v8/src/feedback-vector.h

773 lines
24 KiB
C
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_FEEDBACK_VECTOR_H_
#define V8_FEEDBACK_VECTOR_H_
#include <vector>
#include "src/base/logging.h"
#include "src/elements-kind.h"
#include "src/objects.h"
#include "src/type-hints.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
enum class FeedbackSlotKind {
// This kind means that the slot points to the middle of other slot
// which occupies more than one feedback vector element.
// There must be no such slots in the system.
kInvalid,
kCall,
kLoadProperty,
kLoadGlobalNotInsideTypeof,
kLoadGlobalInsideTypeof,
kLoadKeyed,
kStoreGlobalSloppy,
kStoreGlobalStrict,
kStoreNamedSloppy,
kStoreNamedStrict,
kStoreOwnNamed,
kStoreKeyedSloppy,
kStoreKeyedStrict,
kBinaryOp,
kCompareOp,
kToBoolean,
kStoreDataPropertyInLiteral,
Collect type profile for DevTools Collect type information for JavaScript variables and display it in Chrome DevTools. Design Doc: https://docs.google.com/a/google.com/document/d/1O1uepXZXBI6IwiawTrYC3ohhiNgzkyTdjn3R8ysbYgk/edit?usp=sharing When debugging JavaScript, it’s helpful to know the type of a variable, parameter, and return values. JavaScript is dynamically typed, and for complex source code it’s often hard to infer types. With type profiling, we can provide type information to JavaScript developers. This CL is a proof of concept. It collects type profile for assignments and simply prints the types to stdout. The output looks something like this: #my_var1 #Object #number #string #number #undefined #string #Object #Object We use an extra slot in the feedback vector of assignments to carry the list of types for that assignment. The extra slot is only added when the flag --type-profile is given. Missing work: * Collect data for parameters and return values (currently only assignments). * Remove duplicates from the list of collected types and use a common base class. * Add line numbers or source position instead of the variable name. For now, has a test that compares the stdout of --type-profile in test/message. We will remove this test when --type-profile is fully integrated in the debugger protocol. Adding the test in test/inspector does not work, because the inspector test itself consists of JavaScript code that would convolute the output and be non-deterministic under stress. BUG=v8:5935 Review-Url: https://codereview.chromium.org/2707873002 Cr-Commit-Position: refs/heads/master@{#43866}
2017-03-16 15:01:31 +00:00
kTypeProfile,
kCreateClosure,
kLiteral,
// This is a general purpose slot that occupies one feedback vector element.
kGeneral,
kKindsNumber // Last value indicating number of kinds.
};
inline bool IsCallICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kCall;
}
inline bool IsLoadICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kLoadProperty;
}
inline bool IsLoadGlobalICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kLoadGlobalNotInsideTypeof ||
kind == FeedbackSlotKind::kLoadGlobalInsideTypeof;
}
inline bool IsKeyedLoadICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kLoadKeyed;
}
inline bool IsStoreGlobalICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kStoreGlobalSloppy ||
kind == FeedbackSlotKind::kStoreGlobalStrict;
}
inline bool IsStoreICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kStoreNamedSloppy ||
kind == FeedbackSlotKind::kStoreNamedStrict;
}
inline bool IsStoreOwnICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kStoreOwnNamed;
}
inline bool IsKeyedStoreICKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kStoreKeyedSloppy ||
kind == FeedbackSlotKind::kStoreKeyedStrict;
}
inline bool IsTypeProfileKind(FeedbackSlotKind kind) {
return kind == FeedbackSlotKind::kTypeProfile;
}
inline TypeofMode GetTypeofModeFromSlotKind(FeedbackSlotKind kind) {
DCHECK(IsLoadGlobalICKind(kind));
return (kind == FeedbackSlotKind::kLoadGlobalInsideTypeof)
? INSIDE_TYPEOF
: NOT_INSIDE_TYPEOF;
}
