v8/test/cctest/test-code-stub-assembler.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3588 lines
131 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/api/api-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/builtins-promise-gen.h"
#include "src/builtins/builtins-promise.h"
#include "src/builtins/builtins-string-gen.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/compiler/node.h"
#include "src/debug/debug.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/smi.h"
#include "src/objects/struct-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/strings/char-predicates.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
using Label = CodeAssemblerLabel;
using Variable = CodeAssemblerVariable;
template <class T>
using TVariable = TypedCodeAssemblerVariable<T>;
Handle<String> MakeString(const char* str) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
return factory->InternalizeUtf8String(str);
}
Handle<String> MakeName(const char* str, int suffix) {
EmbeddedVector<char, 128> buffer;
SNPrintF(buffer, "%s%d", str, suffix);
return MakeString(buffer.begin());
}
int sum10(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7,
int a8, int a9) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
}
static int sum3(int a0, int a1, int a2) { return a0 + a1 + a2; }
} // namespace
TEST(CallCFunction) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<ExternalReference> const fun_constant = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(sum10)));
MachineType type_intptr = MachineType::IntPtr();
Node* const result =
m.CallCFunction(fun_constant, type_intptr,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2)),
std::make_pair(type_intptr, m.IntPtrConstant(3)),
std::make_pair(type_intptr, m.IntPtrConstant(4)),
std::make_pair(type_intptr, m.IntPtrConstant(5)),
std::make_pair(type_intptr, m.IntPtrConstant(6)),
std::make_pair(type_intptr, m.IntPtrConstant(7)),
std::make_pair(type_intptr, m.IntPtrConstant(8)),
std::make_pair(type_intptr, m.IntPtrConstant(9)));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(45, Handle<Smi>::cast(result)->value());
}
TEST(CallCFunctionWithCallerSavedRegisters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<ExternalReference> const fun_constant = m.ExternalConstant(
Reland: [refactoring] Remove the isolate from signatures of ExternalReferences I missed one required change which was hidden behind an #if. The fix is in the diff between Patch 1 and Patch 3. Original message: In this CL I remove the isolate from signatures of ExternalReference accessor functions where the isolate is not used. The uses of the isolate were already removed in previous CLs. Changes: * I split the ExternalReference list in external-reference.h into those which need the isolate for initialization and those which do not. * I removed the public constructors and replaced them by ExternalReference::Create(). The reason is to separate external creation more clearly from internal creation, because externally created ExternalReferences sometimes need redirection, whereas internally created ExternalReferences are just stored as they are. In addition, by removing the isolate from the signature of the public constructors, they suddenly exactly matched the interal constructor. * Replace all uses of the public constructors with ExternalReference::Create(). * Remove the isolate from all call sites where necessary. This is a step towards making WebAssembly compilation independent of the isolate. R=mstarzinger@chromium.org Bug: v8:7570 Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng Change-Id: I750c162f5d58ed32e866722b0db920f8b9bd8057 Reviewed-on: https://chromium-review.googlesource.com/1026673 Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Commit-Queue: Andreas Haas <ahaas@chromium.org> Cr-Commit-Position: refs/heads/master@{#52777}
2018-04-25 07:28:14 +00:00
ExternalReference::Create(reinterpret_cast<Address>(sum3)));
MachineType type_intptr = MachineType::IntPtr();
Node* const result = m.CallCFunctionWithCallerSavedRegisters(
fun_constant, type_intptr, kSaveFPRegs,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2)));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(3, Handle<Smi>::cast(result)->value());
}
TEST(NumberToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<Number> input = m.CAST(m.Parameter(0));
Label bailout(&m);
m.Return(m.NumberToString(input, &bailout));
m.BIND(&bailout);
m.Return(m.UndefinedConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
1, 2, 42, 153, -1, -100, 0, 51095154, -1241950,
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
// clang-format on
const int kFullCacheSize = isolate->heap()->MaxNumberToStringCacheSize();
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
int cache_length_before_addition = factory->number_string_cache()->length();
Handle<Object> input = factory->NewNumber(inputs[i]);
Handle<String> expected = factory->NumberToString(input);
Handle<Object> result = ft.Call(input).ToHandleChecked();
if (result->IsUndefined(isolate)) {
// Query may fail if cache was resized, in which case the entry is not
// added to the cache.
CHECK_LT(cache_length_before_addition, kFullCacheSize);
CHECK_EQ(factory->number_string_cache()->length(), kFullCacheSize);
expected = factory->NumberToString(input);
result = ft.Call(input).ToHandleChecked();
}
CHECK(!result->IsUndefined(isolate));
CHECK_EQ(*expected, *result);
}
}
namespace {
void CheckToUint32Result(uint32_t expected, Handle<Object> result) {
const int64_t result_int64 = NumberToInt64(*result);
const uint32_t result_uint32 = NumberToUint32(*result);
CHECK_EQ(static_cast<int64_t>(result_uint32), result_int64);
CHECK_EQ(expected, result_uint32);
// Ensure that the result is normalized to a Smi, i.e. a HeapNumber is only
// returned if the result is not within Smi range.
const bool expected_fits_into_intptr =
static_cast<int64_t>(expected) <=
static_cast<int64_t>(std::numeric_limits<intptr_t>::max());
if (expected_fits_into_intptr &&
Smi::IsValid(static_cast<intptr_t>(expected))) {
CHECK(result->IsSmi());
} else {
CHECK(result->IsHeapNumber());
}
}
} // namespace
TEST(ToUint32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
Node* const context = m.Parameter(kNumParams + kContextOffset);
Node* const input = m.Parameter(0);
m.Return(m.ToUint32(context, input));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
uint32_t expectations[] = {
0, 0, 0,
0,
0,
0, 0, 0, 0, 4294967295,
0, 0, 0, 0, 1,
2147483649, 2147483648, 2147483648, 2147483648,
2147483646, 2147483647, 2147483647, 2147483647,
1, 0, 0, 4294967295,
4294967295, 0, 0, 1,
};
// clang-format on
STATIC_ASSERT(arraysize(inputs) == arraysize(expectations));
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
Handle<Object> input_obj = factory->NewNumber(inputs[i]);
Handle<HeapNumber> input_num;
// Check with Smi input.
if (input_obj->IsSmi()) {
Handle<Smi> input_smi = Handle<Smi>::cast(input_obj);
Handle<Object> result = ft.Call(input_smi).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
input_num = factory->NewHeapNumber(inputs[i]);
} else {
input_num = Handle<HeapNumber>::cast(input_obj);
}
// Check with HeapNumber input.
{
CHECK(input_num->IsHeapNumber());
Handle<Object> result = ft.Call(input_num).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
}
}
// A couple of final cases for ToNumber conversions.
CheckToUint32Result(0, ft.Call(factory->undefined_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->null_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->false_value()).ToHandleChecked());
CheckToUint32Result(1, ft.Call(factory->true_value()).ToHandleChecked());
CheckToUint32Result(
42,
ft.Call(factory->NewStringFromAsciiChecked("0x2A")).ToHandleChecked());
ft.CheckThrows(factory->match_symbol());
}
namespace {
void IsValidPositiveSmiCase(Isolate* isolate, intptr_t value) {
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsValidPositiveSmi(m.IntPtrConstant(value))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> maybe_handle = ft.Call();
bool expected = i::PlatformSmiTagging::IsValidSmi(value) && (value >= 0);
if (expected) {
CHECK(maybe_handle.ToHandleChecked()->IsTrue(isolate));
} else {
CHECK(maybe_handle.ToHandleChecked()->IsFalse(isolate));
}
}
} // namespace
TEST(IsValidPositiveSmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
IsValidPositiveSmiCase(isolate, -1);
IsValidPositiveSmiCase(isolate, 0);
IsValidPositiveSmiCase(isolate, 1);
IsValidPositiveSmiCase(isolate, 0x3FFFFFFFU);
IsValidPositiveSmiCase(isolate, 0xC0000000U);
IsValidPositiveSmiCase(isolate, 0x40000000U);
IsValidPositiveSmiCase(isolate, 0xBFFFFFFFU);
using int32_limits = std::numeric_limits<int32_t>;
IsValidPositiveSmiCase(isolate, int32_limits::max());
IsValidPositiveSmiCase(isolate, int32_limits::min());
#if V8_TARGET_ARCH_64_BIT
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::max()) + 1);
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::min()) - 1);
#endif
}
TEST(FixedArrayAccessSmiIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<FixedArray> array = isolate->factory()->NewFixedArray(5);
array->set(4, Smi::FromInt(733));
m.Return(m.LoadFixedArrayElement(m.HeapConstant(array),
m.SmiTag(m.IntPtrConstant(4)), 0,
CodeStubAssembler::SMI_PARAMETERS));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(733, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadHeapNumberValue) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(1234);
m.Return(m.SmiFromInt32(m.Signed(
m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number))))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(1234, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadInstanceType) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapObject> undefined = isolate->factory()->undefined_value();
m.Return(m.SmiFromInt32(m.LoadInstanceType(m.HeapConstant(undefined))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(InstanceType::ODDBALL_TYPE,
Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(DecodeWordFromWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
using TestBitField = BitField<unsigned, 3, 3>;
m.Return(m.SmiTag(
m.Signed(m.DecodeWordFromWord32<TestBitField>(m.Int32Constant(0x2F)))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
// value = 00101111
// mask = 00111000
// result = 101
CHECK_EQ(5, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(JSFunction) {
const int kNumParams = 3; // Receiver, left, right.
