v8/src/lithium.h

823 lines
24 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_LITHIUM_H_
#define V8_LITHIUM_H_
#include "allocation.h"
#include "hydrogen.h"
#include "safepoint-table.h"
namespace v8 {
namespace internal {
#define LITHIUM_OPERAND_LIST(V) \
V(ConstantOperand, CONSTANT_OPERAND) \
V(StackSlot, STACK_SLOT) \
V(DoubleStackSlot, DOUBLE_STACK_SLOT) \
V(Register, REGISTER) \
V(DoubleRegister, DOUBLE_REGISTER)
class LOperand : public ZoneObject {
public:
enum Kind {
INVALID,
UNALLOCATED,
CONSTANT_OPERAND,
STACK_SLOT,
DOUBLE_STACK_SLOT,
REGISTER,
DOUBLE_REGISTER,
ARGUMENT
};
LOperand() : value_(KindField::encode(INVALID)) { }
Kind kind() const { return KindField::decode(value_); }
int index() const { return static_cast<int>(value_) >> kKindFieldWidth; }
#define LITHIUM_OPERAND_PREDICATE(name, type) \
bool Is##name() const { return kind() == type; }
LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_PREDICATE)
LITHIUM_OPERAND_PREDICATE(Argument, ARGUMENT)
LITHIUM_OPERAND_PREDICATE(Unallocated, UNALLOCATED)
LITHIUM_OPERAND_PREDICATE(Ignored, INVALID)
#undef LITHIUM_OPERAND_PREDICATE
bool Equals(LOperand* other) const { return value_ == other->value_; }
void PrintTo(StringStream* stream);
void ConvertTo(Kind kind, int index) {
value_ = KindField::encode(kind);
value_ |= index << kKindFieldWidth;
ASSERT(this->index() == index);
}
// Calls SetUpCache()/TearDownCache() for each subclass.
static void SetUpCaches();
static void TearDownCaches();
protected:
static const int kKindFieldWidth = 3;
class KindField : public BitField<Kind, 0, kKindFieldWidth> { };
LOperand(Kind kind, int index) { ConvertTo(kind, index); }
unsigned value_;
};
class LUnallocated : public LOperand {
public:
enum BasicPolicy {
FIXED_SLOT,
EXTENDED_POLICY
};
enum ExtendedPolicy {
NONE,
ANY,
FIXED_REGISTER,
FIXED_DOUBLE_REGISTER,
MUST_HAVE_REGISTER,
WRITABLE_REGISTER,
SAME_AS_FIRST_INPUT
};
// Lifetime of operand inside the instruction.
enum Lifetime {
// USED_AT_START operand is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
USED_AT_START,
// USED_AT_END operand is treated as live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
USED_AT_END
};
explicit LUnallocated(ExtendedPolicy policy) : LOperand(UNALLOCATED, 0) {
value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
value_ |= ExtendedPolicyField::encode(policy);
value_ |= LifetimeField::encode(USED_AT_END);
}
LUnallocated(BasicPolicy policy, int index) : LOperand(UNALLOCATED, 0) {
ASSERT(policy == FIXED_SLOT);
value_ |= BasicPolicyField::encode(policy);
value_ |= index << FixedSlotIndexField::kShift;
ASSERT(this->fixed_slot_index() == index);
}
LUnallocated(ExtendedPolicy policy, int index) : LOperand(UNALLOCATED, 0) {
ASSERT(policy == FIXED_REGISTER || policy == FIXED_DOUBLE_REGISTER);
value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
value_ |= ExtendedPolicyField::encode(policy);
value_ |= LifetimeField::encode(USED_AT_END);
value_ |= FixedRegisterField::encode(index);
}
LUnallocated(ExtendedPolicy policy, Lifetime lifetime)
: LOperand(UNALLOCATED, 0) {
value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
value_ |= ExtendedPolicyField::encode(policy);
value_ |= LifetimeField::encode(lifetime);
}
LUnallocated* CopyUnconstrained(Zone* zone) {
LUnallocated* result = new(zone) LUnallocated(ANY);
result->set_virtual_register(virtual_register());
return result;
}
static LUnallocated* cast(LOperand* op) {
ASSERT(op->IsUnallocated());
return reinterpret_cast<LUnallocated*>(op);
}
// The encoding used for LUnallocated operands depends on the policy that is
// stored within the operand. The FIXED_SLOT policy uses a compact encoding
// because it accommodates a larger pay-load.