inline LanguageMode GetLanguageModeFromSlotKind(FeedbackSlotKind kind) {
DCHECK(IsStoreICKind(kind) || IsStoreOwnICKind(kind) ||
IsStoreGlobalICKind(kind) || IsKeyedStoreICKind(kind));
return (kind == FeedbackSlotKind::kStoreNamedSloppy ||
kind == FeedbackSlotKind::kStoreGlobalSloppy ||
kind == FeedbackSlotKind::kStoreKeyedSloppy)
? SLOPPY
: STRICT;
}
std::ostream& operator<<(std::ostream& os, FeedbackSlotKind kind);
template <typename Derived>
class FeedbackVectorSpecBase {
public:
FeedbackSlot AddCallICSlot() { return AddSlot(FeedbackSlotKind::kCall); }
FeedbackSlot AddLoadICSlot() {
return AddSlot(FeedbackSlotKind::kLoadProperty);
}
FeedbackSlot AddLoadGlobalICSlot(TypeofMode typeof_mode) {
return AddSlot(typeof_mode == INSIDE_TYPEOF
? FeedbackSlotKind::kLoadGlobalInsideTypeof
: FeedbackSlotKind::kLoadGlobalNotInsideTypeof);
}
FeedbackSlot AddCreateClosureSlot() {
return AddSlot(FeedbackSlotKind::kCreateClosure);
}
FeedbackSlot AddKeyedLoadICSlot() {
return AddSlot(FeedbackSlotKind::kLoadKeyed);
}
FeedbackSlot AddStoreICSlot(LanguageMode language_mode) {
STATIC_ASSERT(LANGUAGE_END == 2);
return AddSlot(is_strict(language_mode)
? FeedbackSlotKind::kStoreNamedStrict
: FeedbackSlotKind::kStoreNamedSloppy);
}
FeedbackSlot AddStoreOwnICSlot() {
return AddSlot(FeedbackSlotKind::kStoreOwnNamed);
}
FeedbackSlot AddStoreGlobalICSlot(LanguageMode language_mode) {
STATIC_ASSERT(LANGUAGE_END == 2);
return AddSlot(is_strict(language_mode)
? FeedbackSlotKind::kStoreGlobalStrict
: FeedbackSlotKind::kStoreGlobalSloppy);
}
FeedbackSlot AddKeyedStoreICSlot(LanguageMode language_mode) {
STATIC_ASSERT(LANGUAGE_END == 2);
return AddSlot(is_strict(language_mode)
? FeedbackSlotKind::kStoreKeyedStrict
: FeedbackSlotKind::kStoreKeyedSloppy);
}
FeedbackSlot AddInterpreterBinaryOpICSlot() {
return AddSlot(FeedbackSlotKind::kBinaryOp);
}
FeedbackSlot AddInterpreterCompareICSlot() {
return AddSlot(FeedbackSlotKind::kCompareOp);
}
FeedbackSlot AddGeneralSlot() { return AddSlot(FeedbackSlotKind::kGeneral); }
FeedbackSlot AddLiteralSlot() { return AddSlot(FeedbackSlotKind::kLiteral); }
FeedbackSlot AddStoreDataPropertyInLiteralICSlot() {
return AddSlot(FeedbackSlotKind::kStoreDataPropertyInLiteral);
}
FeedbackSlot AddTypeProfileSlot();
Collect type profile for DevTools Collect type information for JavaScript variables and display it in Chrome DevTools. Design Doc: https://docs.google.com/a/google.com/document/d/1O1uepXZXBI6IwiawTrYC3ohhiNgzkyTdjn3R8ysbYgk/edit?usp=sharing When debugging JavaScript, it’s helpful to know the type of a variable, parameter, and return values. JavaScript is dynamically typed, and for complex source code it’s often hard to infer types. With type profiling, we can provide type information to JavaScript developers. This CL is a proof of concept. It collects type profile for assignments and simply prints the types to stdout. The output looks something like this: #my_var1 #Object #number #string #number #undefined #string #Object #Object We use an extra slot in the feedback vector of assignments to carry the list of types for that assignment. The extra slot is only added when the flag --type-profile is given. Missing work: * Collect data for parameters and return values (currently only assignments). * Remove duplicates from the list of collected types and use a common base class. * Add line numbers or source position instead of the variable name. For now, has a test that compares the stdout of --type-profile in test/message. We will remove this test when --type-profile is fully integrated in the debugger protocol. Adding the test in test/inspector does not work, because the inspector test itself consists of JavaScript code that would convolute the output and be non-deterministic under stress. BUG=v8:5935 Review-Url: https://codereview.chromium.org/2707873002 Cr-Commit-Position: refs/heads/master@{#43866}
2017-03-16 15:01:31 +00:00
#ifdef OBJECT_PRINT
// For gdb debugging.
