v8/src/hydrogen-bce.cc

395 lines
15 KiB
C++
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "hydrogen-bce.h"
namespace v8 {
namespace internal {
// We try to "factor up" HBoundsCheck instructions towards the root of the
// dominator tree.
// For now we handle checks where the index is like "exp + int32value".
// If in the dominator tree we check "exp + v1" and later (dominated)
// "exp + v2", if v2 <= v1 we can safely remove the second check, and if
// v2 > v1 we can use v2 in the 1st check and again remove the second.
// To do so we keep a dictionary of all checks where the key if the pair
// "exp, length".
// The class BoundsCheckKey represents this key.
class BoundsCheckKey : public ZoneObject {
public:
HValue* IndexBase() const { return index_base_; }
HValue* Length() const { return length_; }
uint32_t Hash() {
return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
}
static BoundsCheckKey* Create(Zone* zone,
HBoundsCheck* check,
int32_t* offset) {
if (!check->index()->representation().IsSmiOrInteger32()) return NULL;
HValue* index_base = NULL;
HConstant* constant = NULL;
bool is_sub = false;
if (check->index()->IsAdd()) {
HAdd* index = HAdd::cast(check->index());
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
} else if (check->index()->IsSub()) {
HSub* index = HSub::cast(check->index());
is_sub = true;
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
}
if (constant != NULL && constant->HasInteger32Value()) {
*offset = is_sub ? - constant->Integer32Value()
: constant->Integer32Value();
} else {
*offset = 0;
index_base = check->index();
}
return new(zone) BoundsCheckKey(index_base, check->length());
}
private:
BoundsCheckKey(HValue* index_base, HValue* length)
: index_base_(index_base),
length_(length) { }
HValue* index_base_;
HValue* length_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey);
};
// Data about each HBoundsCheck that can be eliminated or moved.
// It is the "value" in the dictionary indexed by "base-index, length"
// (the key is BoundsCheckKey).
// We scan the code with a dominator tree traversal.
// Traversing the dominator tree we keep a stack (implemented as a singly
// linked list) of "data" for each basic block that contains a relevant check
// with the same key (the dictionary holds the head of the list).
// We also keep all the "data" created for a given basic block in a list, and
// use it to "clean up" the dictionary when backtracking in the dominator tree
// traversal.
// Doing this each dictionary entry always directly points to the check that
// is dominating the code being examined now.
// We also track the current "offset" of the index expression and use it to
// decide if any check is already "covered" (so it can be removed) or not.
class BoundsCheckBbData: public ZoneObject {
public:
BoundsCheckKey* Key() const { return key_; }
int32_t LowerOffset() const { return lower_offset_; }
int32_t UpperOffset() const { return upper_offset_; }
HBasicBlock* BasicBlock() const { return basic_block_; }
HBoundsCheck* LowerCheck() const { return lower_check_; }
HBoundsCheck* UpperCheck() const { return upper_check_; }
BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
bool OffsetIsCovered(int32_t offset) const {
return offset >= LowerOffset() && offset <= UpperOffset();
}
bool HasSingleCheck() { return lower_check_ == upper_check_; }
// The goal of this method is to modify either upper_offset_ or
// lower_offset_ so that also new_offset is covered (the covered
// range grows).
//
// The precondition is that new_check follows UpperCheck() and
// LowerCheck() in the same basic block, and that new_offset is not
// covered (otherwise we could simply remove new_check).
//
// If HasSingleCheck() is true then new_check is added as "second check"
// (either upper or lower; note that HasSingleCheck() becomes false).
// Otherwise one of the current checks is modified so that it also covers
// new_offset, and new_check is removed.
//
// If the check cannot be modified because the context is unknown it
// returns false, otherwise it returns true.
bool CoverCheck(HBoundsCheck* new_check,
int32_t new_offset) {
ASSERT(new_check->index()->representation().IsSmiOrInteger32());
bool keep_new_check = false;
if (new_offset > upper_offset_) {
upper_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
upper_check_ = new_check;
} else {
bool result = BuildOffsetAdd(upper_check_,
&added_upper_index_,
&added_upper_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
upper_check_->ReplaceAllUsesWith(upper_check_->index());
upper_check_->SetOperandAt(0, added_upper_index_);
}
} else if (new_offset < lower_offset_) {
lower_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
lower_check_ = new_check;
} else {
bool result = BuildOffsetAdd(lower_check_,
&added_lower_index_,
&added_lower_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
lower_check_->ReplaceAllUsesWith(lower_check_->index());
lower_check_->SetOperandAt(0, added_lower_index_);
}
} else {
ASSERT(false);
}
if (!keep_new_check) {
new_check->block()->graph()->isolate()->counters()->
bounds_checks_eliminated()->Increment();
new_check->DeleteAndReplaceWith(new_check->ActualValue());
}
return true;
}
void RemoveZeroOperations() {
RemoveZeroAdd(&added_lower_index_, &added_lower_offset_);
RemoveZeroAdd(&added_upper_index_, &added_upper_offset_);
}
BoundsCheckBbData(BoundsCheckKey* key,
int32_t lower_offset,
int32_t upper_offset,
HBasicBlock* bb,
HBoundsCheck* lower_check,
HBoundsCheck* upper_check,
BoundsCheckBbData* next_in_bb,
BoundsCheckBbData* father_in_dt)
: key_(key),
lower_offset_(lower_offset),
upper_offset_(upper_offset),
basic_block_(bb),
lower_check_(lower_check),
upper_check_(upper_check),
added_lower_index_(NULL),
added_lower_offset_(NULL),
added_upper_index_(NULL),
added_upper_offset_(NULL),
next_in_bb_(next_in_bb),
father_in_dt_(father_in_dt) { }
private:
BoundsCheckKey* key_;
int32_t lower_offset_;
int32_t upper_offset_;
HBasicBlock* basic_block_;
HBoundsCheck* lower_check_;
HBoundsCheck* upper_check_;
HInstruction* added_lower_index_;
HConstant* added_lower_offset_;
HInstruction* added_upper_index_;
HConstant* added_upper_offset_;
BoundsCheckBbData* next_in_bb_;
BoundsCheckBbData* father_in_dt_;
// Given an existing add instruction and a bounds check it tries to
// find the current context (either of the add or of the check index).
