSignature(sigs.i_ii());
EXPECT_VERIFIES_S(sig, WASM_CALL_INDIRECT0(f0, WASM_ZERO));
EXPECT_VERIFIES_S(sig, WASM_CALL_INDIRECT1(f1, WASM_ZERO, WASM_I32V_1(22)));
EXPECT_VERIFIES_S(sig, WASM_CALL_INDIRECT2(f2, WASM_ZERO, WASM_I32V_1(32),
WASM_I32V_2(72)));
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsOutOfBounds) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module_env.InitializeFunctionTable();
module = &module_env;
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO));
module_env.AddSignature(sigs.i_v());
EXPECT_VERIFIES_S(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(1, WASM_ZERO, WASM_I32V_1(22)));
module_env.AddSignature(sigs.i_i());
EXPECT_VERIFIES_S(sig, WASM_CALL_INDIRECT1(1, WASM_ZERO, WASM_I32V_1(27)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(2, WASM_ZERO, WASM_I32V_1(27)));
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module_env.InitializeFunctionTable();
module = &module_env;
byte f0 = module_env.AddFunction(sigs.i_f());
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f0, WASM_ZERO, WASM_I32V_1(17)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f0, WASM_ZERO, WASM_I64V_1(27)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f0, WASM_ZERO, WASM_F64(37.2)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT0(f0, WASM_I32V_1(17)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT0(f0, WASM_I64V_1(27)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT0(f0, WASM_F64(37.2)));
byte f1 = module_env.AddFunction(sigs.i_d());
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f1, WASM_ZERO, WASM_I32V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f1, WASM_ZERO, WASM_I64V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f1, WASM_ZERO, WASM_F32(17.6)));
}
TEST_F(FunctionBodyDecoderTest, IndirectCallsWithoutTableCrash) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddSignature(sigs.i_v());
byte f1 = module_env.AddSignature(sigs.i_i());
byte f2 = module_env.AddSignature(sigs.i_ii());
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT0(f0, WASM_ZERO));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT1(f1, WASM_ZERO, WASM_I32V_1(22)));
EXPECT_FAILURE_S(sig, WASM_CALL_INDIRECT2(f2, WASM_ZERO, WASM_I32V_1(32),
WASM_I32V_2(72)));
}
TEST_F(FunctionBodyDecoderTest, SimpleImportCalls) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddImport(sigs.i_v());
byte f1 = module_env.AddImport(sigs.i_i());
byte f2 = module_env.AddImport(sigs.i_ii());
EXPECT_VERIFIES_S(sig, WASM_CALL_FUNCTION0(f0));
EXPECT_VERIFIES_S(sig, WASM_CALL_FUNCTION(f1, WASM_I32V_1(22)));
EXPECT_VERIFIES_S(sig,
WASM_CALL_FUNCTION(f2, WASM_I32V_1(32), WASM_I32V_2(72)));
}
TEST_F(FunctionBodyDecoderTest, ImportCallsWithMismatchedSigs3) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
byte f0 = module_env.AddImport(sigs.i_f());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION0(f0));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f0, WASM_I32V_1(17)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f0, WASM_I64V_1(27)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f0, WASM_F64(37.2)));
byte f1 = module_env.AddImport(sigs.i_d());
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION0(f1));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f1, WASM_I32V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f1, WASM_I64V_1(16)));
EXPECT_FAILURE_S(sig, WASM_CALL_FUNCTION(f1, WASM_F32(17.6)));
}
TEST_F(FunctionBodyDecoderTest, Int32Globals) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(kWasmI32);
EXPECT_VERIFIES_S(sig, WASM_GET_GLOBAL(0));
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)));
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, ImmutableGlobal) {
FunctionSig* sig = sigs.v_v();
TestModuleEnv module_env;
module = &module_env;
uint32_t g0 = module_env.AddGlobal(kWasmI32, true);
uint32_t g1 = module_env.AddGlobal(kWasmI32, false);
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(g0, WASM_ZERO));
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(g1, WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, Int32Globals_fail) {
FunctionSig* sig = sigs.i_i();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(kWasmI64);
module_env.AddGlobal(kWasmI64);
module_env.AddGlobal(kWasmF32);
module_env.AddGlobal(kWasmF64);
EXPECT_FAILURE_S(sig, WASM_GET_GLOBAL(0));
EXPECT_FAILURE_S(sig, WASM_GET_GLOBAL(1));
EXPECT_FAILURE_S(sig, WASM_GET_GLOBAL(2));
EXPECT_FAILURE_S(sig, WASM_GET_GLOBAL(3));
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)), WASM_ZERO);
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(1, WASM_GET_LOCAL(0)), WASM_ZERO);
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(2, WASM_GET_LOCAL(0)), WASM_ZERO);
EXPECT_FAILURE_S(sig, WASM_SET_GLOBAL(3, WASM_GET_LOCAL(0)), WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, Int64Globals) {
FunctionSig* sig = sigs.l_l();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(kWasmI64);
module_env.AddGlobal(kWasmI64);
EXPECT_VERIFIES_S(sig, WASM_GET_GLOBAL(0));
EXPECT_VERIFIES_S(sig, WASM_GET_GLOBAL(1));
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(1, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
}
TEST_F(FunctionBodyDecoderTest, Float32Globals) {
FunctionSig* sig = sigs.f_ff();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(kWasmF32);
EXPECT_VERIFIES_S(sig, WASM_GET_GLOBAL(0));
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
}
TEST_F(FunctionBodyDecoderTest, Float64Globals) {
FunctionSig* sig = sigs.d_dd();
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(kWasmF64);