void Print();
#endif // OBJECT_PRINT
DECLARE_PRINTER(FeedbackVectorSpec)
private:
inline FeedbackSlot AddSlot(FeedbackSlotKind kind);
Derived* This() { return static_cast<Derived*>(this); }
};
class StaticFeedbackVectorSpec
: public FeedbackVectorSpecBase<StaticFeedbackVectorSpec> {
public:
StaticFeedbackVectorSpec() : slot_count_(0) {}
int slots() const { return slot_count_; }
FeedbackSlotKind GetKind(FeedbackSlot slot) const {
DCHECK(slot.ToInt() >= 0 && slot.ToInt() < slot_count_);
return kinds_[slot.ToInt()];
}
private:
friend class FeedbackVectorSpecBase<StaticFeedbackVectorSpec>;
void append(FeedbackSlotKind kind) {
DCHECK(slot_count_ < kMaxLength);
kinds_[slot_count_++] = kind;
}
static const int kMaxLength = 12;
int slot_count_;
FeedbackSlotKind kinds_[kMaxLength];
};
class FeedbackVectorSpec : public FeedbackVectorSpecBase<FeedbackVectorSpec> {
public:
explicit FeedbackVectorSpec(Zone* zone) : slot_kinds_(zone) {
slot_kinds_.reserve(16);
}
int slots() const { return static_cast<int>(slot_kinds_.size()); }
FeedbackSlotKind GetKind(FeedbackSlot slot) const {
return static_cast<FeedbackSlotKind>(slot_kinds_.at(slot.ToInt()));
}
bool HasTypeProfileSlot() const;
// If used, the TypeProfileSlot is always added as the first slot and its
// index is constant. If other slots are added before the TypeProfileSlot,
// this number changes.
static const int kTypeProfileSlotIndex = 2;
private:
friend class FeedbackVectorSpecBase<FeedbackVectorSpec>;
void append(FeedbackSlotKind kind) {
slot_kinds_.push_back(static_cast<unsigned char>(kind));
}
ZoneVector<unsigned char> slot_kinds_;
};
// The shape of the FeedbackMetadata is an array with:
// 0: slot_count
// 1: names table
// 2: parameters table
// 3..N: slot kinds packed into a bit vector
//
class FeedbackMetadata : public FixedArray {
public:
// Casting.
static inline FeedbackMetadata* cast(Object* obj);
static const int kSlotsCountIndex = 0;
static const int kReservedIndexCount = 1;
// Returns number of feedback vector elements used by given slot kind.
static inline int GetSlotSize(FeedbackSlotKind kind);
bool SpecDiffersFrom(const FeedbackVectorSpec* other_spec) const;
inline bool is_empty() const;
// Returns number of slots in the vector.
inline int slot_count() const;
// Returns slot kind for given slot.
FeedbackSlotKind GetKind(FeedbackSlot slot) const;
template <typename Spec>
static Handle<FeedbackMetadata> New(Isolate* isolate, const Spec* spec);
#ifdef OBJECT_PRINT
// For gdb debugging.