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(
m.Int32Add(m.SmiToInt32(m.Parameter(1)), m.SmiToInt32(m.Parameter(2)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> result = ft.Call(isolate->factory()->undefined_value(),
handle(Smi::FromInt(23), isolate),
handle(Smi::FromInt(34), isolate));
CHECK_EQ(57, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(ComputeIntegerHash) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.ComputeSeededHash(m.SmiUntag(m.Parameter(0)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < 1024; i++) {
int k = rand_gen.NextInt(Smi::kMaxValue);
Handle<Smi> key(Smi::FromInt(k), isolate);
Handle<Object> result = ft.Call(key).ToHandleChecked();
uint32_t hash = ComputeSeededHash(k, HashSeed(isolate));
Smi expected = Smi::FromInt(hash);
CHECK_EQ(expected, Smi::cast(*result));
}
}
TEST(ToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(m.ToStringImpl(m.CAST(m.Parameter(kNumParams + 2)),
m.CAST(m.Parameter(0))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> test_cases = isolate->factory()->NewFixedArray(5);
Handle<FixedArray> smi_test = isolate->factory()->NewFixedArray(2);
smi_test->set(0, Smi::FromInt(42));
Handle<String> str(isolate->factory()->InternalizeUtf8String("42"));
smi_test->set(1, *str);
test_cases->set(0, *smi_test);
Handle<FixedArray> number_test = isolate->factory()->NewFixedArray(2);
Handle<HeapNumber> num(isolate->factory()->NewHeapNumber(3.14));
number_test->set(0, *num);
str = isolate->factory()->InternalizeUtf8String("3.14");
number_test->set(1, *str);
test_cases->set(1, *number_test);
Handle<FixedArray> string_test = isolate->factory()->NewFixedArray(2);
str = isolate->factory()->InternalizeUtf8String("test");
string_test->set(0, *str);
string_test->set(1, *str);
test_cases->set(2, *string_test);
Handle<FixedArray> oddball_test = isolate->factory()->NewFixedArray(2);
oddball_test->set(0, ReadOnlyRoots(isolate).undefined_value());
str = isolate->factory()->InternalizeUtf8String("undefined");
oddball_test->set(1, *str);
test_cases->set(3, *oddball_test);
Handle<FixedArray> tostring_test = isolate->factory()->NewFixedArray(2);
Handle<FixedArray> js_array_storage = isolate->factory()->NewFixedArray(2);
js_array_storage->set(0, Smi::FromInt(1));
js_array_storage->set(1, Smi::FromInt(2));
Handle<JSArray> js_array = isolate->factory()->NewJSArray(2);
JSArray::SetContent(js_array, js_array_storage);
tostring_test->set(0, *js_array);
str = isolate->factory()->InternalizeUtf8String("1,2");
tostring_test->set(1, *str);
test_cases->set(4, *tostring_test);
for (int i = 0; i < 5; ++i) {
Handle<FixedArray> test =
handle(FixedArray::cast(test_cases->get(i)), isolate);
Handle<Object> obj = handle(test->get(0), isolate);
Handle<String> expected = handle(String::cast(test->get(1)), isolate);
Handle<Object> result = ft.Call(obj).ToHandleChecked();
CHECK(result->IsString());
CHECK(String::Equals(isolate, Handle<String>::cast(result), expected));
}
}
TEST(TryToName) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kKeyIsIndex, kKeyIsUnique, kBailout };
{
Node* key = m.Parameter(0);
TNode<MaybeObject> expected_result =
m.UncheckedCast<MaybeObject>(m.Parameter(1));
TNode<Object> expected_arg = m.CAST(m.Parameter(2));
Label passed(&m), failed(&m);
Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m);
{
TYPED_VARIABLE_DEF(IntPtrT, var_index, &m);
TYPED_VARIABLE_DEF(Name, var_unique, &m);
m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &var_unique,
&if_bailout);
m.BIND(&if_keyisindex);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsIndex))),
&failed);
m.Branch(
m.IntPtrEqual(m.SmiUntag(m.CAST(expected_arg)), var_index.value()),
&passed, &failed);
m.BIND(&if_keyisunique);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsUnique))),
&failed);
m.Branch(m.TaggedEqual(expected_arg, var_unique.value()), &passed,
&failed);
}
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_index(Smi::FromInt(kKeyIsIndex), isolate);
Handle<Object> expect_unique(Smi::FromInt(kKeyIsUnique), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
{
// TryToName(<zero smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::kZero, isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<positive smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<negative smi>) => if_keyisindex: smi value.
// A subsequent bounds check needs to take care of this case.
Handle<Object> key(Smi::FromInt(-1), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<heap number with int value>) => if_keyisindex: number.
Handle<Object> key(isolate->factory()->NewHeapNumber(153));
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<true>) => if_keyisunique: "true".
Handle<Object> key = isolate->factory()->true_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("true");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<false>) => if_keyisunique: "false".
Handle<Object> key = isolate->factory()->false_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("false");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<null>) => if_keyisunique: "null".
Handle<Object> key = isolate->factory()->null_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("null");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<undefined>) => if_keyisunique: "undefined".
Handle<Object> key = isolate->factory()->undefined_value();
Handle<Object> unique =
isolate->factory()->InternalizeUtf8String("undefined");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<symbol>) => if_keyisunique: <symbol>.
Handle<Object> key = isolate->factory()->NewSymbol();
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized string>) => if_keyisunique: <internalized string>
Handle<Object> key = isolate->factory()->InternalizeUtf8String("test");
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized number string>) => if_keyisindex: number.
Handle<Object> key = isolate->factory()->InternalizeUtf8String("153");
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<internalized uncacheable number string>) => bailout
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967294");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized number string>) => if_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
uint32_t dummy;
CHECK(key->AsArrayIndex(&dummy));
CHECK(key->HasHashCode());
CHECK(!key->IsInternalizedString());
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<number string without cached index>) => bailout.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
CHECK(!key->HasHashCode());
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized string>) => bailout.
Handle<Object> key = isolate->factory()->NewStringFromAsciiChecked("test");
ft.CheckTrue(key, expect_bailout);
}
if (FLAG_thin_strings) {
// TryToName(<thin string>) => internalized version.
Handle<String> s = isolate->factory()->NewStringFromAsciiChecked("foo");
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
if (FLAG_thin_strings) {
// TryToName(<thin two-byte string>) => internalized version.
uc16 array1[] = {2001, 2002, 2003};
Handle<String> s = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
}
namespace {
template <typename Dictionary>
void TestEntryToIndex() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<IntPtrT> entry = m.SmiUntag(m.Parameter(0));
TNode<IntPtrT> result = m.EntryToIndex<Dictionary>(entry);
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Test a wide range of entries but staying linear in the first 100 entries.
for (int entry = 0; entry < Dictionary::kMaxCapacity;
entry = entry * 1.01 + 1) {
Handle<Object> result =
ft.Call(handle(Smi::FromInt(entry), isolate)).ToHandleChecked();
CHECK_EQ(Dictionary::EntryToIndex(entry), Smi::ToInt(*result));
}
}
TEST(NameDictionaryEntryToIndex) { TestEntryToIndex<NameDictionary>(); }
TEST(GlobalDictionaryEntryToIndex) { TestEntryToIndex<GlobalDictionary>(); }
} // namespace
namespace {
template <typename Dictionary>
void TestNameDictionaryLookup() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
TNode<Dictionary> dictionary = m.CAST(m.Parameter(0));
TNode<Name> unique_name = m.CAST(m.Parameter(1));
TNode<Smi> expected_result = m.CAST(m.Parameter(2));
TNode<Object> expected_arg = m.CAST(m.Parameter(3));
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_name_index(&m);
m.NameDictionaryLookup<Dictionary>(dictionary, unique_name, &if_found,
&var_name_index, &if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(
m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_name_index.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Dictionary> dictionary = Dictionary::New(isolate, 40);
PropertyDetails fake_details = PropertyDetails::Empty();
Factory* factory = isolate->factory();
Handle<Name> keys[] = {
factory->InternalizeUtf8String("0"),
factory->InternalizeUtf8String("42"),
factory->InternalizeUtf8String("-153"),
factory->InternalizeUtf8String("0.0"),
factory->InternalizeUtf8String("4.2"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(keys); i++) {
Handle<Object> value = factory->NewPropertyCell(keys[i]);
dictionary =
Dictionary::Add(isolate, dictionary, keys[i], value, fake_details);
}
for (size_t i = 0; i < arraysize(keys); i++) {
int entry = dictionary->FindEntry(isolate, keys[i]);
int name_index =
Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex;
CHECK_NE(Dictionary::kNotFound, entry);
Handle<Object> expected_name_index(Smi::FromInt(name_index), isolate);
ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index);
}
Handle<Name> non_existing_keys[] = {
factory->InternalizeUtf8String("1"),
factory->InternalizeUtf8String("-42"),
factory->InternalizeUtf8String("153"),
factory->InternalizeUtf8String("-1.0"),
factory->InternalizeUtf8String("1.3"),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("boom"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(non_existing_keys); i++) {
int entry = dictionary->FindEntry(isolate, non_existing_keys[i]);
CHECK_EQ(Dictionary::kNotFound, entry);
ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found);
}
}
} // namespace
TEST(NameDictionaryLookup) { TestNameDictionaryLookup<NameDictionary>(); }
TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup<GlobalDictionary>(); }
TEST(NumberDictionaryLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
TNode<NumberDictionary> dictionary = m.CAST(m.Parameter(0));
TNode<IntPtrT> key = m.SmiUntag(m.Parameter(1));
TNode<Smi> expected_result = m.CAST(m.Parameter(2));
TNode<Object> expected_arg = m.CAST(m.Parameter(3));
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_entry(&m);
m.NumberDictionaryLookup(dictionary, key, &if_found, &var_entry,
&if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_entry.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int kKeysCount = 1000;
Handle<NumberDictionary> dictionary =
NumberDictionary::New(isolate, kKeysCount);
uint32_t keys[kKeysCount];
Handle<Object> fake_value(Smi::FromInt(42), isolate);
PropertyDetails fake_details = PropertyDetails::Empty();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < kKeysCount; i++) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
keys[i] = static_cast<uint32_t>(random_key);
if (dictionary->FindEntry(isolate, keys[i]) != NumberDictionary::kNotFound)
continue;
dictionary = NumberDictionary::Add(isolate, dictionary, keys[i], fake_value,
fake_details);
}
// Now try querying existing keys.