EXPECT_VERIFIES_S(sig, WASM_GET_GLOBAL(0));
EXPECT_VERIFIES_S(sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(0));
}
TEST_F(FunctionBodyDecoderTest, AllGetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(1, 0, &local_type);
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(global_type);
if (local_type == global_type) {
EXPECT_VERIFIES_S(&sig, WASM_GET_GLOBAL(0));
} else {
EXPECT_FAILURE_S(&sig, WASM_GET_GLOBAL(0));
}
}
}
}
TEST_F(FunctionBodyDecoderTest, AllSetGlobalCombinations) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType local_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType global_type = kValueTypes[j];
FunctionSig sig(0, 1, &local_type);
TestModuleEnv module_env;
module = &module_env;
module_env.AddGlobal(global_type);
if (local_type == global_type) {
EXPECT_VERIFIES_S(&sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)));
} else {
EXPECT_FAILURE_S(&sig, WASM_SET_GLOBAL(0, WASM_GET_LOCAL(0)));
}
}
}
}
TEST_F(FunctionBodyDecoderTest, WasmGrowMemory) {
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
byte code[] = {WASM_GET_LOCAL(0), kExprGrowMemory, 0};
EXPECT_VERIFIES_C(i_i, code);
EXPECT_FAILURE_C(i_d, code);
}
TEST_F(FunctionBodyDecoderTest, AsmJsGrowMemory) {
TestModuleEnv module_env(kAsmJsOrigin);
module = &module_env;
module_env.InitializeMemory();
byte code[] = {WASM_GET_LOCAL(0), kExprGrowMemory, 0};
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, AsmJsBinOpsCheckOrigin) {
ValueType float32int32float32[] = {kWasmF32, kWasmI32, kWasmF32};
FunctionSig sig_f_if(1, 2, float32int32float32);
ValueType float64int32float64[] = {kWasmF64, kWasmI32, kWasmF64};
FunctionSig sig_d_id(1, 2, float64int32float64);
struct {
WasmOpcode op;
FunctionSig* sig;
} AsmJsBinOps[] = {
{kExprF64Atan2, sigs.d_dd()},
{kExprF64Pow, sigs.d_dd()},
{kExprF64Mod, sigs.d_dd()},
{kExprI32AsmjsDivS, sigs.i_ii()},
{kExprI32AsmjsDivU, sigs.i_ii()},
{kExprI32AsmjsRemS, sigs.i_ii()},
{kExprI32AsmjsRemU, sigs.i_ii()},
{kExprI32AsmjsStoreMem8, sigs.i_ii()},
{kExprI32AsmjsStoreMem16, sigs.i_ii()},
{kExprI32AsmjsStoreMem, sigs.i_ii()},
{kExprF32AsmjsStoreMem, &sig_f_if},
{kExprF64AsmjsStoreMem, &sig_d_id},
};
{
TestModuleEnv module_env(kAsmJsOrigin);
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
TestBinop(AsmJsBinOps[i].op, AsmJsBinOps[i].sig);
}
}
{
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) {
byte code[] = {
WASM_BINOP(AsmJsBinOps[i].op, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
EXPECT_FAILURE_SC(AsmJsBinOps[i].sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, AsmJsUnOpsCheckOrigin) {
ValueType float32int32[] = {kWasmF32, kWasmI32};
FunctionSig sig_f_i(1, 1, float32int32);
ValueType float64int32[] = {kWasmF64, kWasmI32};
FunctionSig sig_d_i(1, 1, float64int32);
struct {
WasmOpcode op;
FunctionSig* sig;
} AsmJsUnOps[] = {{kExprF64Acos, sigs.d_d()},
{kExprF64Asin, sigs.d_d()},
{kExprF64Atan, sigs.d_d()},
{kExprF64Cos, sigs.d_d()},
{kExprF64Sin, sigs.d_d()},
{kExprF64Tan, sigs.d_d()},
{kExprF64Exp, sigs.d_d()},
{kExprF64Log, sigs.d_d()},
{kExprI32AsmjsLoadMem8S, sigs.i_i()},
{kExprI32AsmjsLoadMem8U, sigs.i_i()},
{kExprI32AsmjsLoadMem16S, sigs.i_i()},
{kExprI32AsmjsLoadMem16U, sigs.i_i()},
{kExprI32AsmjsLoadMem, sigs.i_i()},
{kExprF32AsmjsLoadMem, &sig_f_i},
{kExprF64AsmjsLoadMem, &sig_d_i},
{kExprI32AsmjsSConvertF32, sigs.i_f()},
{kExprI32AsmjsUConvertF32, sigs.i_f()},
{kExprI32AsmjsSConvertF64, sigs.i_d()},
{kExprI32AsmjsUConvertF64, sigs.i_d()}};
{
TestModuleEnv module_env(kAsmJsOrigin);
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
TestUnop(AsmJsUnOps[i].op, AsmJsUnOps[i].sig);
}
}
{
TestModuleEnv module_env;
module = &module_env;
module_env.InitializeMemory();
for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) {
byte code[] = {WASM_UNOP(AsmJsUnOps[i].op, WASM_GET_LOCAL(0))};
EXPECT_FAILURE_SC(AsmJsUnOps[i].sig, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakEnd) {
EXPECT_VERIFIES(
i_i, WASM_BLOCK_I(WASM_I32_ADD(WASM_BRV(0, WASM_ZERO), WASM_ZERO)));
EXPECT_VERIFIES(
i_i, WASM_BLOCK_I(WASM_I32_ADD(WASM_ZERO, WASM_BRV(0, WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop) {
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_I32_ADD(
WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO), WASM_ZERO)));
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_I32_ADD(
WASM_ZERO, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO))));
EXPECT_VERIFIES_S(
sigs.f_ff(),
WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, BreakIfBinop_fail) {
EXPECT_FAILURE_S(
sigs.f_ff(),
WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO))));
EXPECT_FAILURE_S(
sigs.i_i(),
WASM_BLOCK_I(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, BreakNesting1) {
for (int i = 0; i < 5; i++) {
// (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p)
byte code[] = {WASM_BLOCK_I(
WASM_LOOP(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(i + 1, WASM_ZERO)),
WASM_SET_LOCAL(0, WASM_I32V_1(1))),
WASM_ZERO)};
if (i < 3) {
EXPECT_VERIFIES_C(i_i, code);
} else {
EXPECT_FAILURE_C(i_i, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting2) {
for (int i = 0; i < 7; i++) {
byte code[] = {B1(WASM_LOOP(WASM_IF(WASM_ZERO, WASM_BR(i)), WASM_NOP))};
if (i <= 3) {
EXPECT_VERIFIES_C(v_v, code);
} else {
EXPECT_FAILURE_C(v_v, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakNesting3) {
for (int i = 0; i < 7; i++) {
// (block[1] (loop[1] (block[1] (if 0 break[N])
byte code[] = {
WASM_BLOCK(WASM_LOOP(B1(WASM_IF(WASM_ZERO, WASM_BR(i + 1)))))};
if (i < 4) {
EXPECT_VERIFIES_C(v_v, code);