void Print();
#endif // OBJECT_PRINT
DECLARE_PRINTER(FeedbackMetadata)
static const char* Kind2String(FeedbackSlotKind kind);
bool HasTypeProfileSlot() const;
Collect type profile for DevTools Collect type information for JavaScript variables and display it in Chrome DevTools. Design Doc: https://docs.google.com/a/google.com/document/d/1O1uepXZXBI6IwiawTrYC3ohhiNgzkyTdjn3R8ysbYgk/edit?usp=sharing When debugging JavaScript, it’s helpful to know the type of a variable, parameter, and return values. JavaScript is dynamically typed, and for complex source code it’s often hard to infer types. With type profiling, we can provide type information to JavaScript developers. This CL is a proof of concept. It collects type profile for assignments and simply prints the types to stdout. The output looks something like this: #my_var1 #Object #number #string #number #undefined #string #Object #Object We use an extra slot in the feedback vector of assignments to carry the list of types for that assignment. The extra slot is only added when the flag --type-profile is given. Missing work: * Collect data for parameters and return values (currently only assignments). * Remove duplicates from the list of collected types and use a common base class. * Add line numbers or source position instead of the variable name. For now, has a test that compares the stdout of --type-profile in test/message. We will remove this test when --type-profile is fully integrated in the debugger protocol. Adding the test in test/inspector does not work, because the inspector test itself consists of JavaScript code that would convolute the output and be non-deterministic under stress. BUG=v8:5935 Review-Url: https://codereview.chromium.org/2707873002 Cr-Commit-Position: refs/heads/master@{#43866}
2017-03-16 15:01:31 +00:00
private:
static const int kFeedbackSlotKindBits = 5;
STATIC_ASSERT(static_cast<int>(FeedbackSlotKind::kKindsNumber) <
(1 << kFeedbackSlotKindBits));
void SetKind(FeedbackSlot slot, FeedbackSlotKind kind);
typedef BitSetComputer<FeedbackSlotKind, kFeedbackSlotKindBits, kSmiValueSize,
uint32_t>
VectorICComputer;
DISALLOW_IMPLICIT_CONSTRUCTORS(FeedbackMetadata);
};
// The shape of the FeedbackVector is an array with:
// 0: feedback metadata
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
// 1: invocation count
// 2: feedback slot #0
// ...
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
// 2 + slot_count - 1: feedback slot #(slot_count-1)
//
class FeedbackVector : public FixedArray {
public:
// Casting.
static inline FeedbackVector* cast(Object* obj);
static const int kSharedFunctionInfoIndex = 0;
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
static const int kInvocationCountIndex = 1;
static const int kReservedIndexCount = 2;
inline void ComputeCounts(int* with_type_info, int* generic,
int* vector_ic_count, bool code_is_interpreted);
inline bool is_empty() const;
// Returns number of slots in the vector.
inline int slot_count() const;
inline FeedbackMetadata* metadata() const;
inline SharedFunctionInfo* shared_function_info() const;
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
inline int invocation_count() const;
inline void clear_invocation_count();
// Conversion from a slot to an integer index to the underlying array.
static int GetIndex(FeedbackSlot slot) {
return kReservedIndexCount + slot.ToInt();
}
// Conversion from an integer index to the underlying array to a slot.
static inline FeedbackSlot ToSlot(int index);
inline Object* Get(FeedbackSlot slot) const;
inline void Set(FeedbackSlot slot, Object* value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// Returns slot kind for given slot.
FeedbackSlotKind GetKind(FeedbackSlot slot) const;
FeedbackSlot GetTypeProfileSlot() const;
static Handle<FeedbackVector> New(Isolate* isolate,
Handle<SharedFunctionInfo> shared);
static Handle<FeedbackVector> Copy(Isolate* isolate,
Handle<FeedbackVector> vector);
#define DEFINE_SLOT_KIND_PREDICATE(Name) \
bool Name(FeedbackSlot slot) const { return Name##Kind(GetKind(slot)); }
DEFINE_SLOT_KIND_PREDICATE(IsCallIC)
DEFINE_SLOT_KIND_PREDICATE(IsLoadIC)
DEFINE_SLOT_KIND_PREDICATE(IsLoadGlobalIC)
DEFINE_SLOT_KIND_PREDICATE(IsKeyedLoadIC)
DEFINE_SLOT_KIND_PREDICATE(IsStoreIC)
DEFINE_SLOT_KIND_PREDICATE(IsStoreOwnIC)
DEFINE_SLOT_KIND_PREDICATE(IsStoreGlobalIC)
DEFINE_SLOT_KIND_PREDICATE(IsKeyedStoreIC)
DEFINE_SLOT_KIND_PREDICATE(IsTypeProfile)
#undef DEFINE_SLOT_KIND_PREDICATE
// Returns typeof mode encoded into kind of given slot.
inline TypeofMode GetTypeofMode(FeedbackSlot slot) const {
return GetTypeofModeFromSlotKind(GetKind(slot));
}
// Returns language mode encoded into kind of given slot.