HValue* IndexContext(HInstruction* add, HBoundsCheck* check) {
if (add != NULL && add->IsAdd()) {
return HAdd::cast(add)->context();
}
if (check->index()->IsBinaryOperation()) {
return HBinaryOperation::cast(check->index())->context();
}
return NULL;
}
// This function returns false if it cannot build the add because the
// current context cannot be determined.
bool BuildOffsetAdd(HBoundsCheck* check,
HInstruction** add,
HConstant** constant,
HValue* original_value,
Representation representation,
int32_t new_offset) {
HValue* index_context = IndexContext(*add, check);
if (index_context == NULL) return false;
Zone* zone = BasicBlock()->zone();
HConstant* new_constant = HConstant::New(zone, index_context,
new_offset, representation);
if (*add == NULL) {
new_constant->InsertBefore(check);
(*add) = HAdd::New(zone, index_context, original_value, new_constant);
(*add)->AssumeRepresentation(representation);
(*add)->InsertBefore(check);
} else {
new_constant->InsertBefore(*add);
(*constant)->DeleteAndReplaceWith(new_constant);
}
*constant = new_constant;
return true;
}
void RemoveZeroAdd(HInstruction** add, HConstant** constant) {
if (*add != NULL && (*add)->IsAdd() && (*constant)->Integer32Value() == 0) {
(*add)->DeleteAndReplaceWith(HAdd::cast(*add)->left());
(*constant)->DeleteAndReplaceWith(NULL);
}
}
DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData);
};
static bool BoundsCheckKeyMatch(void* key1, void* key2) {
BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
}
BoundsCheckTable::BoundsCheckTable(Zone* zone)
: ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)) { }
BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key,
Zone* zone) {
return reinterpret_cast<BoundsCheckBbData**>(
&(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
}
void BoundsCheckTable::Insert(BoundsCheckKey* key,
BoundsCheckBbData* data,
Zone* zone) {
Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
}
void BoundsCheckTable::Delete(BoundsCheckKey* key) {
Remove(key, key->Hash());
}
// Eliminates checks in bb and recursively in the dominated blocks.
// Also replace the results of check instructions with the original value, if
// the result is used. This is safe now, since we don't do code motion after
// this point. It enables better register allocation since the value produced
// by check instructions is really a copy of the original value.
void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks(
HBasicBlock* bb) {
BoundsCheckBbData* bb_data_list = NULL;
for (HInstructionIterator it(bb); !it.Done(); it.Advance()) {
HInstruction* i = it.Current();
if (!i->IsBoundsCheck()) continue;
HBoundsCheck* check = HBoundsCheck::cast(i);
int32_t offset;
BoundsCheckKey* key =
BoundsCheckKey::Create(zone(), check, &offset);
if (key == NULL) continue;
BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone());
BoundsCheckBbData* data = *data_p;
if (data == NULL) {
bb_data_list = new(zone()) BoundsCheckBbData(key,
offset,
offset,
bb,
check,
check,
bb_data_list,
NULL);
*data_p = bb_data_list;
} else if (data->OffsetIsCovered(offset)) {
bb->graph()->isolate()->counters()->
bounds_checks_eliminated()->Increment();
check->DeleteAndReplaceWith(check->ActualValue());
} else if (data->BasicBlock() != bb ||
!data->CoverCheck(check, offset)) {
// If the check is in the current BB we try to modify it by calling
// "CoverCheck", but if also that fails we record the current offsets
// in a new data instance because from now on they are covered.
int32_t new_lower_offset = offset < data->LowerOffset()
? offset
: data->LowerOffset();
int32_t new_upper_offset = offset > data->UpperOffset()
? offset
: data->UpperOffset();
bb_data_list = new(zone()) BoundsCheckBbData(key,
new_lower_offset,
new_upper_offset,
bb,
data->LowerCheck(),
data->UpperCheck(),
bb_data_list,
data);
table_.Insert(key, bb_data_list, zone());
}
}
for (int i = 0; i < bb->dominated_blocks()->length(); ++i) {
EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i));
}
for (BoundsCheckBbData* data = bb_data_list;
data != NULL;
data = data->NextInBasicBlock()) {
data->RemoveZeroOperations();
if (data->FatherInDominatorTree()) {
table_.Insert(data->Key(), data->FatherInDominatorTree(), zone());
} else {
table_.Delete(data->Key());
}
}
}
} } // namespace v8::internal