} else {
EXPECT_FAILURE_C(v_v, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BreaksWithMultipleTypes) {
EXPECT_FAILURE(i_i, B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_F32(7.7)));
EXPECT_FAILURE(i_i, B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7))));
EXPECT_FAILURE(i_i, B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(8)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(0)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7))));
EXPECT_FAILURE(i_i, B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(9)),
WASM_BRV_IF_ZERO(0, WASM_F32(7.7)),
WASM_BRV_IF_ZERO(0, WASM_I32V_1(11))));
}
TEST_F(FunctionBodyDecoderTest, BreakNesting_6_levels) {
for (int mask = 0; mask < 64; mask++) {
for (int i = 0; i < 14; i++) {
byte code[] = {WASM_BLOCK(WASM_BLOCK(
WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BR(i)))))))};
int depth = 6;
int m = mask;
for (size_t pos = 0; pos < sizeof(code) - 1; pos++) {
if (code[pos] != kExprBlock) continue;
if (m & 1) {
code[pos] = kExprLoop;
code[pos + 1] = kLocalVoid;
}
m >>= 1;
}
if (i <= depth) {
EXPECT_VERIFIES_C(v_v, code);
} else {
EXPECT_FAILURE_C(v_v, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheck) {
FunctionSig* sigarray[] = {sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()};
for (size_t i = 0; i < arraysize(sigarray); i++) {
FunctionSig* sig = sigarray[i];
// unify X and X => OK
byte code[] = {WASM_BLOCK_T(
sig->GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0))};
EXPECT_VERIFIES_SC(sig, code);
}
// unify i32 and f32 => fail
EXPECT_FAILURE(i_i, WASM_BLOCK_I(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)),
WASM_F32(1.2)));
// unify f64 and f64 => OK
EXPECT_VERIFIES(
d_dd, WASM_BLOCK_D(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_F64(1.2)));
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll1) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_BLOCK_T(
sig.GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(1))};
if (i == j) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll2) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(0), WASM_ZERO,
WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1))};
if (i == j) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll3) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(), WASM_ZERO,
WASM_GET_LOCAL(1),
WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0)))};
if (i == j) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, Break_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
ValueType storage[] = {kWasmI32, kWasmI32, type};
FunctionSig sig(1, 2, storage);
byte code1[] = {WASM_BLOCK_T(
type, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_GET_LOCAL(which))),
WASM_GET_LOCAL(which ^ 1))};
if (type == kWasmI32) {
EXPECT_VERIFIES_SC(&sig, code1);
} else {
EXPECT_FAILURE_SC(&sig, code1);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_cond_type) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]};
FunctionSig sig(1, 2, types);
byte code[] = {WASM_BLOCK_T(
types[0], WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))};
if (types[2] == kWasmI32) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_val_type) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j],
kWasmI32};
FunctionSig sig(1, 3, types);
byte code[] = {WASM_BLOCK_T(
types[1], WASM_BRV_IF(0, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
WASM_DROP, WASM_GET_LOCAL(0))};
if (i == j) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, BreakIf_Unify) {
for (int which = 0; which < 2; which++) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
ValueType storage[] = {kWasmI32, kWasmI32, type};
FunctionSig sig(1, 2, storage);
byte code[] = {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(which)),
WASM_DROP, WASM_GET_LOCAL(which ^ 1))};
if (type == kWasmI32) {
EXPECT_VERIFIES_SC(&sig, code);
} else {
EXPECT_FAILURE_SC(&sig, code);
}
}
}
}
TEST_F(FunctionBodyDecoderTest, BrTable0) {
static byte code[] = {kExprBrTable, 0, BR_TARGET(0)};
EXPECT_FAILURE_C(v_v, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable0b) {
static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(0)};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable0c) {
static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(1)};
EXPECT_FAILURE_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable1a) {
static byte code[] = {B1(WASM_BR_TABLE(WASM_I32V_2(67), 0, BR_TARGET(0)))};
EXPECT_VERIFIES_C(v_v, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable1b) {
static byte code[] = {B1(WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))};
EXPECT_VERIFIES_C(v_v, code);
EXPECT_FAILURE_C(i_i, code);
EXPECT_FAILURE_C(f_ff, code);
EXPECT_FAILURE_C(d_dd, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable2a) {
static byte code[] = {
B1(WASM_BR_TABLE(WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(0)))};
EXPECT_VERIFIES_C(v_v, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable2b) {
static byte code[] = {WASM_BLOCK(WASM_BLOCK(
WASM_BR_TABLE(WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(1))))};
EXPECT_VERIFIES_C(v_v, code);
}
TEST_F(FunctionBodyDecoderTest, BrTable_off_end) {
static byte code[] = {B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0)))};
for (size_t len = 1; len < sizeof(code); len++) {
Verify(false, sigs.i_i(), code, code + len);
}
}
TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br1) {
for (int depth = 0; depth < 4; depth++) {
byte code[] = {B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))};
if (depth <= 1) {