for (int i = 0; i < kKeysCount; i++) {
int entry = dictionary->FindEntry(isolate, keys[i]);
CHECK_NE(NumberDictionary::kNotFound, entry);
Handle<Object> key(Smi::FromInt(keys[i]), isolate);
Handle<Object> expected_entry(Smi::FromInt(entry), isolate);
ft.CheckTrue(dictionary, key, expect_found, expected_entry);
}
// Now try querying random keys which do not exist in the dictionary.
for (int i = 0; i < kKeysCount;) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
int entry = dictionary->FindEntry(isolate, random_key);
if (entry != NumberDictionary::kNotFound) continue;
i++;
Handle<Object> key(Smi::FromInt(random_key), isolate);
ft.CheckTrue(dictionary, key, expect_not_found);
}
}
TEST(TransitionLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
enum Result { kFound, kNotFound };
class TempAssembler : public CodeStubAssembler {
public:
explicit TempAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
void Generate() {
TNode<TransitionArray> transitions = CAST(Parameter(0));
TNode<Name> name = CAST(Parameter(1));
TNode<Smi> expected_result = CAST(Parameter(2));
TNode<Object> expected_arg = CAST(Parameter(3));
Label passed(this), failed(this);
Label if_found(this), if_not_found(this);
TVARIABLE(IntPtrT, var_transition_index);
TransitionLookup(name, transitions, &if_found, &var_transition_index,
&if_not_found);
BIND(&if_found);
GotoIfNot(TaggedEqual(expected_result, SmiConstant(kFound)), &failed);
Branch(TaggedEqual(expected_arg, SmiTag(var_transition_index.value())),
&passed, &failed);
BIND(&if_not_found);
Branch(TaggedEqual(expected_result, SmiConstant(kNotFound)), &passed,
&failed);
BIND(&passed);
Return(BooleanConstant(true));
BIND(&failed);
Return(BooleanConstant(false));
}
};
TempAssembler(asm_tester.state()).Generate();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int ATTRS_COUNT = (READ_ONLY | DONT_ENUM | DONT_DELETE) + 1;
STATIC_ASSERT(ATTRS_COUNT == 8);
const int kKeysCount = 300;
Handle<Map> root_map = Map::Create(isolate, 0);
Handle<Name> keys[kKeysCount];
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
Factory* factory = isolate->factory();
Handle<FieldType> any = FieldType::Any(isolate);
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name;
if (i % 30 == 0) {
name = factory->NewPrivateSymbol();
} else if (i % 10 == 0) {
name = factory->NewSymbol();
} else {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
name = MakeName("p", random_key);
}
keys[i] = name;
bool is_private = name->IsPrivate();
PropertyAttributes base_attributes = is_private ? DONT_ENUM : NONE;
// Ensure that all the combinations of cases are covered:
// 1) there is a "base" attributes transition
// 2) there are other non-base attributes transitions
if ((i & 1) == 0) {
CHECK(!Map::CopyWithField(isolate, root_map, name, any, base_attributes,
2018-05-28 15:44:58 +00:00
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
if ((i & 2) == 0) {
for (int j = 0; j < ATTRS_COUNT; j++) {
PropertyAttributes attributes = static_cast<PropertyAttributes>(j);
if (attributes == base_attributes) continue;
// Don't add private symbols with enumerable attributes.
if (is_private && ((attributes & DONT_ENUM) == 0)) continue;
CHECK(!Map::CopyWithField(isolate, root_map, name, any, attributes,
2018-05-28 15:44:58 +00:00
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
}
}
CHECK(root_map->raw_transitions()
->GetHeapObjectAssumeStrong()
.IsTransitionArray());
Handle<TransitionArray> transitions(
TransitionArray::cast(
root_map->raw_transitions()->GetHeapObjectAssumeStrong()),
isolate);
DCHECK(transitions->IsSortedNoDuplicates());
// Ensure we didn't overflow transition array and therefore all the
// combinations of cases are covered.
CHECK(TransitionsAccessor(isolate, root_map).CanHaveMoreTransitions());
// Now try querying keys.
bool positive_lookup_tested = false;
bool negative_lookup_tested = false;
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name = keys[i];
int transition_number = transitions->SearchNameForTesting(*name);
if (transition_number != TransitionArray::kNotFound) {
Handle<Smi> expected_value(
Smi::FromInt(TransitionArray::ToKeyIndex(transition_number)),
isolate);
ft.CheckTrue(transitions, name, expect_found, expected_value);
positive_lookup_tested = true;
} else {
ft.CheckTrue(transitions, name, expect_not_found);
negative_lookup_tested = true;
}
}
CHECK(positive_lookup_tested);
CHECK(negative_lookup_tested);
}
namespace {
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t count) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < count; i++) {
Handle<Object> value(Smi::FromInt(static_cast<int>(42 + i)), isolate);
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
Handle<AccessorPair> CreateAccessorPair(FunctionTester* ft,
const char* getter_body,
const char* setter_body) {
Handle<AccessorPair> pair = ft->isolate->factory()->NewAccessorPair();
if (getter_body) {
pair->set_getter(*ft->NewFunction(getter_body));
}
if (setter_body) {
pair->set_setter(*ft->NewFunction(setter_body));
}
return pair;
}
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t names_count, Handle<Object> values[],
size_t values_count, int seed = 0) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < names_count; i++) {
Handle<Object> value = values[(seed + i) % values_count];
if (value->IsAccessorPair()) {
Handle<AccessorPair> pair = Handle<AccessorPair>::cast(value);
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check();
} else {
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
}
} // namespace
TEST(TryHasOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
TNode<MaybeObject> expected_result =
m.UncheckedCast<MaybeObject>(m.Parameter(2));
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
Factory* factory = isolate->factory();
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names));
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
JSFunction::EnsureHasInitialMap(function);
function->initial_map().set_instance_type(JS_GLOBAL_OBJECT_TYPE);
function->initial_map().set_is_prototype_map(true);
function->initial_map().set_is_dictionary_map(true);
[builtins] Speed-up Object.prototype.toString. The @@toStringTag lookup in Object.prototype.toString causes quite a lot of overhead and oftentimes dominates the builtin performance. These lookups are almost always negative, especially for primitive values, and Object.prototype.toString is often used to implement predicates (like in Node core or in AngularJS), so having a way to skip the negative lookup yields big performance gains. This CL introduces a "MayHaveInterestingSymbols" bit on every map, which says whether instances with this map may have an interesting symbol. Currently only @@toStringTag is considered an interesting symbol, but we can extend that in the future. In the Object.prototype.toString we can use the interesting symbols bit to do a quick check on the prototype chain to see if there are any maps that might have the @@toStringTag, and if not, we can just immediately return the result, which is very fast because it's derived from the instance type. This also avoids the ToObject conversions for primitive values, which is important, since this causes unnecessary GC traffic and in for example AngularJS, strings are also often probed via the Object.prototype.toString based predicates. This boosts Speedometer/AngularJS by over 3% and Speedometer overall by up to 1%. On the microbenchmark from the similar SpiderMonkey bug (https://bugzilla.mozilla.org/show_bug.cgi?id=1369042), we go from roughly 450ms to 70ms, which corresponds to a 6.5x improvement. ``` function f() { var res = ""; var a = [1, 2, 3]; var toString = Object.prototype.toString; var t = new Date; for (var i = 0; i < 5000000; i++) res = toString.call(a); print(new Date - t); return res; } f(); ``` The design document at https://goo.gl/e8CruQ has some additional data points. TBR=ulan@chromium.org Bug: v8:6654 Change-Id: I31932cf41ecddad079d294e2c322a852af0ed244 Reviewed-on: https://chromium-review.googlesource.com/593620 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Cr-Commit-Position: refs/heads/master@{#47034}
2017-08-01 08:11:14 +00:00
function->initial_map().set_may_have_interesting_symbols(true);
Handle<JSObject> object = factory->NewJSGlobalObject(function);
AddProperties(object, names, arraysize(names));
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
CHECK(JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_found);
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
CHECK(!JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_not_found);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
}
TEST(TryGetOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Handle<Symbol> not_found_symbol = factory->NewSymbol();
Handle<Symbol> bailout_symbol = factory->NewSymbol();
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* context = m.Parameter(kNumParams + 2);
Variable var_value(&m, MachineRepresentation::kTagged);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryGetOwnProperty(context, object, object, map, instance_type,
unique_name, &if_found, &var_value, &if_not_found,
&if_bailout);
m.BIND(&if_found);
m.Return(var_value.value());
m.BIND(&if_not_found);
m.Return(m.HeapConstant(not_found_symbol));
m.BIND(&if_bailout);
m.Return(m.HeapConstant(bailout_symbol));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("bb"),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("esajefe"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("p1"),
factory->InternalizeUtf8String("acshw23e"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("dddd"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("name"),
factory->InternalizeUtf8String("p2"),
factory->InternalizeUtf8String("p3"),
factory->InternalizeUtf8String("p4"),
factory->NewPrivateSymbol(),
};
Handle<Object> values[] = {
factory->NewFunctionForTest(factory->empty_string()),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
CreateAccessorPair(&ft, "() => 188;", "() => 199;"),
factory->NewFunctionForTest(factory->InternalizeUtf8String("bb")),
factory->InternalizeUtf8String("ccc"),
CreateAccessorPair(&ft, "() => 88;", nullptr),
handle(Smi::FromInt(1), isolate),
factory->InternalizeUtf8String(""),
CreateAccessorPair(&ft, nullptr, "() => 99;"),
factory->NewHeapNumber(4.2),
handle(Smi::FromInt(153), isolate),
factory->NewJSObject(
factory->NewFunctionForTest(factory->empty_string())),
factory->NewPrivateSymbol(),
};
STATIC_ASSERT(arraysize(values) < arraysize(names));
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSGlobalObject> object = isolate->global_object();
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
// TODO(ishell): test proxy and interceptors when they are supported.