//
// For FIXED_SLOT policy:
// +------------------------------------------+
// | slot_index | vreg | 0 | 001 |
// +------------------------------------------+
//
// For all other (extended) policies:
// +------------------------------------------+
// | reg_index | L | PPP | vreg | 1 | 001 | L ... Lifetime
// +------------------------------------------+ P ... Policy
//
// The slot index is a signed value which requires us to decode it manually
// instead of using the BitField utility class.
// The superclass has a KindField.
STATIC_ASSERT(kKindFieldWidth == 3);
// BitFields for all unallocated operands.
class BasicPolicyField : public BitField<BasicPolicy, 3, 1> {};
class VirtualRegisterField : public BitField<unsigned, 4, 18> {};
// BitFields specific to BasicPolicy::FIXED_SLOT.
class FixedSlotIndexField : public BitField<int, 22, 10> {};
// BitFields specific to BasicPolicy::EXTENDED_POLICY.
class ExtendedPolicyField : public BitField<ExtendedPolicy, 22, 3> {};
class LifetimeField : public BitField<Lifetime, 25, 1> {};
class FixedRegisterField : public BitField<int, 26, 6> {};
static const int kMaxVirtualRegisters = VirtualRegisterField::kMax + 1;
static const int kFixedSlotIndexWidth = FixedSlotIndexField::kSize;
static const int kMaxFixedSlotIndex = (1 << (kFixedSlotIndexWidth - 1)) - 1;
static const int kMinFixedSlotIndex = -(1 << (kFixedSlotIndexWidth - 1));
// Predicates for the operand policy.
bool HasAnyPolicy() const {
return basic_policy() == EXTENDED_POLICY &&
extended_policy() == ANY;
}
bool HasFixedPolicy() const {
return basic_policy() == FIXED_SLOT ||
extended_policy() == FIXED_REGISTER ||
extended_policy() == FIXED_DOUBLE_REGISTER;
}
bool HasRegisterPolicy() const {
return basic_policy() == EXTENDED_POLICY && (
extended_policy() == WRITABLE_REGISTER ||
extended_policy() == MUST_HAVE_REGISTER);
}
bool HasSameAsInputPolicy() const {
return basic_policy() == EXTENDED_POLICY &&
extended_policy() == SAME_AS_FIRST_INPUT;
}
bool HasFixedSlotPolicy() const {
return basic_policy() == FIXED_SLOT;
}
bool HasFixedRegisterPolicy() const {
return basic_policy() == EXTENDED_POLICY &&
extended_policy() == FIXED_REGISTER;
}
bool HasFixedDoubleRegisterPolicy() const {
return basic_policy() == EXTENDED_POLICY &&
extended_policy() == FIXED_DOUBLE_REGISTER;
}
bool HasWritableRegisterPolicy() const {
return basic_policy() == EXTENDED_POLICY &&
extended_policy() == WRITABLE_REGISTER;
}
// [basic_policy]: Distinguish between FIXED_SLOT and all other policies.
BasicPolicy basic_policy() const {
return BasicPolicyField::decode(value_);
}
// [extended_policy]: Only for non-FIXED_SLOT. The finer-grained policy.
ExtendedPolicy extended_policy() const {
ASSERT(basic_policy() == EXTENDED_POLICY);
return ExtendedPolicyField::decode(value_);
}
// [fixed_slot_index]: Only for FIXED_SLOT.
int fixed_slot_index() const {
ASSERT(HasFixedSlotPolicy());
return static_cast<int>(value_) >> FixedSlotIndexField::kShift;
}
// [fixed_register_index]: Only for FIXED_REGISTER or FIXED_DOUBLE_REGISTER.
int fixed_register_index() const {
ASSERT(HasFixedRegisterPolicy() || HasFixedDoubleRegisterPolicy());
return FixedRegisterField::decode(value_);
}
// [virtual_register]: The virtual register ID for this operand.
int virtual_register() const {
return VirtualRegisterField::decode(value_);
}
void set_virtual_register(unsigned id) {
value_ = VirtualRegisterField::update(value_, id);
}
// [lifetime]: Only for non-FIXED_SLOT.
bool IsUsedAtStart() {
ASSERT(basic_policy() == EXTENDED_POLICY);
return LifetimeField::decode(value_) == USED_AT_START;
}
};
class LMoveOperands V8_FINAL BASE_EMBEDDED {
public:
LMoveOperands(LOperand* source, LOperand* destination)
: source_(source), destination_(destination) {
}
LOperand* source() const { return source_; }
void set_source(LOperand* operand) { source_ = operand; }
LOperand* destination() const { return destination_; }
void set_destination(LOperand* operand) { destination_ = operand; }
// The gap resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
bool IsPending() const {
return destination_ == NULL && source_ != NULL;
}
// True if this move a move into the given destination operand.