EXPECT_VERIFIES_C(v_i, code);
} else {
EXPECT_FAILURE_C(v_i, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br2) {
for (int depth = 0; depth < 7; depth++) {
byte code[] = {
WASM_LOOP(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))};
if (depth < 2) {
EXPECT_VERIFIES_C(v_i, code);
} else {
EXPECT_FAILURE_C(v_i, code);
}
}
}
TEST_F(FunctionBodyDecoderTest, BrUnreachable1) {
EXPECT_VERIFIES(v_i, WASM_GET_LOCAL(0), kExprBrTable, 0, BR_TARGET(0));
}
TEST_F(FunctionBodyDecoderTest, BrUnreachable2) {
EXPECT_VERIFIES(v_i, WASM_GET_LOCAL(0), kExprBrTable, 0, BR_TARGET(0),
WASM_NOP);
EXPECT_FAILURE(v_i, WASM_GET_LOCAL(0), kExprBrTable, 0, BR_TARGET(0),
WASM_ZERO);
}
TEST_F(FunctionBodyDecoderTest, Brv1) {
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_BRV(0, WASM_ZERO)));
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_LOOP_I(WASM_BRV(2, WASM_ZERO))));
}
TEST_F(FunctionBodyDecoderTest, Brv1_type) {
EXPECT_VERIFIES(i_ii, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(l_ll, WASM_BLOCK_L(WASM_BRV(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(f_ff, WASM_BLOCK_F(WASM_BRV(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(d_dd, WASM_BLOCK_D(WASM_BRV(0, WASM_GET_LOCAL(0))));
}
TEST_F(FunctionBodyDecoderTest, Brv1_type_n) {
EXPECT_FAILURE(i_f, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0))));
EXPECT_FAILURE(i_d, WASM_BLOCK_I(WASM_BRV(0, WASM_GET_LOCAL(0))));
}
TEST_F(FunctionBodyDecoderTest, BrvIf1) {
EXPECT_VERIFIES(i_v, WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_ZERO)));
}
TEST_F(FunctionBodyDecoderTest, BrvIf1_type) {
EXPECT_VERIFIES(i_i, WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(l_l, WASM_BLOCK_L(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(f_ff, WASM_BLOCK_F(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
EXPECT_VERIFIES(d_dd, WASM_BLOCK_D(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
}
TEST_F(FunctionBodyDecoderTest, BrvIf1_type_n) {
EXPECT_FAILURE(i_f, WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
EXPECT_FAILURE(i_d, WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))));
}
TEST_F(FunctionBodyDecoderTest, Select) {
EXPECT_VERIFIES(i_i,
WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_ZERO));
EXPECT_VERIFIES(f_ff, WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO));
EXPECT_VERIFIES(d_dd, WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO));
EXPECT_VERIFIES(l_l, WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO));
}
TEST_F(FunctionBodyDecoderTest, Select_fail1) {
EXPECT_FAILURE(
i_i, WASM_SELECT(WASM_F32(0.0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE(
i_i, WASM_SELECT(WASM_GET_LOCAL(0), WASM_F32(0.0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE(
i_i, WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_F32(0.0)));
}
TEST_F(FunctionBodyDecoderTest, Select_fail2) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
if (type == kWasmI32) continue;
ValueType types[] = {type, kWasmI32, type};
FunctionSig sig(1, 2, types);
EXPECT_VERIFIES_S(&sig, WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(0)));
EXPECT_FAILURE_S(&sig, WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(0)));
EXPECT_FAILURE_S(&sig, WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(0)));
EXPECT_FAILURE_S(&sig, WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)));
}
}
TEST_F(FunctionBodyDecoderTest, Select_TypeCheck) {
EXPECT_FAILURE(
i_i, WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
EXPECT_FAILURE(
i_i, WASM_SELECT(WASM_GET_LOCAL(0), WASM_F64(0.25), WASM_GET_LOCAL(0)));
EXPECT_FAILURE(i_i,
WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_I64V_1(0)));
}
TEST_F(FunctionBodyDecoderTest, Throw) {
EXPERIMENTAL_FLAG_SCOPE(eh);
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
TestModuleEnv module_env;
module = &module_env;
module_env.AddException(sigs.v_v());
module_env.AddException(sigs.v_i());
AddLocals(kWasmI32, 1);
EXPECT_VERIFIES(v_v, kExprThrow, 0);
// exception index out of range.
EXPECT_FAILURE(v_v, kExprThrow, 2);
// TODO(kschimpf): Fix when we can create exceptions with values.
EXPECT_FAILURE(v_v, WASM_I32V(0), kExprThrow, 1);
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
// TODO(kschimpf): Add more tests.
}
TEST_F(FunctionBodyDecoderTest, ThrowUnreachable) {
// TODO(titzer): unreachable code after throw should validate.
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
EXPERIMENTAL_FLAG_SCOPE(eh);
TestModuleEnv module_env;
module = &module_env;
module_env.AddException(sigs.v_v());
module_env.AddException(sigs.v_i());
AddLocals(kWasmI32, 1);
EXPECT_VERIFIES(i_i, kExprThrow, 0, WASM_GET_LOCAL(0));
// TODO(kschimpf): Add more (block-level) tests of unreachable to see
// if they validate.
}
#define WASM_TRY_OP kExprTry, kLocalVoid
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
#define WASM_CATCH(index) kExprCatch, static_cast<byte>(index)
TEST_F(FunctionBodyDecoderTest, TryCatch) {
EXPERIMENTAL_FLAG_SCOPE(eh);
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
TestModuleEnv module_env;
module = &module_env;
module_env.AddException(sigs.v_v());
module_env.AddException(sigs.v_v());
// TODO(kschimpf): Need to fix catch to use declared exception.
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
EXPECT_VERIFIES(v_v, WASM_TRY_OP, WASM_CATCH(0), kExprEnd);
// Missing catch.
EXPECT_FAILURE(v_v, WASM_TRY_OP, kExprEnd);
// Missing end.
EXPECT_FAILURE(v_i, WASM_TRY_OP, WASM_CATCH(0));
// Double catch.
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
// TODO(kschimpf): Fix this to verify.