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK(expected_value->SameValue(*value));
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
CHECK(expected_value->IsUndefined(isolate));
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*not_found_symbol, *value);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
// Proxies are not supported yet.
CHECK_EQ(*bailout_symbol, *value);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
// Global proxies are not supported yet.
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
CHECK_EQ(*bailout_symbol, *value);
}
}
namespace {
void AddElement(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes = NONE) {
JSObject::AddDataElement(object, index, value, attributes);
}
} // namespace
TEST(TryLookupElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kAbsent, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
TNode<IntPtrT> index = m.SmiUntag(m.Parameter(1));
TNode<MaybeObject> expected_result =
m.UncheckedCast<MaybeObject>(m.Parameter(2));
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m), if_absent(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryLookupElement(object, map, instance_type, index, &if_found, &if_absent,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_absent);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kAbsent))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Object> smi0(Smi::kZero, isolate);
Handle<Object> smi1(Smi::FromInt(1), isolate);
Handle<Object> smi7(Smi::FromInt(7), isolate);
Handle<Object> smi13(Smi::FromInt(13), isolate);
Handle<Object> smi42(Smi::FromInt(42), isolate);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_absent(Smi::FromInt(kAbsent), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
#define CHECK_FOUND(object, index) \
CHECK(JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_found);
#define CHECK_NOT_FOUND(object, index) \
CHECK(!JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_not_found);
#define CHECK_ABSENT(object, index) \
{ \
bool success; \
Handle<Smi> smi(Smi::FromInt(index), isolate); \
LookupIterator it = \
LookupIterator::PropertyOrElement(isolate, object, smi, &success); \
CHECK(success); \
CHECK(!JSReceiver::HasProperty(&it).FromJust()); \
ft.CheckTrue(object, smi, expect_absent); \
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Reland "[typedarray] Move external/data pointer to JSTypedArray." This is a reland of 4b86fea5308b12fa369038dc60c0aabd13870ec5 with copy&paste typo in CodeStubAssembler::AllocateByteArray() fixed (bug led to holes in new space, which was crashing reproducibly on the ia32 bot). Original change's description: > [typedarray] Move external/data pointer to JSTypedArray. > > As the next step in supporting huge typed arrays in V8, this moves the > external/data pointer from the FixedTypedArrayBase backing store to the > JSTypedArray instance itself, and replaces the special backing stores > with a plain ByteArray (removing all the code for the FixedTypedArrayBase > class hierarchy). By doing so, we can drastically simplify the system > around typed arrays. > > Note: Several places in the code base used to check the instance type > of the elements backing store of a JSTypedArray instead of checking the > elements kind on the JSTypedArray map directly. Those had to be fixed, > since the backing store is now always a ByteArray. > > Drive-by-fix: Move all the typed elements access related code into the > elements.cc file to properly encapsulate the accesses. > > Doc: http://doc/1Z-wM2qwvAuxH46e9ivtkYvKzzwYZg8ymm0x0wJaomow > Bug: chromium:951196, chromium:965583, v8:4153, v8:7881, v8:9183 > Change-Id: I8cc06b190c53e34155000b4560f5f3ef40621646 > Cq-Include-Trybots: luci.chromium.try:linux-rel,win7-rel > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1627535 > Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> > Reviewed-by: Peter Marshall <petermarshall@chromium.org> > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Simon Zünd <szuend@chromium.org> > Cr-Commit-Position: refs/heads/master@{#61855} Tbr: petermarshall@chromium.org Bug: chromium:951196, chromium:965583, v8:4153, v8:7881, v8:9183 Change-Id: I87fcdb28532c5f08cc227332a4d59546cb423810 Cq-Include-Trybots: luci.chromium.try:linux-rel, win7-rel Cq-Include-Trybots: luci.v8.try:v8_linux_shared_compile_rel Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1631592 Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#61864}
2019-05-27 17:01:01 +00:00
v8::Local<v8::ArrayBuffer> buffer =
v8::ArrayBuffer::New(reinterpret_cast<v8::Isolate*>(isolate), 8);
Handle<JSTypedArray> object = factory->NewJSTypedArray(
kExternalInt32Array, v8::Utils::OpenHandle(*buffer), 0, 2);
CHECK_EQ(INT32_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
v8::ArrayBuffer::Contents contents = buffer->Externalize();
buffer->Detach();
Reland x6 [arraybuffer] Rearchitect backing store ownership This reverts commit 9da3483136b5e71e830ed9a9c34802ad8d605e58 Original change's description: > "Reland x4 [arraybuffer] Rearchitect backing store ownership" > > This is a reland of bc33f5aeba9ceb13f8bfc401c5ba2521c2207ffb > > Contributed by titzer@chromium.org > > Original change's description: > > [arraybuffer] Rearchitect backing store ownership > > > > This CL completely rearchitects the ownership of array buffer backing stores, > > consolidating ownership into a {BackingStore} C++ object that is tracked > > throughout V8 using unique_ptr and shared_ptr where appropriate. > > > > Overall, lifetime management is simpler and more explicit. The numerous > > ways that array buffers were initialized have been streamlined to one > > Attach() method on JSArrayBuffer. The array buffer tracker in the > > GC implementation now manages std::shared_ptr<BackingStore> pointers, > > and the construction and destruction of the BackingStore object itself > > handles the underlying page or embedder-allocated memory. > > > > The embedder API remains unchanged for now. We use the > > v8::ArrayBuffer::Contents struct to hide an additional shared_ptr to > > keep the backing store alive properly, even in the case of aliases > > from live heap objects. Thus the embedder has a lower chance of making > > a mistake. Long-term, we should move the embedder to a model where they > > manage backing stores using shared_ptr to an opaque backing store object. > > TBR=yangguo@chromium.org > > BUG=v8:9380,v8:9221,chromium:986318 > > Change-Id: If671a4a9ca0476e8f084efae46e0d2bf99ed99ef > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1731005 > Commit-Queue: Ulan Degenbaev <ulan@chromium.org> > Reviewed-by: Clemens Hammacher <clemensh@chromium.org> > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > Cr-Commit-Position: refs/heads/master@{#63041} TBR=yangguo@chromium.org Change-Id: I3cc4bb80081c662b1751234bc16a821c20e744be Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1792166 Commit-Queue: Ulan Degenbaev <ulan@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Cr-Commit-Position: refs/heads/master@{#63617}
2019-09-09 10:19:34 +00:00
contents.Deleter()(contents.Data(), contents.ByteLength(),
contents.DeleterData());
CHECK_ABSENT(object, 0);
CHECK_ABSENT(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
JSObject::NormalizeElements(object);
CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
// TODO(ishell): uncomment once NO_ELEMENTS kind is supported.
// {
// Handle<Map> map = Map::Create(isolate, 0);
// map->set_elements_kind(NO_ELEMENTS);
// Handle<JSObject> object = factory->NewJSObjectFromMap(map);
// CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind());
//
// CHECK_NOT_FOUND(object, 0);
// CHECK_NOT_FOUND(object, 1);
// CHECK_NOT_FOUND(object, 7);
// CHECK_NOT_FOUND(object, 13);
// CHECK_NOT_FOUND(object, 42);
// }
#undef CHECK_FOUND
#undef CHECK_NOT_FOUND
{
Handle<JSArray> handler = factory->NewJSArray(0);
Handle<JSFunction> function =
factory->NewFunctionForTest(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, handler);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_object();
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
}
TEST(AllocateJSObjectFromMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* map = m.Parameter(0);
Node* properties = m.Parameter(1);
Node* elements = m.Parameter(2);
TNode<JSObject> result =
m.AllocateJSObjectFromMap(map, properties, elements);
[torque] Stricter object field verification, part 2 This change removes the special case in the Torque compiler for types that descend from JSObject: they will no longer get implicit "| Undefined" appended to their types for verification purposes. It removes any additional custom verification steps in objects-debug that are made redundant by that change. In order to do so safely, I categorized all cases where we were implicitly adding "| Undefined" to the field type, as follows: 1. Classes that aren't using the generated verifier function (we should probably revisit these, but for now we at least know they're safe): - JSGlobalObject - JSFinalizationGroup - JSFinalizationGroupCleanupIterator 2. Classes where the existing verifier is already at least as strict as what we would get after removing the implicit "| Undefined": - JSDate - JSPromise - JSRegExp - JSRegExpStringIterator - WasmMemoryObject - JSWeakRef - JSStringIterator - WasmExceptionObject - JSListFormat (fixed in part 1) - JSPluralRules (fixed in part 1) - JSRelativeTimeFormat (fixed in part 1) - JSSegmenter (fixed in part 1) - JSArrayBufferView (fixed in part 1) - JSTypedArray (fixed in part 1) 3. Classes where, to the best of my knowledge based on code inspection, we already initialize the object correctly to pass the new stricter generated verifier: - JSFunction - JSArrayIterator - JSMessageObject - JSBoundFunction - JSAsyncFromSyncIterator - WasmModuleObject - JSAsyncFunctionObject 4. Classes that needed some adjustment to their initialization order to avoid exposing uninitialized state to the GC: - JSArray (only in Factory::NewJSArray; Runtime_NewArray and CodeStubAssembler::AllocateJSArray already behave fine) - WasmTableObject - JSDateTimeFormat - JSNumberFormat - JSCollator - JSV8BreakIterator - JSLocale - JSSegmentIterator - JSModuleNamespace 5. Classes that had incorrect type definitions in Torque: - WasmGlobalObject (category 4 after correction) 6. Classes that weren't fully initialized due to bugs: - JSGeneratorObject - JSAsyncGeneratorObject Bug: v8:9311 Change-Id: I99ab303d3352423f50a3d0abb6eb0c9b463e7552 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1654980 Commit-Queue: Seth Brenith <seth.brenith@microsoft.com> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Sigurd Schneider <sigurds@chromium.org> Cr-Commit-Position: refs/heads/master@{#62228}
2019-06-17 17:56:48 +00:00
CodeStubAssembler::Label done(&m);
m.GotoIfNot(m.IsJSArrayMap(map), &done);
// JS array verification requires the length field to be set.