inline LanguageMode GetLanguageMode(FeedbackSlot slot) const {
return GetLanguageModeFromSlotKind(GetKind(slot));
}
#ifdef OBJECT_PRINT
// For gdb debugging.
void Print();
#endif // OBJECT_PRINT
DECLARE_PRINTER(FeedbackVector)
// Clears the vector slots.
void ClearSlots(JSFunction* host_function);
// The object that indicates an uninitialized cache.
static inline Handle<Symbol> UninitializedSentinel(Isolate* isolate);
// The object that indicates a megamorphic state.
static inline Handle<Symbol> MegamorphicSentinel(Isolate* isolate);
// The object that indicates a premonomorphic state.
static inline Handle<Symbol> PremonomorphicSentinel(Isolate* isolate);
// A raw version of the uninitialized sentinel that's safe to read during
// garbage collection (e.g., for patching the cache).
static inline Symbol* RawUninitializedSentinel(Isolate* isolate);
private:
static void AddToCodeCoverageList(Isolate* isolate,
Handle<FeedbackVector> vector);
DISALLOW_IMPLICIT_CONSTRUCTORS(FeedbackVector);
};
// The following asserts protect an optimization in type feedback vector
// code that looks into the contents of a slot assuming to find a String,
// a Symbol, an AllocationSite, a WeakCell, or a FixedArray.
STATIC_ASSERT(WeakCell::kSize >= 2 * kPointerSize);
STATIC_ASSERT(WeakCell::kValueOffset == AllocationSite::kTransitionInfoOffset);
STATIC_ASSERT(WeakCell::kValueOffset == FixedArray::kLengthOffset);
STATIC_ASSERT(WeakCell::kValueOffset == Name::kHashFieldSlot);
// Verify that an empty hash field looks like a tagged object, but can't
// possibly be confused with a pointer.
STATIC_ASSERT((Name::kEmptyHashField & kHeapObjectTag) == kHeapObjectTag);
STATIC_ASSERT(Name::kEmptyHashField == 0x3);
// Verify that a set hash field will not look like a tagged object.
STATIC_ASSERT(Name::kHashNotComputedMask == kHeapObjectTag);
class FeedbackMetadataIterator {
public:
explicit FeedbackMetadataIterator(Handle<FeedbackMetadata> metadata)
: metadata_handle_(metadata),
next_slot_(FeedbackSlot(0)),
slot_kind_(FeedbackSlotKind::kInvalid) {}
explicit FeedbackMetadataIterator(FeedbackMetadata* metadata)
: metadata_(metadata),
next_slot_(FeedbackSlot(0)),
slot_kind_(FeedbackSlotKind::kInvalid) {}
inline bool HasNext() const;
inline FeedbackSlot Next();
// Returns slot kind of the last slot returned by Next().
FeedbackSlotKind kind() const {
DCHECK_NE(FeedbackSlotKind::kInvalid, slot_kind_);
DCHECK_NE(FeedbackSlotKind::kKindsNumber, slot_kind_);
return slot_kind_;
}
// Returns entry size of the last slot returned by Next().
inline int entry_size() const;
private:
FeedbackMetadata* metadata() const {
return !metadata_handle_.is_null() ? *metadata_handle_ : metadata_;
}
// The reason for having a handle and a raw pointer to the meta data is
// to have a single iterator implementation for both "handlified" and raw
// pointer use cases.
Handle<FeedbackMetadata> metadata_handle_;
FeedbackMetadata* metadata_;
FeedbackSlot cur_slot_;
FeedbackSlot next_slot_;
FeedbackSlotKind slot_kind_;
};
// A FeedbackNexus is the combination of a FeedbackVector and a slot.