EXPECT_FAILURE(v_i, WASM_TRY_OP, WASM_CATCH(0), WASM_CATCH(1), kExprEnd);
}
TEST_F(FunctionBodyDecoderTest, MultiValBlock1) {
EXPERIMENTAL_FLAG_SCOPE(mv);
EXPECT_VERIFIES(i_ii, WASM_BLOCK_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)),
kExprI32Add);
}
TEST_F(FunctionBodyDecoderTest, MultiValBlock2) {
EXPERIMENTAL_FLAG_SCOPE(mv);
EXPECT_VERIFIES(i_ii, WASM_BLOCK_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1)),
WASM_I32_ADD(WASM_NOP, WASM_NOP));
}
TEST_F(FunctionBodyDecoderTest, MultiValBlockBr1) {
EXPERIMENTAL_FLAG_SCOPE(mv);
EXPECT_FAILURE(
i_ii, WASM_BLOCK_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0), WASM_BR(0)),
kExprI32Add);
EXPECT_VERIFIES(i_ii, WASM_BLOCK_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_BR(0)),
kExprI32Add);
}
TEST_F(FunctionBodyDecoderTest, MultiValIf1) {
EXPERIMENTAL_FLAG_SCOPE(mv);
EXPECT_FAILURE(
i_ii, WASM_IF_ELSE_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_SEQ(WASM_GET_LOCAL(0)),
WASM_SEQ(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))),
kExprI32Add);
EXPECT_FAILURE(i_ii,
WASM_IF_ELSE_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_SEQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)),
WASM_SEQ(WASM_GET_LOCAL(1))),
kExprI32Add);
EXPECT_VERIFIES(
i_ii, WASM_IF_ELSE_TT(kWasmI32, kWasmI32, WASM_GET_LOCAL(0),
WASM_SEQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)),
WASM_SEQ(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))),
kExprI32Add);
}
TEST_F(FunctionBodyDecoderTest, Regression709741) {
AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1);
EXPECT_VERIFIES(v_v, WASM_NOP);
byte code[] = {WASM_NOP};
const byte* start = code;
const byte* end = code + sizeof(code);
PrepareBytecode(&start, &end);
for (const byte* i = start; i < end; i++) {
DecodeResult result =
VerifyWasmCode(zone()->allocator(), nullptr, sigs.v_v(), start, i);
if (result.ok()) {
std::ostringstream str;
str << "Expected verification to fail";
}
}
}
class BranchTableIteratorTest : public TestWithZone {
public:
BranchTableIteratorTest() : TestWithZone() {}
void CheckBrTableSize(const byte* start, const byte* end) {
Decoder decoder(start, end);
BranchTableOperand<true> operand(&decoder, start);
BranchTableIterator<true> iterator(&decoder, operand);
EXPECT_EQ(end - start - 1u, iterator.length());
EXPECT_TRUE(decoder.ok());
}
void CheckBrTableError(const byte* start, const byte* end) {
Decoder decoder(start, end);
BranchTableOperand<true> operand(&decoder, start);
BranchTableIterator<true> iterator(&decoder, operand);
iterator.length();
EXPECT_FALSE(decoder.ok());
}
};
#define CHECK_BR_TABLE_LENGTH(...) \
{ \
static byte code[] = {kExprBrTable, __VA_ARGS__}; \
CheckBrTableSize(code, code + sizeof(code)); \
}
#define CHECK_BR_TABLE_ERROR(...) \
{ \
static byte code[] = {kExprBrTable, __VA_ARGS__}; \
CheckBrTableError(code, code + sizeof(code)); \
}
TEST_F(BranchTableIteratorTest, count0) {
CHECK_BR_TABLE_LENGTH(0, U32V_1(1));
CHECK_BR_TABLE_LENGTH(0, U32V_2(200));
CHECK_BR_TABLE_LENGTH(0, U32V_3(30000));
CHECK_BR_TABLE_LENGTH(0, U32V_4(400000));
CHECK_BR_TABLE_LENGTH(0, U32V_1(2));
CHECK_BR_TABLE_LENGTH(0, U32V_2(300));
CHECK_BR_TABLE_LENGTH(0, U32V_3(40000));
CHECK_BR_TABLE_LENGTH(0, U32V_4(500000));
}
TEST_F(BranchTableIteratorTest, count1) {
CHECK_BR_TABLE_LENGTH(1, U32V_1(1), U32V_1(6));
CHECK_BR_TABLE_LENGTH(1, U32V_2(200), U32V_1(8));
CHECK_BR_TABLE_LENGTH(1, U32V_3(30000), U32V_1(9));
CHECK_BR_TABLE_LENGTH(1, U32V_4(400000), U32V_1(11));
CHECK_BR_TABLE_LENGTH(1, U32V_1(2), U32V_2(6));
CHECK_BR_TABLE_LENGTH(1, U32V_2(300), U32V_2(7));
CHECK_BR_TABLE_LENGTH(1, U32V_3(40000), U32V_2(8));
CHECK_BR_TABLE_LENGTH(1, U32V_4(500000), U32V_2(9));
}
TEST_F(BranchTableIteratorTest, error0) {
CHECK_BR_TABLE_ERROR(0);
CHECK_BR_TABLE_ERROR(1, U32V_1(33));
}
class WasmOpcodeLengthTest : public TestWithZone {
public:
WasmOpcodeLengthTest() : TestWithZone() {}
};
#define EXPECT_LENGTH(expected, opcode) \
{ \
static const byte code[] = {opcode, 0, 0, 0, 0, 0, 0, 0, 0}; \
EXPECT_EQ(static_cast<unsigned>(expected), \
OpcodeLength(code, code + sizeof(code))); \
}
#define EXPECT_LENGTH_N(expected, ...) \
{ \
static const byte code[] = {__VA_ARGS__}; \
EXPECT_EQ(static_cast<unsigned>(expected), \
OpcodeLength(code, code + sizeof(code))); \
}
TEST_F(WasmOpcodeLengthTest, Statements) {
EXPECT_LENGTH(1, kExprNop);
EXPECT_LENGTH(2, kExprBlock);
EXPECT_LENGTH(2, kExprLoop);
EXPECT_LENGTH(2, kExprIf);