m.StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset,
m.SmiConstant(0));
m.Goto(&done);
m.Bind(&done);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(isolate->object_function()->initial_map(), isolate),
handle(isolate->array_function()->initial_map(), isolate),
};
{
Handle<FixedArray> empty_fixed_array = factory->empty_fixed_array();
Handle<PropertyArray> empty_property_array =
factory->empty_property_array();
for (size_t i = 0; i < arraysize(maps); i++) {
Handle<Map> map = maps[i];
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(map, empty_fixed_array, empty_fixed_array).ToHandleChecked());
CHECK_EQ(result->map(), *map);
CHECK_EQ(result->property_array(), *empty_property_array);
CHECK_EQ(result->elements(), *empty_fixed_array);
CHECK(result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
{
// TODO(cbruni): handle in-object properties
Handle<JSObject> object = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*CompileRun("var object = {a:1,b:2, 1:1, 2:2}; "
"object")));
JSObject::NormalizeProperties(isolate, object, KEEP_INOBJECT_PROPERTIES, 0,
"Normalize");
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(handle(object->map(), isolate),
handle(object->property_dictionary(), isolate),
handle(object->elements(), isolate))
.ToHandleChecked());
CHECK_EQ(result->map(), object->map());
CHECK_EQ(result->property_dictionary(), object->property_dictionary());
CHECK(!result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
#undef VERIFY
}
TEST(AllocateNameDictionary) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* capacity = m.Parameter(0);
TNode<NameDictionary> result =
m.AllocateNameDictionary(m.SmiUntag(capacity));
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
{
for (int i = 0; i < 256; i = i * 1.1 + 1) {
Handle<HeapObject> result = Handle<HeapObject>::cast(
ft.Call(handle(Smi::FromInt(i), isolate)).ToHandleChecked());
Handle<NameDictionary> dict = NameDictionary::New(isolate, i);
// Both dictionaries should be memory equal.
int size = dict->Size();
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(dict->address()),
reinterpret_cast<void*>(result->address()), size));
}
}
}
TEST(PopAndReturnConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
const int kNumProgrammaticParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams - kNumProgrammaticParams);
CodeStubAssembler m(asm_tester.state());
// Call a function that return |kNumProgramaticParams| parameters in addition
// to those specified by the static descriptor. |kNumProgramaticParams| is
// specified as a constant.
m.PopAndReturn(m.Int32Constant(kNumProgrammaticParams),
m.SmiConstant(Smi::FromInt(1234)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(1234), isolate),
isolate->factory()->undefined_value(),
isolate->factory()->undefined_value())
.ToHandleChecked();
CHECK_EQ(1234, Handle<Smi>::cast(result)->value());
}
}
TEST(PopAndReturnVariable) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
const int kNumProgrammaticParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams - kNumProgrammaticParams);
CodeStubAssembler m(asm_tester.state());
// Call a function that return |kNumProgramaticParams| parameters in addition
// to those specified by the static descriptor. |kNumProgramaticParams| is
// passed in as a parameter to the function so that it can't be recongized as
// a constant.
m.PopAndReturn(m.SmiUntag(m.Parameter(1)), m.SmiConstant(Smi::FromInt(1234)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(1234), isolate),
isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(kNumProgrammaticParams), isolate))
.ToHandleChecked();
CHECK_EQ(1234, Handle<Smi>::cast(result)->value());
}
}
TEST(OneToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::ONE_BYTE_ENCODING, String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uc16 array[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowHeapAllocation no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowHeapAllocation no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopyNonZeroStart) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(3), m.IntPtrConstant(2),
String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowHeapAllocation no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
CHECK_EQ(100, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(101, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(102, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
}
TEST(TwoToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters(m.Parameter(0), m.Parameter(1), m.IntPtrConstant(0),
m.IntPtrConstant(0), m.IntPtrConstant(5),
String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
uc16 array1[] = {2000, 2001, 2002, 2003, 2004};
Handle<String> string1 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
uc16 array2[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array2))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowHeapAllocation no_gc;
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(Arguments) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.IntPtrConstant(3));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(0), m.SmiConstant(12)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(1), m.SmiConstant(13)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(2), m.SmiConstant(14)));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TEST(ArgumentsWithSmiConstantIndices) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.SmiConstant(3));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(m.SmiConstant(0)),
m.SmiConstant(12)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(m.SmiConstant(1)),
m.SmiConstant(13)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(m.SmiConstant(2)),
m.SmiConstant(14)));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TNode<Smi> NonConstantSmi(CodeStubAssembler* m, int value) {
// Generate a SMI with the given value and feed it through a Phi so it can't
// be inferred to be constant.
Variable var(m, MachineRepresentation::kTagged, m->SmiConstant(value));
Label dummy_done(m);
// Even though the Goto always executes, it will taint the variable and thus
// make it appear non-constant when used later.
m->GotoIf(m->Int32Constant(1), &dummy_done);
var.Bind(m->SmiConstant(value));
m->Goto(&dummy_done);
m->BIND(&dummy_done);
// Ensure that the above hackery actually created a non-constant SMI.
Smi smi_constant;
CHECK(!m->ToSmiConstant(var.value(), &smi_constant));
return m->UncheckedCast<Smi>(var.value());
}
TEST(ArgumentsWithSmiIndices) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.SmiConstant(3));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(NonConstantSmi(&m, 0)),
m.SmiConstant(12)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(NonConstantSmi(&m, 1)),
m.SmiConstant(13)));
CSA_ASSERT(&m, m.TaggedEqual(arguments.AtIndex(NonConstantSmi(&m, 2)),
m.SmiConstant(14)));
arguments.PopAndReturn(arguments.GetReceiver());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->factory()->undefined_value(), *result);
}
TEST(ArgumentsForEach) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
CodeStubArguments arguments(&m, m.IntPtrConstant(3));
TVariable<Smi> sum(&m);
CodeAssemblerVariableList list({&sum}, m.zone());
sum = m.SmiConstant(0);
arguments.ForEach(list, [&](TNode<Object> arg) {
sum = m.SmiAdd(sum.value(), m.CAST(arg));
});
arguments.PopAndReturn(sum.value());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(isolate->factory()->undefined_value(),
Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14), *result);
}
TEST(IsDebugActive) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Label if_active(&m), if_not_active(&m);
m.Branch(m.IsDebugActive(), &if_active, &if_not_active);
m.BIND(&if_active);
m.Return(m.TrueConstant());
m.BIND(&if_not_active);
m.Return(m.FalseConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK(!isolate->debug()->is_active());
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
bool* debug_is_active = reinterpret_cast<bool*>(
ExternalReference::debug_is_active_address(isolate).address());
// Cheat to enable debug (TODO: do this properly).
*debug_is_active = true;
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
// Reset debug mode.