// Derived classes customize the update and retrieval of feedback.
class FeedbackNexus {
public:
FeedbackNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: vector_handle_(vector), vector_(NULL), slot_(slot) {}
FeedbackNexus(FeedbackVector* vector, FeedbackSlot slot)
: vector_(vector), slot_(slot) {}
virtual ~FeedbackNexus() {}
Handle<FeedbackVector> vector_handle() const {
DCHECK(vector_ == NULL);
return vector_handle_;
}
FeedbackVector* vector() const {
return vector_handle_.is_null() ? vector_ : *vector_handle_;
}
FeedbackSlot slot() const { return slot_; }
FeedbackSlotKind kind() const { return vector()->GetKind(slot()); }
InlineCacheState ic_state() const { return StateFromFeedback(); }
bool IsUninitialized() const { return StateFromFeedback() == UNINITIALIZED; }
Map* FindFirstMap() const {
MapHandles maps;
ExtractMaps(&maps);
if (maps.size() > 0) return *maps.at(0);
return NULL;
}
virtual InlineCacheState StateFromFeedback() const = 0;
virtual int ExtractMaps(MapHandles* maps) const;
virtual MaybeHandle<Object> FindHandlerForMap(Handle<Map> map) const;
virtual bool FindHandlers(List<Handle<Object>>* code_list,
int length = -1) const;
virtual Name* FindFirstName() const { return NULL; }
bool IsCleared() {
InlineCacheState state = StateFromFeedback();
return !FLAG_use_ic || state == UNINITIALIZED || state == PREMONOMORPHIC;
}
virtual void Clear() { ConfigureUninitialized(); }
virtual void ConfigureUninitialized();
void ConfigurePremonomorphic();
void ConfigureMegamorphic(IcCheckType property_type);
inline Object* GetFeedback() const;
inline Object* GetFeedbackExtra() const;
inline Isolate* GetIsolate() const;
void ConfigureMonomorphic(Handle<Name> name, Handle<Map> receiver_map,
Handle<Object> handler);
void ConfigurePolymorphic(Handle<Name> name, MapHandles const& maps,
List<Handle<Object>>* handlers);
protected:
inline void SetFeedback(Object* feedback,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
inline void SetFeedbackExtra(Object* feedback_extra,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
Handle<FixedArray> EnsureArrayOfSize(int length);
Handle<FixedArray> EnsureExtraArrayOfSize(int length);
private:
// The reason for having a vector handle and a raw pointer is that we can and
// should use handles during IC miss, but not during GC when we clear ICs. If
// you have a handle to the vector that is better because more operations can
// be done, like allocation.
Handle<FeedbackVector> vector_handle_;
FeedbackVector* vector_;
FeedbackSlot slot_;
};
class CallICNexus final : public FeedbackNexus {
public:
CallICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsCallIC(slot));
}
CallICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsCallIC(slot));
}
void ConfigureUninitialized() final;
InlineCacheState StateFromFeedback() const final;
int ExtractMaps(MapHandles* maps) const final {
// CallICs don't record map feedback.
return 0;
}
MaybeHandle<Object> FindHandlerForMap(Handle<Map> map) const final {
return MaybeHandle<Code>();
}
bool FindHandlers(List<Handle<Object>>* code_list,
int length = -1) const final {
return length == 0;
}
int ExtractCallCount();
[turbofan] Collect invocation counts and compute relative call frequencies. Add a notion of "invocation count" to the baseline compilers, which increment a special slot in the TypeFeedbackVector for each invocation of a given function (the optimized code doesn't currently collect this information). Use this invocation count to relativize the call counts on the call sites within the function, so that the inlining heuristic has a view of relative importance of a call site rather than some absolute numbers with unclear meaning for the current function. Also apply the call site frequency as a factor to all frequencies in the inlinee by passing this to the graph builders so that the importance of a call site in an inlinee is relative to the topmost optimized function. Note that all functions that neither have literals nor need type feedback slots will share a single invocation count cell in the canonical empty type feedback vector, so their invocation count is meaningless, but that doesn't matter since we only use the invocation count to relativize call counts within the function, which we only have if we have at least one type feedback vector (the CallIC slot). See the design document for additional details on this change: https://docs.google.com/document/d/1VoYBhpDhJC4VlqMXCKvae-8IGuheBGxy32EOgC2LnT8 BUG=v8:5267,v8:5372 R=mvstanton@chromium.org,rmcilroy@chromium.org,mstarzinger@chromium.org Review-Url: https://codereview.chromium.org/2337123003 Cr-Commit-Position: refs/heads/master@{#39410}
2016-09-14 10:20:08 +00:00
// Compute the call frequency based on the call count and the invocation
// count (taken from the type feedback vector).