EXPECT_LENGTH(1, kExprElse);
EXPECT_LENGTH(1, kExprEnd);
EXPECT_LENGTH(1, kExprSelect);
EXPECT_LENGTH(2, kExprBr);
EXPECT_LENGTH(2, kExprBrIf);
Reland "Start migration of try/throw/catch to match proposal." This is a reland of 470a10015d6dc2935e3f21bd6355ab524776f31d Original change's description: > Start migration of try/throw/catch to match proposal. > > This CL does the first baby steps on moving the current (experimental) > exception handling to match that of the WebAssembly proposal. > > It does the following: > > 1) Use exception tags instead of integers. > > 2) Only handle empty exception signatures (i.e. no values associated > with the exception tag. > > 3) Only handle one catch clause. > > 4) Be sure to rethrow the exception if the exception tag does not match. > > Note: There are many things that need to be fixed, and are too > numerous to list here. However, the code should have TODO's on each > missing parts of the implementation. > > Also note that the code currently doesn't handle nested catch blocks, > nor does it change the throw value being an integer. Rather, the > integer value is still being thrown, and currently is the exception > tag. Therefore, we don't build an exception object. This is the reason > why this CL doesn't handle exceptions that pass values. > > Also, the current implementation still can't handle multiple modules > because tag resolution (between) modules has not be implemented yet. > > Bug: v8:6577 > Change-Id: Id6d08b641b3c42d1eec7d4db582f2dab35406114 > Reviewed-on: https://chromium-review.googlesource.com/591910 > Reviewed-by: Brad Nelson <bradnelson@chromium.org> > Commit-Queue: Karl Schimpf <kschimpf@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47087} Bug: v8:6577 Change-Id: I41c3309827c292cb787681a95aaef7cf9b931835 Reviewed-on: https://chromium-review.googlesource.com/598968 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Brad Nelson <bradnelson@chromium.org> Commit-Queue: Brad Nelson <bradnelson@chromium.org> Cr-Commit-Position: refs/heads/master@{#47100}
2017-08-01 20:56:39 +00:00
EXPECT_LENGTH(2, kExprThrow);
EXPECT_LENGTH(2, kExprTry);
EXPECT_LENGTH(2, kExprCatch);
}
TEST_F(WasmOpcodeLengthTest, MiscExpressions) {
EXPECT_LENGTH(5, kExprF32Const);
EXPECT_LENGTH(9, kExprF64Const);
EXPECT_LENGTH(2, kExprGetLocal);
EXPECT_LENGTH(2, kExprSetLocal);
EXPECT_LENGTH(2, kExprGetGlobal);
EXPECT_LENGTH(2, kExprSetGlobal);
EXPECT_LENGTH(2, kExprCallFunction);
EXPECT_LENGTH(3, kExprCallIndirect);
}
TEST_F(WasmOpcodeLengthTest, I32Const) {
EXPECT_LENGTH_N(2, kExprI32Const, U32V_1(1));
EXPECT_LENGTH_N(3, kExprI32Const, U32V_2(999));
EXPECT_LENGTH_N(4, kExprI32Const, U32V_3(9999));
EXPECT_LENGTH_N(5, kExprI32Const, U32V_4(999999));
EXPECT_LENGTH_N(6, kExprI32Const, U32V_5(99999999));
}
TEST_F(WasmOpcodeLengthTest, I64Const) {
EXPECT_LENGTH_N(2, kExprI64Const, U32V_1(1));
EXPECT_LENGTH_N(3, kExprI64Const, U32V_2(99));
EXPECT_LENGTH_N(4, kExprI64Const, U32V_3(9999));
EXPECT_LENGTH_N(5, kExprI64Const, U32V_4(99999));
EXPECT_LENGTH_N(6, kExprI64Const, U32V_5(9999999));
EXPECT_LENGTH_N(7, WASM_I64V_6(777777));
EXPECT_LENGTH_N(8, WASM_I64V_7(7777777));
EXPECT_LENGTH_N(9, WASM_I64V_8(77777777));
EXPECT_LENGTH_N(10, WASM_I64V_9(777777777));
}
TEST_F(WasmOpcodeLengthTest, VariableLength) {
EXPECT_LENGTH_N(2, kExprGetGlobal, U32V_1(1));
EXPECT_LENGTH_N(3, kExprGetGlobal, U32V_2(33));
EXPECT_LENGTH_N(4, kExprGetGlobal, U32V_3(44));
EXPECT_LENGTH_N(5, kExprGetGlobal, U32V_4(66));
EXPECT_LENGTH_N(6, kExprGetGlobal, U32V_5(77));
}
TEST_F(WasmOpcodeLengthTest, LoadsAndStores) {
EXPECT_LENGTH(3, kExprI32LoadMem8S);
EXPECT_LENGTH(3, kExprI32LoadMem8U);
EXPECT_LENGTH(3, kExprI32LoadMem16S);
EXPECT_LENGTH(3, kExprI32LoadMem16U);
EXPECT_LENGTH(3, kExprI32LoadMem);
EXPECT_LENGTH(3, kExprI64LoadMem8S);
EXPECT_LENGTH(3, kExprI64LoadMem8U);
EXPECT_LENGTH(3, kExprI64LoadMem16S);
EXPECT_LENGTH(3, kExprI64LoadMem16U);
EXPECT_LENGTH(3, kExprI64LoadMem32S);
EXPECT_LENGTH(3, kExprI64LoadMem32U);
EXPECT_LENGTH(3, kExprI64LoadMem);
EXPECT_LENGTH(3, kExprF32LoadMem);
EXPECT_LENGTH(3, kExprF64LoadMem);
EXPECT_LENGTH(3, kExprI32StoreMem8);
EXPECT_LENGTH(3, kExprI32StoreMem16);
EXPECT_LENGTH(3, kExprI32StoreMem);
EXPECT_LENGTH(3, kExprI64StoreMem8);
EXPECT_LENGTH(3, kExprI64StoreMem16);
EXPECT_LENGTH(3, kExprI64StoreMem32);
EXPECT_LENGTH(3, kExprI64StoreMem);
EXPECT_LENGTH(3, kExprF32StoreMem);
EXPECT_LENGTH(3, kExprF64StoreMem);
}
TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) {
EXPECT_LENGTH(2, kExprMemorySize);
EXPECT_LENGTH(2, kExprGrowMemory);
}
TEST_F(WasmOpcodeLengthTest, SimpleExpressions) {
EXPECT_LENGTH(1, kExprI32Add);
EXPECT_LENGTH(1, kExprI32Sub);
EXPECT_LENGTH(1, kExprI32Mul);
EXPECT_LENGTH(1, kExprI32DivS);
EXPECT_LENGTH(1, kExprI32DivU);
EXPECT_LENGTH(1, kExprI32RemS);
EXPECT_LENGTH(1, kExprI32RemU);
EXPECT_LENGTH(1, kExprI32And);
EXPECT_LENGTH(1, kExprI32Ior);
EXPECT_LENGTH(1, kExprI32Xor);
EXPECT_LENGTH(1, kExprI32Shl);
EXPECT_LENGTH(1, kExprI32ShrU);
EXPECT_LENGTH(1, kExprI32ShrS);
EXPECT_LENGTH(1, kExprI32Eq);
EXPECT_LENGTH(1, kExprI32Ne);
EXPECT_LENGTH(1, kExprI32LtS);
EXPECT_LENGTH(1, kExprI32LeS);
EXPECT_LENGTH(1, kExprI32LtU);
EXPECT_LENGTH(1, kExprI32LeU);
EXPECT_LENGTH(1, kExprI32GtS);
EXPECT_LENGTH(1, kExprI32GeS);
EXPECT_LENGTH(1, kExprI32GtU);
EXPECT_LENGTH(1, kExprI32GeU);
EXPECT_LENGTH(1, kExprI32Clz);
EXPECT_LENGTH(1, kExprI32Ctz);
EXPECT_LENGTH(1, kExprI32Popcnt);
EXPECT_LENGTH(1, kExprI32Eqz);
EXPECT_LENGTH(1, kExprI64Add);
EXPECT_LENGTH(1, kExprI64Sub);
EXPECT_LENGTH(1, kExprI64Mul);
EXPECT_LENGTH(1, kExprI64DivS);
EXPECT_LENGTH(1, kExprI64DivU);
EXPECT_LENGTH(1, kExprI64RemS);
EXPECT_LENGTH(1, kExprI64RemU);
EXPECT_LENGTH(1, kExprI64And);
EXPECT_LENGTH(1, kExprI64Ior);
EXPECT_LENGTH(1, kExprI64Xor);
EXPECT_LENGTH(1, kExprI64Shl);
EXPECT_LENGTH(1, kExprI64ShrU);
EXPECT_LENGTH(1, kExprI64ShrS);
EXPECT_LENGTH(1, kExprI64Eq);
EXPECT_LENGTH(1, kExprI64Ne);
EXPECT_LENGTH(1, kExprI64LtS);
EXPECT_LENGTH(1, kExprI64LeS);
EXPECT_LENGTH(1, kExprI64LtU);
EXPECT_LENGTH(1, kExprI64LeU);
EXPECT_LENGTH(1, kExprI64GtS);
EXPECT_LENGTH(1, kExprI64GeS);
EXPECT_LENGTH(1, kExprI64GtU);
EXPECT_LENGTH(1, kExprI64GeU);
EXPECT_LENGTH(1, kExprI64Clz);
EXPECT_LENGTH(1, kExprI64Ctz);
EXPECT_LENGTH(1, kExprI64Popcnt);
EXPECT_LENGTH(1, kExprF32Add);
EXPECT_LENGTH(1, kExprF32Sub);
EXPECT_LENGTH(1, kExprF32Mul);
EXPECT_LENGTH(1, kExprF32Div);
EXPECT_LENGTH(1, kExprF32Min);
EXPECT_LENGTH(1, kExprF32Max);
EXPECT_LENGTH(1, kExprF32Abs);
EXPECT_LENGTH(1, kExprF32Neg);
EXPECT_LENGTH(1, kExprF32CopySign);
EXPECT_LENGTH(1, kExprF32Ceil);
EXPECT_LENGTH(1, kExprF32Floor);
EXPECT_LENGTH(1, kExprF32Trunc);
EXPECT_LENGTH(1, kExprF32NearestInt);
EXPECT_LENGTH(1, kExprF32Sqrt);
EXPECT_LENGTH(1, kExprF32Eq);
EXPECT_LENGTH(1, kExprF32Ne);
EXPECT_LENGTH(1, kExprF32Lt);
EXPECT_LENGTH(1, kExprF32Le);
EXPECT_LENGTH(1, kExprF32Gt);
EXPECT_LENGTH(1, kExprF32Ge);
EXPECT_LENGTH(1, kExprF64Add);
EXPECT_LENGTH(1, kExprF64Sub);
EXPECT_LENGTH(1, kExprF64Mul);
EXPECT_LENGTH(1, kExprF64Div);
EXPECT_LENGTH(1, kExprF64Min);
EXPECT_LENGTH(1, kExprF64Max);
EXPECT_LENGTH(1, kExprF64Abs);
EXPECT_LENGTH(1, kExprF64Neg);
EXPECT_LENGTH(1, kExprF64CopySign);
EXPECT_LENGTH(1, kExprF64Ceil);
EXPECT_LENGTH(1, kExprF64Floor);
EXPECT_LENGTH(1, kExprF64Trunc);
EXPECT_LENGTH(1, kExprF64NearestInt);
EXPECT_LENGTH(1, kExprF64Sqrt);
EXPECT_LENGTH(1, kExprF64Eq);
EXPECT_LENGTH(1, kExprF64Ne);
EXPECT_LENGTH(1, kExprF64Lt);
EXPECT_LENGTH(1, kExprF64Le);
EXPECT_LENGTH(1, kExprF64Gt);
EXPECT_LENGTH(1, kExprF64Ge);
EXPECT_LENGTH(1, kExprI32SConvertF32);
EXPECT_LENGTH(1, kExprI32SConvertF64);
EXPECT_LENGTH(1, kExprI32UConvertF32);
EXPECT_LENGTH(1, kExprI32UConvertF64);
EXPECT_LENGTH(1, kExprI32ConvertI64);
EXPECT_LENGTH(1, kExprI64SConvertF32);
EXPECT_LENGTH(1, kExprI64SConvertF64);
EXPECT_LENGTH(1, kExprI64UConvertF32);
EXPECT_LENGTH(1, kExprI64UConvertF64);
EXPECT_LENGTH(1, kExprI64SConvertI32);
EXPECT_LENGTH(1, kExprI64UConvertI32);
EXPECT_LENGTH(1, kExprF32SConvertI32);
EXPECT_LENGTH(1, kExprF32UConvertI32);
EXPECT_LENGTH(1, kExprF32SConvertI64);
EXPECT_LENGTH(1, kExprF32UConvertI64);
EXPECT_LENGTH(1, kExprF32ConvertF64);
EXPECT_LENGTH(1, kExprF32ReinterpretI32);
EXPECT_LENGTH(1, kExprF64SConvertI32);
EXPECT_LENGTH(1, kExprF64UConvertI32);
EXPECT_LENGTH(1, kExprF64SConvertI64);
EXPECT_LENGTH(1, kExprF64UConvertI64);
EXPECT_LENGTH(1, kExprF64ConvertF32);
EXPECT_LENGTH(1, kExprF64ReinterpretI64);
EXPECT_LENGTH(1, kExprI32ReinterpretF32);
EXPECT_LENGTH(1, kExprI64ReinterpretF64);
}
TEST_F(WasmOpcodeLengthTest, SimdExpressions) {
#define TEST_SIMD(name, opcode, sig) \
EXPECT_LENGTH_N(2, kSimdPrefix, static_cast<byte>(kExpr##name & 0xff));
FOREACH_SIMD_0_OPERAND_OPCODE(TEST_SIMD)
#undef TEST_SIMD
#define TEST_SIMD(name, opcode, sig) \
EXPECT_LENGTH_N(3, kSimdPrefix, static_cast<byte>(kExpr##name & 0xff));
FOREACH_SIMD_1_OPERAND_OPCODE(TEST_SIMD)
#undef TEST_SIMD