*debug_is_active = false;
}
class AppendJSArrayCodeStubAssembler : public CodeStubAssembler {
public:
AppendJSArrayCodeStubAssembler(compiler::CodeAssemblerState* state,
ElementsKind kind)
: CodeStubAssembler(state), kind_(kind) {}
void TestAppendJSArrayImpl(Isolate* isolate, CodeAssemblerTester* csa_tester,
Object o1, Object o2, Object o3, Object o4,
int initial_size, int result_size) {
Handle<JSArray> array = isolate->factory()->NewJSArray(
kind_, 2, initial_size, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
Object::SetElement(isolate, array, 0, Handle<Smi>(Smi::FromInt(1), isolate),
kDontThrow)
.Check();
Object::SetElement(isolate, array, 1, Handle<Smi>(Smi::FromInt(2), isolate),
kDontThrow)
.Check();
CodeStubArguments args(this, IntPtrConstant(kNumParams));
TVariable<IntPtrT> arg_index(this);
Label bailout(this);
arg_index = IntPtrConstant(0);
TNode<Smi> length = BuildAppendJSArray(kind_, HeapConstant(array), &args,
&arg_index, &bailout);
Return(length);
BIND(&bailout);
Return(SmiTag(IntPtrAdd(arg_index.value(), IntPtrConstant(2))));
FunctionTester ft(csa_tester->GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(Handle<Object>(o1, isolate), Handle<Object>(o2, isolate),
Handle<Object>(o3, isolate), Handle<Object>(o4, isolate))
.ToHandleChecked();
CHECK_EQ(kind_, array->GetElementsKind());
CHECK_EQ(result_size, Handle<Smi>::cast(result)->value());
CHECK_EQ(result_size, Smi::ToInt(array->length()));
Object obj = *JSObject::GetElement(isolate, array, 2).ToHandleChecked();
HeapObject undefined_value = ReadOnlyRoots(isolate).undefined_value();
CHECK_EQ(result_size < 3 ? undefined_value : o1, obj);
obj = *JSObject::GetElement(isolate, array, 3).ToHandleChecked();
CHECK_EQ(result_size < 4 ? undefined_value : o2, obj);
obj = *JSObject::GetElement(isolate, array, 4).ToHandleChecked();
CHECK_EQ(result_size < 5 ? undefined_value : o3, obj);
obj = *JSObject::GetElement(isolate, array, 5).ToHandleChecked();
CHECK_EQ(result_size < 6 ? undefined_value : o4, obj);
}
static void TestAppendJSArray(Isolate* isolate, ElementsKind kind, Object o1,
Object o2, Object o3, Object o4,
int initial_size, int result_size) {
CodeAssemblerTester asm_tester(isolate, kNumParams);
AppendJSArrayCodeStubAssembler m(asm_tester.state(), kind);
m.TestAppendJSArrayImpl(isolate, &asm_tester, o1, o2, o3, o4, initial_size,
result_size);
}
private:
static const int kNumParams = 4;
ElementsKind kind_;
};
TEST(BuildAppendJSArrayFastElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastSmiElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElementObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
TEST(BuildAppendJSArrayFastSmiElementObjectGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 2, 4);
}
TEST(BuildAppendJSArrayFastDoubleElements) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
namespace {
template <typename Stub, typename... Args>
void Recompile(Args... args) {
Stub stub(args...);
stub.DeleteStubFromCacheForTesting();
stub.GetCode();
}
} // namespace
void CustomPromiseHook(v8::PromiseHookType type, v8::Local<v8::Promise> promise,
v8::Local<v8::Value> parentPromise) {}
TEST(IsPromiseHookEnabled) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsPromiseHookEnabledOrHasAsyncEventDelegate()));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
isolate->SetPromiseHook(CustomPromiseHook);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
isolate->SetPromiseHook(nullptr);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(AllocateAndInitJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<JSPromise> const promise = m.AllocateAndInitJSPromise(m.CAST(context));
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
}
TEST(AllocateAndSetJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<JSPromise> const promise = m.AllocateAndSetJSPromise(
m.CAST(context), v8::Promise::kRejected, m.SmiConstant(1));
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
Handle<JSPromise> js_promise = Handle<JSPromise>::cast(result);
CHECK_EQ(v8::Promise::kRejected, js_promise->status());
CHECK_EQ(Smi::FromInt(1), js_promise->result());
CHECK(!js_promise->has_handler());
}
TEST(IsSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Node* const symbol = m.Parameter(0);
m.Return(m.SelectBooleanConstant(m.IsSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(IsPrivateSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
Node* const symbol = m.Parameter(0);
m.Return(m.SelectBooleanConstant(m.IsPrivateSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->NewPrivateSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
}
TEST(PromiseHasHandler) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<JSPromise> const promise =
m.AllocateAndInitJSPromise(m.CAST(context), m.UndefinedConstant());
m.Return(m.SelectBooleanConstant(m.PromiseHasHandler(promise)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(CreatePromiseResolvingFunctionsContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<NativeContext> const native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.AllocateAndInitJSPromise(m.CAST(context), m.UndefinedConstant());
TNode<Context> const promise_context =
m.CreatePromiseResolvingFunctionsContext(
promise, m.BooleanConstant(false), native_context);
m.Return(promise_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result);
CHECK_EQ(isolate->native_context()->scope_info(), context_js->scope_info());
CHECK_EQ(ReadOnlyRoots(isolate).the_hole_value(), context_js->extension());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(context_js->get(PromiseBuiltins::kPromiseSlot).IsJSPromise());
CHECK_EQ(ReadOnlyRoots(isolate).false_value(),
context_js->get(PromiseBuiltins::kDebugEventSlot));
}
TEST(CreatePromiseResolvingFunctions) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<NativeContext> const native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.AllocateAndInitJSPromise(m.CAST(context), m.UndefinedConstant());
Node *resolve, *reject;
std::tie(resolve, reject) = m.CreatePromiseResolvingFunctions(
promise, m.BooleanConstant(false), native_context);
TNode<IntPtrT> const kSize = m.IntPtrConstant(2);
TNode<FixedArray> const arr =
m.Cast(m.AllocateFixedArray(PACKED_ELEMENTS, kSize));
m.StoreFixedArrayElement(arr, 0, resolve);
m.StoreFixedArrayElement(arr, 1, reject);
m.Return(arr);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsFixedArray());
Handle<FixedArray> result_arr = Handle<FixedArray>::cast(result_obj);
CHECK(result_arr->get(0).IsJSFunction());
CHECK(result_arr->get(1).IsJSFunction());
}
TEST(NewElementsCapacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 1);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiTag(m.CalculateNewElementsCapacity(
m.SmiUntag(m.Parameter(0)), CodeStubAssembler::INTPTR_PARAMETERS)));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(NewElementsCapacitySmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 1);
CodeStubAssembler m(asm_tester.state());
m.Return(m.CalculateNewElementsCapacity(m.Parameter(0),
CodeStubAssembler::SMI_PARAMETERS));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(AllocateFunctionWithMapAndContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<NativeContext> const native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.AllocateAndInitJSPromise(m.CAST(context), m.UndefinedConstant());
TNode<Context> promise_context = m.CreatePromiseResolvingFunctionsContext(
promise, m.BooleanConstant(false), native_context);
TNode<Object> resolve_info = m.LoadContextElement(
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
native_context,
Context::PROMISE_CAPABILITY_DEFAULT_RESOLVE_SHARED_FUN_INDEX);
TNode<Object> const map = m.LoadContextElement(
native_context, Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX);
TNode<JSFunction> const resolve = m.AllocateFunctionWithMapAndContext(
m.CAST(map), m.CAST(resolve_info), promise_context);
m.Return(resolve);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(result_obj);
CHECK_EQ(ReadOnlyRoots(isolate).empty_property_array(),
fun->property_array());
CHECK_EQ(ReadOnlyRoots(isolate).empty_fixed_array(), fun->elements());
CHECK_EQ(isolate->heap()->many_closures_cell(), fun->raw_feedback_cell());
CHECK(!fun->has_prototype_slot());
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
CHECK_EQ(*isolate->promise_capability_default_resolve_shared_fun(),
fun->shared());
CHECK_EQ(isolate->promise_capability_default_resolve_shared_fun()->GetCode(),
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
fun->code());
}
TEST(CreatePromiseGetCapabilitiesExecutorContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<NativeContext> const native_context = m.LoadNativeContext(context);
TNode<Map> const map = m.PromiseCapabilityMapConstant();
Node* const capability = m.AllocateStruct(map);
m.StoreObjectFieldNoWriteBarrier(
capability, PromiseCapability::kPromiseOffset, m.UndefinedConstant());
m.StoreObjectFieldNoWriteBarrier(
capability, PromiseCapability::kResolveOffset, m.UndefinedConstant());
m.StoreObjectFieldNoWriteBarrier(capability, PromiseCapability::kRejectOffset,
m.UndefinedConstant());
Node* const executor_context =
m.CreatePromiseGetCapabilitiesExecutorContext(capability, native_context);
m.Return(executor_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result_obj);
CHECK_EQ(PromiseBuiltins::kCapabilitiesContextLength, context_js->length());
CHECK_EQ(isolate->native_context()->scope_info(), context_js->scope_info());
CHECK_EQ(ReadOnlyRoots(isolate).the_hole_value(), context_js->extension());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(
context_js->get(PromiseBuiltins::kCapabilitySlot).IsPromiseCapability());
}
TEST(NewPromiseCapability) {
Isolate* isolate(CcTest::InitIsolateOnce());
{ // Builtin Promise
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
TNode<NativeContext> const native_context = m.LoadNativeContext(context);
TNode<Object> const promise_constructor =
m.LoadContextElement(native_context, Context::PROMISE_FUNCTION_INDEX);
TNode<Oddball> const debug_event = m.TrueConstant();
TNode<Object> const capability =