bool Blocks(LOperand* operand) const {
return !IsEliminated() && source()->Equals(operand);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || source_->Equals(destination_) || IsIgnored();
}
bool IsIgnored() const {
return destination_ != NULL && destination_->IsIgnored();
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() { source_ = destination_ = NULL; }
bool IsEliminated() const {
ASSERT(source_ != NULL || destination_ == NULL);
return source_ == NULL;
}
private:
LOperand* source_;
LOperand* destination_;
};
class LConstantOperand V8_FINAL : public LOperand {
public:
static LConstantOperand* Create(int index, Zone* zone) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new(zone) LConstantOperand(index);
}
static LConstantOperand* cast(LOperand* op) {
ASSERT(op->IsConstantOperand());
return reinterpret_cast<LConstantOperand*>(op);
}
static void SetUpCache();
static void TearDownCache();
private:
static const int kNumCachedOperands = 128;
static LConstantOperand* cache;
LConstantOperand() : LOperand() { }
explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { }
};
class LArgument V8_FINAL : public LOperand {
public:
explicit LArgument(int index) : LOperand(ARGUMENT, index) { }
static LArgument* cast(LOperand* op) {
ASSERT(op->IsArgument());
return reinterpret_cast<LArgument*>(op);
}
};
class LStackSlot V8_FINAL : public LOperand {
public:
static LStackSlot* Create(int index, Zone* zone) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new(zone) LStackSlot(index);
}
static LStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LStackSlot*>(op);
}
static void SetUpCache();
static void TearDownCache();
private:
static const int kNumCachedOperands = 128;
static LStackSlot* cache;
LStackSlot() : LOperand() { }
explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { }
};
class LDoubleStackSlot V8_FINAL : public LOperand {
public:
static LDoubleStackSlot* Create(int index, Zone* zone) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new(zone) LDoubleStackSlot(index);
}
static LDoubleStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LDoubleStackSlot*>(op);
}
static void SetUpCache();
static void TearDownCache();
private:
static const int kNumCachedOperands = 128;
static LDoubleStackSlot* cache;
LDoubleStackSlot() : LOperand() { }
explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { }
};
class LRegister V8_FINAL : public LOperand {
public:
static LRegister* Create(int index, Zone* zone) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new(zone) LRegister(index);
}
static LRegister* cast(LOperand* op) {
ASSERT(op->IsRegister());
return reinterpret_cast<LRegister*>(op);
}
static void SetUpCache();
static void TearDownCache();
private:
static const int kNumCachedOperands = 16;
static LRegister* cache;
LRegister() : LOperand() { }
explicit LRegister(int index) : LOperand(REGISTER, index) { }
};
class LDoubleRegister V8_FINAL : public LOperand {
public:
static LDoubleRegister* Create(int index, Zone* zone) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new(zone) LDoubleRegister(index);
}
static LDoubleRegister* cast(LOperand* op) {
ASSERT(op->IsDoubleRegister());
return reinterpret_cast<LDoubleRegister*>(op);
}
static void SetUpCache();
static void TearDownCache();
private:
static const int kNumCachedOperands = 16;
static LDoubleRegister* cache;
LDoubleRegister() : LOperand() { }
explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { }
};
class LParallelMove V8_FINAL : public ZoneObject {
public:
explicit LParallelMove(Zone* zone) : move_operands_(4, zone) { }
void AddMove(LOperand* from, LOperand* to, Zone* zone) {
move_operands_.Add(LMoveOperands(from, to), zone);
}
bool IsRedundant() const;
const ZoneList<LMoveOperands>* move_operands() const {
return &move_operands_;
}
void PrintDataTo(StringStream* stream) const;
private:
ZoneList<LMoveOperands> move_operands_;
};
class LPointerMap V8_FINAL : public ZoneObject {
public:
explicit LPointerMap(int position, Zone* zone)
: pointer_operands_(8, zone),
untagged_operands_(0, zone),
position_(position),
lithium_position_(-1) { }
const ZoneList<LOperand*>* GetNormalizedOperands() {
for (int i = 0; i < untagged_operands_.length(); ++i) {
RemovePointer(untagged_operands_[i]);
}
untagged_operands_.Clear();
return &pointer_operands_;
}
int position() const { return position_; }