float ComputeCallFrequency();
};
class LoadICNexus : public FeedbackNexus {
public:
LoadICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsLoadIC(slot));
}
LoadICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsLoadIC(slot));
}
void Clear() override { ConfigurePremonomorphic(); }
InlineCacheState StateFromFeedback() const override;
};
class LoadGlobalICNexus : public FeedbackNexus {
public:
LoadGlobalICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsLoadGlobalIC(slot));
}
LoadGlobalICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsLoadGlobalIC(slot));
}
int ExtractMaps(MapHandles* maps) const final {
// LoadGlobalICs don't record map feedback.
return 0;
}
MaybeHandle<Object> FindHandlerForMap(Handle<Map> map) const final {
return MaybeHandle<Code>();
}
bool FindHandlers(List<Handle<Object>>* code_list,
int length = -1) const final {
return length == 0;
}
void ConfigureUninitialized() override;
void ConfigurePropertyCellMode(Handle<PropertyCell> cell);
void ConfigureHandlerMode(Handle<Object> handler);
InlineCacheState StateFromFeedback() const override;
};
class KeyedLoadICNexus : public FeedbackNexus {
public:
KeyedLoadICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsKeyedLoadIC(slot));
}
KeyedLoadICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsKeyedLoadIC(slot));
}
void Clear() override { ConfigurePremonomorphic(); }
IcCheckType GetKeyType() const;
InlineCacheState StateFromFeedback() const override;
Name* FindFirstName() const override;
};
class StoreICNexus : public FeedbackNexus {
public:
StoreICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsStoreIC(slot) || vector->IsStoreOwnIC(slot) ||
vector->IsStoreGlobalIC(slot));
}
StoreICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsStoreIC(slot) || vector->IsStoreOwnIC(slot) ||
vector->IsStoreGlobalIC(slot));
}
void Clear() override { ConfigurePremonomorphic(); }
InlineCacheState StateFromFeedback() const override;
};
// TODO(ishell): Currently we use StoreOwnIC only for storing properties that
// already exist in the boilerplate therefore we can use StoreIC.
typedef StoreICNexus StoreOwnICNexus;
class KeyedStoreICNexus : public FeedbackNexus {
public:
KeyedStoreICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsKeyedStoreIC(slot));
}
KeyedStoreICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK(vector->IsKeyedStoreIC(slot));
}
void Clear() override { ConfigurePremonomorphic(); }
KeyedAccessStoreMode GetKeyedAccessStoreMode() const;
IcCheckType GetKeyType() const;
InlineCacheState StateFromFeedback() const override;
Name* FindFirstName() const override;
};
class BinaryOpICNexus final : public FeedbackNexus {
public:
BinaryOpICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kBinaryOp, vector->GetKind(slot));
}
BinaryOpICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kBinaryOp, vector->GetKind(slot));
}
InlineCacheState StateFromFeedback() const final;
BinaryOperationHint GetBinaryOperationFeedback() const;
int ExtractMaps(MapHandles* maps) const final {
// BinaryOpICs don't record map feedback.
return 0;
}
MaybeHandle<Object> FindHandlerForMap(Handle<Map> map) const final {
return MaybeHandle<Code>();
}
bool FindHandlers(List<Handle<Object>>* code_list,
int length = -1) const final {
return length == 0;
}
};
class CompareICNexus final : public FeedbackNexus {
public:
CompareICNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kCompareOp, vector->GetKind(slot));
}
CompareICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kCompareOp, vector->GetKind(slot));
}
InlineCacheState StateFromFeedback() const final;
CompareOperationHint GetCompareOperationFeedback() const;
int ExtractMaps(MapHandles* maps) const final {
// BinaryOpICs don't record map feedback.