Revert "[builtins] Mega-revert to address the Dev blocker in crbug.com/808911." This reverts commit 14108f4c2e0b4c46f12d99a8674de743dff10e17. Reason for revert: Not the culprit for Canary microtask crashes Original change's description: > [builtins] Mega-revert to address the Dev blocker in crbug.com/808911. > > - Revert "[builtins] Save one word in contexts for Promise.all." > This reverts commit 7632da067b73a797482571163354175f73f50952. > - Revert "[builtins] Also use the Promise#then protector for Promise#finally()." > This reverts commit d4f072ced3413dac8a502add6cc5b79c17bc8b4b. > - Revert "[builtins] Don't mess with entered context for MicrotaskCallbacks." > This reverts commit 6703dacdd6e4c0e0da4085cfc46e7291ef78949c. > - Revert "[debugger] Properly deal with settled promises in catch prediction." > This reverts commit 40dd065823a87e671fe6cb0bba7197bd28833f1d. > - Revert "[builtins] Widen the fast-path for Promise builtins." > This reverts commit db0556b7e8a2965a27be956e5ce2e2e2d832808c. > - Revert "[builtins] Unify PerformPromiseThen and optimize it with TurboFan." > This reverts commit a582199c5e56c9c84312dfa6d6fa6de724e1a806. > - Revert "[builtins] Remove obsolete PromiseBuiltinsAssembler::AppendPromiseCallback." > This reverts commit 6bf888529092326c59165d369baf083ca7cc519b. > - Revert "[builtins] Turn NewPromiseCapability into a proper builtin." > This reverts commit 313b490ddd35367f5e7fe4a7073054ecd8a732ae. > - Revert "[builtins] Inline InternalPromiseThen into it's only caller" > This reverts commit f7bd6a2fd65e7b8ae90574d8411aeb5695c40716. > - Revert "[builtins] Implement Promise#catch by really calling into Promise#then." > This reverts commit b23b098fa02e24c0b1551f6b6a85619194af76ed. > - Revert "[promise] Remove incorrect fast path" > This reverts commit 0f6eafe85585940fc118e1c133d939c539e88f29. > - Revert "[builtins] Squeeze JSPromise::result and JSPromise::reactions into a single field." > This reverts commit 8a677a28312855955d96a64caf91601d9196cc7b. > - Revert "[builtins] Refactor promises to reduce GC overhead." > This reverts commit 8e7737cb5811dcb9bc9e125acd9d7d4e0cfcac70. > > Tbr: hpayer@chromium.org > Bug: chromium:800651, chromium:808911, v8:5691, v8:7253 > Change-Id: I8c8ea5ed32ed62f6cd8b0d027a3707ddd891e5f1 > Cq-Include-Trybots: master.tryserver.chromium.linux:linux_chromium_rel_ng > Reviewed-on: https://chromium-review.googlesource.com/906991 > Commit-Queue: Yang Guo <yangguo@chromium.org> > Commit-Queue: Adam Klein <adamk@chromium.org> > Reviewed-by: Adam Klein <adamk@chromium.org> > Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> > Cr-Commit-Position: refs/heads/master@{#51158} Change-Id: I09d958cbebd635a325809072a290f2f53df8c5d4 Tbr: adamk@chromium.org,yangguo@chromium.org,bmeurer@chromium.org Bug: chromium:800651, chromium:808911, v8:5691, v8:7253 Cq-Include-Trybots: master.tryserver.chromium.linux:linux_chromium_rel_ng Reviewed-on: https://chromium-review.googlesource.com/908988 Reviewed-by: Adam Klein <adamk@chromium.org> Commit-Queue: Adam Klein <adamk@chromium.org> Cr-Commit-Position: refs/heads/master@{#51181}
2018-02-08 16:36:52 +00:00
m.CallBuiltin(Builtins::kNewPromiseCapability, context,
promise_constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSPromise());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
CHECK_EQ(*isolate->promise_capability_default_reject_shared_fun(),
JSFunction::cast(result->reject()).shared());
[builtins] Refactor the promise resolution and rejection logic. This introduces dedicated builtins - FulfillPromise, - RejectPromise, and - ResolvePromise, which perform the corresponding operations from the language specification, and removes the redundant entry points and the excessive inlining of these operations into other builtins. We also add the same logic on the C++ side, so that we don't need to go into JavaScript land when resolving/rejecting from the API. The C++ side has a complete implementation, including full support for the debugger and the current PromiseHook machinery. This is to avoid constantly crossing the boundary for those cases, and to also simplify the CSA side (and soon the TurboFan side), where we only do the fast-path and bail out to the runtime for the general handling. On top of this we introduce %_RejectPromise and %_ResolvePromise, which are entry points used by the bytecode and parser desugarings for async functions, and also used by the V8 Extras API. Thanks to this we can uniformly optimize these in TurboFan, where we have corresponding operators JSRejectPromise and JSResolvePromise, which currently just call into the builtins, but middle-term can be further optimized, i.e. to skip the "then" lookup for JSResolvePromise when we know something about the resolution. In TurboFan we can also already inline the default PromiseCapability [[Reject]] and [[Resolve]] functions, although this is not as effective as it can be right now, until we have inlining support for the Promise constructor (being worked on by petermarshall@ right now) and/or SFI based CALL_IC feedback. Overall this change is meant as a refactoring without significant performance impact anywhere; it seems to improve performance of simple async functions a bit, but otherwise is neutral. Bug: v8:7253 Change-Id: Id0b979f9b2843560e38cd8df4b02627dad4b6d8c Reviewed-on: https://chromium-review.googlesource.com/911632 Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#51260}
2018-02-12 19:10:29 +00:00
CHECK_EQ(*isolate->promise_capability_default_resolve_shared_fun(),
JSFunction::cast(result->resolve()).shared());
Handle<JSFunction> callbacks[] = {
handle(JSFunction::cast(result->resolve()), isolate),
handle(JSFunction::cast(result->reject()), isolate)};
for (auto&& callback : callbacks) {
Handle<Context> context(Context::cast(callback->context()), isolate);
CHECK_EQ(isolate->native_context()->scope_info(), context->scope_info());
CHECK_EQ(ReadOnlyRoots(isolate).the_hole_value(), context->extension());
CHECK_EQ(*isolate->native_context(), context->native_context());
CHECK_EQ(PromiseBuiltins::kPromiseContextLength, context->length());
CHECK_EQ(context->get(PromiseBuiltins::kPromiseSlot), result->promise());
}
}
{ // Custom Promise
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
Node* const context = m.Parameter(kNumParams + 2);
Node* const constructor = m.Parameter(1);
TNode<Oddball> const debug_event = m.TrueConstant();
TNode<Object> const capability = m.CallBuiltin(
Builtins::kNewPromiseCapability, context, constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<JSFunction> constructor_fn =
Handle<JSFunction>::cast(v8::Utils::OpenHandle(*CompileRun(
"(function FakePromise(executor) {"
" var self = this;"
" function resolve(value) { self.resolvedValue = value; }"
" function reject(reason) { self.rejectedReason = reason; }"
" executor(resolve, reject);"
"})")));
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value(), constructor_fn)
.ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSObject());
Handle<JSObject> promise(JSObject::cast(result->promise()), isolate);
CHECK_EQ(constructor_fn->prototype_or_initial_map(), promise->map());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
Handle<String> resolved_str =
isolate->factory()->NewStringFromAsciiChecked("resolvedStr");
Handle<String> rejected_str =
isolate->factory()->NewStringFromAsciiChecked("rejectedStr");
Handle<Object> argv1[] = {resolved_str};
Handle<Object> ret =
Execution::Call(isolate, handle(result->resolve(), isolate),
isolate->factory()->undefined_value(), 1, argv1)
.ToHandleChecked();
Handle<Object> prop1 =
JSReceiver::GetProperty(isolate, promise, "resolvedValue")
.ToHandleChecked();
CHECK_EQ(*resolved_str, *prop1);
Handle<Object> argv2[] = {rejected_str};
ret = Execution::Call(isolate, handle(result->reject(), isolate),
isolate->factory()->undefined_value(), 1, argv2)
.ToHandleChecked();
Handle<Object> prop2 =
JSReceiver::GetProperty(isolate, promise, "rejectedReason")
.ToHandleChecked();
CHECK_EQ(*rejected_str, *prop2);
}
}
TEST(DirectMemoryTest8BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127};
const int element_count = 8;
Label bad(&m);
TNode<IntPtrT> buffer_node =
m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {156, 2234, 4544, 8444, 1723, 3888, 658, 1278};
const int element_count = 8;
Label bad(&m);
TNode<IntPtrT> buffer_node =
m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded =
m.LoadBufferObject(buffer_node, static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest8BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127, 67, 38};
const int element_count = 10;
Label bad(&m);
Node* constants[element_count];
TNode<IntPtrT> buffer_node =
m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
}
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node, static_cast<int>(i),
MachineType::Uint8());
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {1, 2, 4, 8, 12345, 33, 65, 255, 67, 3823};
const int element_count = 10;
Label bad(&m);
Node* constants[element_count];
TNode<IntPtrT> buffer_node1 =
m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
constants[i] =
m.LoadBufferObject(buffer_node1, static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
}
TNode<IntPtrT> buffer_node2 =
m.IntPtrConstant(reinterpret_cast<intptr_t>(buffer));
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
Node* loaded = m.LoadBufferObject(buffer_node1,
static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
// Force a memory access relative to a high-number register.
loaded = m.LoadBufferObject(buffer_node2,
static_cast<int>(i * sizeof(int16_t)),
MachineType::Uint16());
masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(LoadJSArrayElementsMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Node* context = m.Parameter(kNumParams + 2);
TNode<NativeContext> native_context = m.LoadNativeContext(context);
TNode<Int32T> kind = m.SmiToInt32(m.Parameter(0));
m.Return(m.LoadJSArrayElementsMap(kind, native_context));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (int kind = 0; kind <= HOLEY_DOUBLE_ELEMENTS; kind++) {
Handle<Map> csa_result =
ft.CallChecked<Map>(handle(Smi::FromInt(kind), isolate));
ElementsKind elements_kind = static_cast<ElementsKind>(kind);
Handle<Map> result(
isolate->native_context()->GetInitialJSArrayMap(elements_kind),
isolate);
CHECK_EQ(*csa_result, *result);
}
}
TEST(AllocateStruct) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
Node* map = m.Parameter(0);
Node* result = m.AllocateStruct(map);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(ReadOnlyRoots(isolate).tuple3_map(), isolate),
handle(ReadOnlyRoots(isolate).tuple2_map(), isolate),
};
{
for (size_t i = 0; i < 2; i++) {
Handle<Map> map = maps[i];
Handle<Struct> result =
Handle<Struct>::cast(ft.Call(map).ToHandleChecked());
CHECK_EQ(result->map(), *map);
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
}
TEST(GotoIfNotWhiteSpaceOrLineTerminator) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
StringTrimAssembler m(asm_tester.state());
{ // Returns true if whitespace, false otherwise.