int lithium_position() const { return lithium_position_; }
void set_lithium_position(int pos) {
ASSERT(lithium_position_ == -1);
lithium_position_ = pos;
}
void RecordPointer(LOperand* op, Zone* zone);
void RemovePointer(LOperand* op);
void RecordUntagged(LOperand* op, Zone* zone);
void PrintTo(StringStream* stream);
private:
ZoneList<LOperand*> pointer_operands_;
ZoneList<LOperand*> untagged_operands_;
int position_;
int lithium_position_;
};
class LEnvironment V8_FINAL : public ZoneObject {
public:
LEnvironment(Handle<JSFunction> closure,
FrameType frame_type,
BailoutId ast_id,
int parameter_count,
int argument_count,
int value_count,
LEnvironment* outer,
HEnterInlined* entry,
Zone* zone)
: closure_(closure),
frame_type_(frame_type),
arguments_stack_height_(argument_count),
deoptimization_index_(Safepoint::kNoDeoptimizationIndex),
translation_index_(-1),
ast_id_(ast_id),
translation_size_(value_count),
parameter_count_(parameter_count),
pc_offset_(-1),
values_(value_count, zone),
is_tagged_(value_count, zone),
is_uint32_(value_count, zone),
object_mapping_(0, zone),
outer_(outer),
entry_(entry),
zone_(zone) { }
Handle<JSFunction> closure() const { return closure_; }
FrameType frame_type() const { return frame_type_; }
int arguments_stack_height() const { return arguments_stack_height_; }
int deoptimization_index() const { return deoptimization_index_; }
int translation_index() const { return translation_index_; }
BailoutId ast_id() const { return ast_id_; }
int translation_size() const { return translation_size_; }
int parameter_count() const { return parameter_count_; }
int pc_offset() const { return pc_offset_; }
const ZoneList<LOperand*>* values() const { return &values_; }
LEnvironment* outer() const { return outer_; }
HEnterInlined* entry() { return entry_; }
Zone* zone() const { return zone_; }
void AddValue(LOperand* operand,
Representation representation,
bool is_uint32) {
values_.Add(operand, zone());
if (representation.IsSmiOrTagged()) {
ASSERT(!is_uint32);
is_tagged_.Add(values_.length() - 1, zone());
}
if (is_uint32) {
is_uint32_.Add(values_.length() - 1, zone());
}
}
bool HasTaggedValueAt(int index) const {
return is_tagged_.Contains(index);
}
bool HasUint32ValueAt(int index) const {
return is_uint32_.Contains(index);
}
void AddNewObject(int length, bool is_arguments) {
uint32_t encoded = LengthOrDupeField::encode(length) |
IsArgumentsField::encode(is_arguments) |
IsDuplicateField::encode(false);
object_mapping_.Add(encoded, zone());
}
void AddDuplicateObject(int dupe_of) {
uint32_t encoded = LengthOrDupeField::encode(dupe_of) |
IsDuplicateField::encode(true);
object_mapping_.Add(encoded, zone());
}
int ObjectDuplicateOfAt(int index) {
ASSERT(ObjectIsDuplicateAt(index));
return LengthOrDupeField::decode(object_mapping_[index]);
}
int ObjectLengthAt(int index) {
ASSERT(!ObjectIsDuplicateAt(index));
return LengthOrDupeField::decode(object_mapping_[index]);
}
bool ObjectIsArgumentsAt(int index) {
ASSERT(!ObjectIsDuplicateAt(index));
return IsArgumentsField::decode(object_mapping_[index]);
}
bool ObjectIsDuplicateAt(int index) {
return IsDuplicateField::decode(object_mapping_[index]);
}
void Register(int deoptimization_index,
int translation_index,
int pc_offset) {
ASSERT(!HasBeenRegistered());
deoptimization_index_ = deoptimization_index;
translation_index_ = translation_index;
pc_offset_ = pc_offset;
}
bool HasBeenRegistered() const {
return deoptimization_index_ != Safepoint::kNoDeoptimizationIndex;
}
void PrintTo(StringStream* stream);
// Marker value indicating a de-materialized object.
static LOperand* materialization_marker() { return NULL; }
// Encoding used for the object_mapping map below.
class LengthOrDupeField : public BitField<int, 0, 30> { };
class IsArgumentsField : public BitField<bool, 30, 1> { };
class IsDuplicateField : public BitField<bool, 31, 1> { };
private:
Handle<JSFunction> closure_;
FrameType frame_type_;
int arguments_stack_height_;
int deoptimization_index_;
int translation_index_;
BailoutId ast_id_;
int translation_size_;
int parameter_count_;
int pc_offset_;
// Value array: [parameters] [locals] [expression stack] [de-materialized].
// |>--------- translation_size ---------<|
ZoneList<LOperand*> values_;
GrowableBitVector is_tagged_;
GrowableBitVector is_uint32_;
// Map with encoded information about materialization_marker operands.