EXPECT_LENGTH_N(18, kSimdPrefix, static_cast<byte>(kExprS8x16Shuffle & 0xff));
#undef TEST_SIMD
// test for bad simd opcode
EXPECT_LENGTH_N(2, kSimdPrefix, 0xff);
}
typedef ZoneVector<ValueType> TypesOfLocals;
class LocalDeclDecoderTest : public TestWithZone {
public:
v8::internal::AccountingAllocator allocator;
size_t ExpectRun(TypesOfLocals map, size_t pos, ValueType expected,
size_t count) {
for (size_t i = 0; i < count; i++) {
EXPECT_EQ(expected, map[pos++]);
}
return pos;
}
};
TEST_F(LocalDeclDecoderTest, EmptyLocals) {
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, nullptr, nullptr);
EXPECT_FALSE(result);
}
TEST_F(LocalDeclDecoderTest, NoLocals) {
static const byte data[] = {0};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_TRUE(decls.type_list.empty());
}
TEST_F(LocalDeclDecoderTest, OneLocal) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
const byte data[] = {
1, 1, static_cast<byte>(WasmOpcodes::ValueTypeCodeFor(type))};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(1u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
EXPECT_EQ(type, map[0]);
}
}
TEST_F(LocalDeclDecoderTest, FiveLocals) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueType type = kValueTypes[i];
const byte data[] = {
1, 5, static_cast<byte>(WasmOpcodes::ValueTypeCodeFor(type))};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(sizeof(data), decls.encoded_size);
EXPECT_EQ(5u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
EXPECT_EQ(5u, map.size());
ExpectRun(map, 0, type, 5);
}
}
TEST_F(LocalDeclDecoderTest, MixedLocals) {
for (byte a = 0; a < 3; a++) {
for (byte b = 0; b < 3; b++) {
for (byte c = 0; c < 3; c++) {
for (byte d = 0; d < 3; d++) {
const byte data[] = {4, a, kLocalI32, b, kLocalI64,
c, kLocalF32, d, kLocalF64};
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, data + sizeof(data));
EXPECT_TRUE(result);
EXPECT_EQ(sizeof(data), decls.encoded_size);
EXPECT_EQ(static_cast<uint32_t>(a + b + c + d),
decls.type_list.size());
TypesOfLocals map = decls.type_list;
size_t pos = 0;
pos = ExpectRun(map, pos, kWasmI32, a);
pos = ExpectRun(map, pos, kWasmI64, b);
pos = ExpectRun(map, pos, kWasmF32, c);
pos = ExpectRun(map, pos, kWasmF64, d);
}
}
}
}
}
TEST_F(LocalDeclDecoderTest, UseEncoder) {
const byte* data = nullptr;
const byte* end = nullptr;
LocalDeclEncoder local_decls(zone());
local_decls.AddLocals(5, kWasmF32);
local_decls.AddLocals(1337, kWasmI32);
local_decls.AddLocals(212, kWasmI64);
local_decls.Prepend(zone(), &data, &end);
BodyLocalDecls decls(zone());
bool result = DecodeLocalDecls(&decls, data, end);
EXPECT_TRUE(result);
EXPECT_EQ(5u + 1337u + 212u, decls.type_list.size());
TypesOfLocals map = decls.type_list;
size_t pos = 0;
pos = ExpectRun(map, pos, kWasmF32, 5);
pos = ExpectRun(map, pos, kWasmI32, 1337);
pos = ExpectRun(map, pos, kWasmI64, 212);
}
class BytecodeIteratorTest : public TestWithZone {};
TEST_F(BytecodeIteratorTest, SimpleForeach) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
WasmOpcode expected[] = {kExprI32Const, kExprIf, kExprI32Const,
kExprElse, kExprI32Const, kExprEnd};
size_t pos = 0;
for (WasmOpcode opcode : iter.opcodes()) {
if (pos >= arraysize(expected)) {
EXPECT_TRUE(false);
break;
}
EXPECT_EQ(expected[pos++], opcode);
}
EXPECT_EQ(arraysize(expected), pos);
}
TEST_F(BytecodeIteratorTest, ForeachTwice) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
int count = 0;
count = 0;
for (WasmOpcode opcode : iter.opcodes()) {
USE(opcode);
count++;
}
EXPECT_EQ(6, count);
count = 0;
for (WasmOpcode opcode : iter.opcodes()) {
USE(opcode);
count++;
}
EXPECT_EQ(6, count);
}
TEST_F(BytecodeIteratorTest, ForeachOffset) {
byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)};
BytecodeIterator iter(code, code + sizeof(code));
int count = 0;
count = 0;
for (auto offset : iter.offsets()) {
USE(offset);
count++;
}
EXPECT_EQ(6, count);
count = 0;
for (auto offset : iter.offsets()) {
USE(offset);
count++;
}
EXPECT_EQ(6, count);
}
TEST_F(BytecodeIteratorTest, WithLocalDecls) {
byte code[] = {1, 1, kLocalI32, WASM_I32V_1(9), WASM_I32V_1(11)};
BodyLocalDecls decls(zone());
BytecodeIterator iter(code, code + sizeof(code), &decls);
EXPECT_EQ(3u, decls.encoded_size);
EXPECT_EQ(3u, iter.pc_offset());
EXPECT_TRUE(iter.has_next());
EXPECT_EQ(kExprI32Const, iter.current());
iter.next();
EXPECT_TRUE(iter.has_next());
EXPECT_EQ(kExprI32Const, iter.current());
iter.next();
EXPECT_FALSE(iter.has_next());
}