Label if_not_whitespace(&m);
m.GotoIfNotWhiteSpaceOrLineTerminator(m.SmiToInt32(m.Parameter(0)),
&if_not_whitespace);
m.Return(m.TrueConstant());
m.BIND(&if_not_whitespace);
m.Return(m.FalseConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> true_value = ft.true_value();
Handle<Object> false_value = ft.false_value();
for (uc16 c = 0; c < 0xFFFF; c++) {
Handle<Object> expected_value =
IsWhiteSpaceOrLineTerminator(c) ? true_value : false_value;
ft.CheckCall(expected_value, handle(Smi::FromInt(c), isolate));
}
}
TEST(BranchIfNumberRelationalComparison) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* f = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Label return_true(&m), return_false(&m);
m.BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual,
m.Parameter(0), m.Parameter(1),
&return_true, &return_false);
m.BIND(&return_true);
m.Return(m.BooleanConstant(true));
m.BIND(&return_false);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.CheckTrue(f->NewNumber(0), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(0), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(-1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1.5));
ft.CheckFalse(f->NewNumber(-1.5), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1.5), f->NewNumber(-1.5));
}
TEST(IsNumberArrayIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TNode<Number> number = m.CAST(m.Parameter(0));
m.Return(
m.SmiFromInt32(m.UncheckedCast<Int32T>(m.IsNumberArrayIndex(number))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
double indices[] = {Smi::kMinValue,
-11,
-1,
0,
1,
2,
Smi::kMaxValue,
-11.0,
-11.1,
-2.0,
-1.0,
-0.0,
0.0,
0.00001,
0.1,
1,
2,
Smi::kMinValue - 1.0,
Smi::kMinValue + 1.0,
Smi::kMinValue + 1.2,
kMaxInt + 1.2,
kMaxInt - 10.0,
kMaxInt - 1.0,
kMaxInt,
kMaxInt + 1.0,
kMaxInt + 10.0};
for (size_t i = 0; i < arraysize(indices); i++) {
Handle<Object> index = isolate->factory()->NewNumber(indices[i]);
uint32_t array_index;
CHECK_EQ(index->ToArrayIndex(&array_index),
(ft.CallChecked<Smi>(index)->value() == 1));
}
}
TEST(NumberMinMax) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_min(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_min.state());
m.Return(m.NumberMin(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_min(asm_tester_min.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_max(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_max.state());
m.Return(m.NumberMax(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_max(asm_tester_max.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
Handle<Smi> smi_5(Smi::FromInt(5), isolate);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_1, smi_2)->value(), 1);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_1, smi_2)->value(), 2);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_2, smi_1)->value(), 2);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.5);
Handle<Object> nan =
isolate->factory()->NewNumber(std::numeric_limits<double>::quiet_NaN());
Handle<Object> infinity = isolate->factory()->NewNumber(V8_INFINITY);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, double_b)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(infinity, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, infinity)->value(), 2.5);
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(double_a, nan)->value()));
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, double_a)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(infinity, double_a)->value(),
V8_INFINITY);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, infinity)->value(),
V8_INFINITY);
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(double_a, nan)->value()));
// Mixed smi/double values.
CHECK_EQ(ft_max.CallChecked<HeapNumber>(smi_1, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, smi_1)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(smi_5, double_b)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, smi_5)->value(), 3.5);
}
TEST(NumberAddSub) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_add(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_add.state());
m.Return(m.NumberAdd(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_add(asm_tester_add.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_sub(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester_sub.state());
m.Return(m.NumberSub(m.Parameter(0), m.Parameter(1)));
}
FunctionTester ft_sub(asm_tester_sub.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
CHECK_EQ(ft_add.CallChecked<Smi>(smi_1, smi_2)->value(), 3);
CHECK_EQ(ft_sub.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.0);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, double_b)->value(), 5.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, double_b)->value(), -.5);
// Test overflow.
Handle<Smi> smi_max(Smi::FromInt(Smi::kMaxValue), isolate);
Handle<Smi> smi_min(Smi::FromInt(Smi::kMinValue), isolate);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_max, smi_1)->value(),
static_cast<double>(Smi::kMaxValue) + 1);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_min, smi_1)->value(),
static_cast<double>(Smi::kMinValue) - 1);
// Test mixed smi/double values.
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_1, double_a)->value(), 3.5);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, smi_1)->value(), 3.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_1, double_a)->value(), -1.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, smi_1)->value(), 1.5);
}
TEST(CloneEmptyFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.CAST(m.Parameter(0))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->empty_fixed_array());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(0, result.length());
CHECK_EQ(*(isolate->factory()->empty_fixed_array()), result);
}
TEST(CloneFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.CAST(m.Parameter(0))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(CloneFixedArrayCOW) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.CAST(m.Parameter(0))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(*source, result);
}
TEST(ExtractFixedArrayCOWForceCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.SmiConstant(0), nullptr,
nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_NE(*source, result);
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimple) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.Parameter(1), m.Parameter(2),
nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleSmiConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.SmiConstant(1),
m.SmiConstant(2), nullptr, flags,
CodeStubAssembler::SMI_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
m.Return(m.ExtractFixedArray(m.Parameter(0), m.IntPtrConstant(1),
m.IntPtrConstant(2), nullptr, flags,
CodeStubAssembler::INTPTR_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstantNoDoubles) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.ExtractFixedArray(
m.Parameter(0), m.IntPtrConstant(1), m.IntPtrConstant(2), nullptr,
CodeStubAssembler::ExtractFixedArrayFlag::kFixedArrays,
CodeStubAssembler::INTPTR_PARAMETERS));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TNode<IntPtrT> p1_untagged = m.SmiUntag(m.Parameter(1));
TNode<IntPtrT> p2_untagged = m.SmiUntag(m.Parameter(2));
m.Return(m.ExtractFixedArray(m.Parameter(0), p1_untagged, p2_untagged));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
Handle<FixedDoubleArray> source_double = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(5));
source_double->set(0, 10);
source_double->set(1, 11);
source_double->set(2, 12);
source_double->set(3, 13);
source_double->set(4, 14);
Handle<Object> double_result_raw =
ft.Call(source_double, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedDoubleArray double_result = FixedDoubleArray::cast(*double_result_raw);
CHECK_EQ(2, double_result.length());
CHECK_EQ(double_result.get_scalar(0), 11);
CHECK_EQ(double_result.get_scalar(1), 12);
}
TEST(SingleInputPhiElimination) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
Variable temp1(&m, MachineRepresentation::kTagged);
Variable temp2(&m, MachineRepresentation::kTagged);
Label temp_label(&m, {&temp1, &temp2});
Label end_label(&m, {&temp1, &temp2});
temp1.Bind(m.Parameter(1));
temp2.Bind(m.Parameter(1));
m.Branch(m.TaggedEqual(m.UncheckedCast<Object>(m.Parameter(0)),
m.UncheckedCast<Object>(m.Parameter(1))),
&end_label, &temp_label);
temp1.Bind(m.Parameter(2));
temp2.Bind(m.Parameter(2));
m.BIND(&temp_label);
m.Goto(&end_label);
m.BIND(&end_label);
m.Return(temp1.value());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Generating code without an assert is enough to make sure that the
// single-input phi is properly eliminated.
}
TEST(SmallOrderedHashMapAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TNode<Smi> capacity = m.CAST(m.Parameter(0));
m.Return(m.AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
int capacity = SmallOrderedHashMap::kMinCapacity;
while (capacity <= SmallOrderedHashMap::kMaxCapacity) {
Handle<SmallOrderedHashMap> expected =
factory->NewSmallOrderedHashMap(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashMap> actual = Handle<SmallOrderedHashMap>(
SmallOrderedHashMap::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashMap::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashMap::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashMapVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(SmallOrderedHashSetAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TNode<Smi> capacity = m.CAST(m.Parameter(0));
m.Return(m.AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
int capacity = SmallOrderedHashSet::kMinCapacity;
Factory* factory = isolate->factory();
while (capacity <= SmallOrderedHashSet::kMaxCapacity) {
Handle<SmallOrderedHashSet> expected =
factory->NewSmallOrderedHashSet(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashSet> actual = Handle<SmallOrderedHashSet>(
SmallOrderedHashSet::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashSet::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashSet::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashSetVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(IsDoubleElementsKind) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester ft_tester(isolate, kNumParams);
{
CodeStubAssembler m(ft_tester.state());
m.Return(m.SmiFromInt32(m.UncheckedCast<Int32T>(
m.IsDoubleElementsKind(m.SmiToInt32(m.Parameter(0))))));
}
FunctionTester ft(ft_tester.GenerateCode(), kNumParams);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(DICTIONARY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
}
TEST(TestCallBuiltinInlineTrampoline) {
if (!i::FLAG_embedded_builtins) return;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
Node* str = m.Parameter(0);
Node* context = m.Parameter(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = true;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = false;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(MakeString("abcdef"));
CHECK(String::Equals(isolate, MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
TEST(TestCallBuiltinIndirectLoad) {
if (!i::FLAG_embedded_builtins) return;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
Node* str = m.Parameter(0);
Node* context = m.Parameter(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = false;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = true;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(MakeString("abcdef"));
CHECK(String::Equals(isolate, MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
} // namespace compiler
} // namespace internal
} // namespace v8