ZoneList<uint32_t> object_mapping_;
LEnvironment* outer_;
HEnterInlined* entry_;
Zone* zone_;
};
// Iterates over the non-null, non-constant operands in an environment.
class ShallowIterator V8_FINAL BASE_EMBEDDED {
public:
explicit ShallowIterator(LEnvironment* env)
: env_(env),
limit_(env != NULL ? env->values()->length() : 0),
current_(0) {
SkipUninteresting();
}
bool Done() { return current_ >= limit_; }
LOperand* Current() {
ASSERT(!Done());
ASSERT(env_->values()->at(current_) != NULL);
return env_->values()->at(current_);
}
void Advance() {
ASSERT(!Done());
++current_;
SkipUninteresting();
}
LEnvironment* env() { return env_; }
private:
bool ShouldSkip(LOperand* op) {
return op == NULL || op->IsConstantOperand() || op->IsArgument();
}
// Skip until something interesting, beginning with and including current_.
void SkipUninteresting() {
while (current_ < limit_ && ShouldSkip(env_->values()->at(current_))) {
++current_;
}
}
LEnvironment* env_;
int limit_;
int current_;
};
// Iterator for non-null, non-constant operands incl. outer environments.
class DeepIterator V8_FINAL BASE_EMBEDDED {
public:
explicit DeepIterator(LEnvironment* env)
: current_iterator_(env) {
SkipUninteresting();
}
bool Done() { return current_iterator_.Done(); }
LOperand* Current() {
ASSERT(!current_iterator_.Done());
ASSERT(current_iterator_.Current() != NULL);
return current_iterator_.Current();
}
void Advance() {
current_iterator_.Advance();
SkipUninteresting();
}
private:
void SkipUninteresting() {
while (current_iterator_.env() != NULL && current_iterator_.Done()) {
current_iterator_ = ShallowIterator(current_iterator_.env()->outer());
}
}
ShallowIterator current_iterator_;
};
class LPlatformChunk;
class LGap;
class LLabel;
// Superclass providing data and behavior common to all the
// arch-specific LPlatformChunk classes.
class LChunk : public ZoneObject {
public:
static LChunk* NewChunk(HGraph* graph);
void AddInstruction(LInstruction* instruction, HBasicBlock* block);
LConstantOperand* DefineConstantOperand(HConstant* constant);
HConstant* LookupConstant(LConstantOperand* operand) const;
Representation LookupLiteralRepresentation(LConstantOperand* operand) const;
int ParameterAt(int index);
int GetParameterStackSlot(int index) const;
int spill_slot_count() const { return spill_slot_count_; }
CompilationInfo* info() const { return info_; }
HGraph* graph() const { return graph_; }
Isolate* isolate() const { return graph_->isolate(); }
const ZoneList<LInstruction*>* instructions() const { return &instructions_; }
void AddGapMove(int index, LOperand* from, LOperand* to);
LGap* GetGapAt(int index) const;
bool IsGapAt(int index) const;
int NearestGapPos(int index) const;
void MarkEmptyBlocks();
const ZoneList<LPointerMap*>* pointer_maps() const { return &pointer_maps_; }
LLabel* GetLabel(int block_id) const;
int LookupDestination(int block_id) const;
Label* GetAssemblyLabel(int block_id) const;
const ZoneList<Handle<JSFunction> >* inlined_closures() const {
return &inlined_closures_;
}
void AddInlinedClosure(Handle<JSFunction> closure) {
inlined_closures_.Add(closure, zone());
}
Zone* zone() const { return info_->zone(); }
Handle<Code> Codegen();
void set_allocated_double_registers(BitVector* allocated_registers);
BitVector* allocated_double_registers() {
return allocated_double_registers_;
}
protected:
LChunk(CompilationInfo* info, HGraph* graph);
int spill_slot_count_;
private:
CompilationInfo* info_;
HGraph* const graph_;
BitVector* allocated_double_registers_;
ZoneList<LInstruction*> instructions_;
ZoneList<LPointerMap*> pointer_maps_;
ZoneList<Handle<JSFunction> > inlined_closures_;
};
int ElementsKindToShiftSize(ElementsKind elements_kind);
int StackSlotOffset(int index);
enum NumberUntagDMode {
NUMBER_CANDIDATE_IS_SMI,
NUMBER_CANDIDATE_IS_ANY_TAGGED
};
class LPhase : public CompilationPhase {
public:
LPhase(const char* name, LChunk* chunk)
: CompilationPhase(name, chunk->info()),
chunk_(chunk) { }
~LPhase();
private:
LChunk* chunk_;
DISALLOW_COPY_AND_ASSIGN(LPhase);
};
} } // namespace v8::internal
#endif // V8_LITHIUM_H_