return 0;
}
MaybeHandle<Object> FindHandlerForMap(Handle<Map> map) const final {
return MaybeHandle<Code>();
}
bool FindHandlers(List<Handle<Object>>* code_list,
int length = -1) const final {
return length == 0;
}
};
class StoreDataPropertyInLiteralICNexus : public FeedbackNexus {
public:
StoreDataPropertyInLiteralICNexus(Handle<FeedbackVector> vector,
FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kStoreDataPropertyInLiteral,
vector->GetKind(slot));
}
StoreDataPropertyInLiteralICNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kStoreDataPropertyInLiteral,
vector->GetKind(slot));
}
void ConfigureMonomorphic(Handle<Name> name, Handle<Map> receiver_map);
InlineCacheState StateFromFeedback() const override;
};
Collect type profile for DevTools Collect type information for JavaScript variables and display it in Chrome DevTools. Design Doc: https://docs.google.com/a/google.com/document/d/1O1uepXZXBI6IwiawTrYC3ohhiNgzkyTdjn3R8ysbYgk/edit?usp=sharing When debugging JavaScript, it’s helpful to know the type of a variable, parameter, and return values. JavaScript is dynamically typed, and for complex source code it’s often hard to infer types. With type profiling, we can provide type information to JavaScript developers. This CL is a proof of concept. It collects type profile for assignments and simply prints the types to stdout. The output looks something like this: #my_var1 #Object #number #string #number #undefined #string #Object #Object We use an extra slot in the feedback vector of assignments to carry the list of types for that assignment. The extra slot is only added when the flag --type-profile is given. Missing work: * Collect data for parameters and return values (currently only assignments). * Remove duplicates from the list of collected types and use a common base class. * Add line numbers or source position instead of the variable name. For now, has a test that compares the stdout of --type-profile in test/message. We will remove this test when --type-profile is fully integrated in the debugger protocol. Adding the test in test/inspector does not work, because the inspector test itself consists of JavaScript code that would convolute the output and be non-deterministic under stress. BUG=v8:5935 Review-Url: https://codereview.chromium.org/2707873002 Cr-Commit-Position: refs/heads/master@{#43866}
2017-03-16 15:01:31 +00:00
// For each assignment, store the type of the value in the collection of types
// in the feedback vector.
class CollectTypeProfileNexus : public FeedbackNexus {
public:
CollectTypeProfileNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kTypeProfile, vector->GetKind(slot));
}
CollectTypeProfileNexus(FeedbackVector* vector, FeedbackSlot slot)
: FeedbackNexus(vector, slot) {
DCHECK_EQ(FeedbackSlotKind::kTypeProfile, vector->GetKind(slot));
}
// Add a type to the list of types for source position <position>.
void Collect(Handle<String> type, int position);
JSObject* GetTypeProfile() const;
Collect type profile for DevTools Collect type information for JavaScript variables and display it in Chrome DevTools. Design Doc: https://docs.google.com/a/google.com/document/d/1O1uepXZXBI6IwiawTrYC3ohhiNgzkyTdjn3R8ysbYgk/edit?usp=sharing When debugging JavaScript, it’s helpful to know the type of a variable, parameter, and return values. JavaScript is dynamically typed, and for complex source code it’s often hard to infer types. With type profiling, we can provide type information to JavaScript developers. This CL is a proof of concept. It collects type profile for assignments and simply prints the types to stdout. The output looks something like this: #my_var1 #Object #number #string #number #undefined #string #Object #Object We use an extra slot in the feedback vector of assignments to carry the list of types for that assignment. The extra slot is only added when the flag --type-profile is given. Missing work: * Collect data for parameters and return values (currently only assignments). * Remove duplicates from the list of collected types and use a common base class. * Add line numbers or source position instead of the variable name. For now, has a test that compares the stdout of --type-profile in test/message. We will remove this test when --type-profile is fully integrated in the debugger protocol. Adding the test in test/inspector does not work, because the inspector test itself consists of JavaScript code that would convolute the output and be non-deterministic under stress. BUG=v8:5935 Review-Url: https://codereview.chromium.org/2707873002 Cr-Commit-Position: refs/heads/master@{#43866}
2017-03-16 15:01:31 +00:00
InlineCacheState StateFromFeedback() const override;
};
inline BinaryOperationHint BinaryOperationHintFromFeedback(int type_feedback);
inline CompareOperationHint CompareOperationHintFromFeedback(int type_feedback);
} // namespace internal
} // namespace v8
#endif // V8_FEEDBACK_VECTOR_H_