v8/src/builtins/builtins-internal-gen.cc

987 lines
36 KiB
C++
Raw Normal View History

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/code-stub-assembler.h"
#include "src/heap/heap-inl.h"
#include "src/macro-assembler.h"
#include "src/objects/shared-function-info.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
template <typename T>
using TNode = compiler::TNode<T>;
// -----------------------------------------------------------------------------
// Interrupt and stack checks.
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard);
}
// -----------------------------------------------------------------------------
// TurboFan support builtins.
TF_BUILTIN(CopyFastSmiOrObjectElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
// Load the {object}s elements.
Node* source = LoadObjectField(object, JSObject::kElementsOffset);
Node* target = CloneFixedArray(source, ExtractFixedArrayFlag::kFixedArrays);
StoreObjectField(object, JSObject::kElementsOffset, target);
Return(target);
}
TF_BUILTIN(GrowFastDoubleElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
Label runtime(this, Label::kDeferred);
Node* elements = LoadElements(object);
elements = TryGrowElementsCapacity(object, elements, PACKED_DOUBLE_ELEMENTS,
key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, context, object, key);
}
TF_BUILTIN(GrowFastSmiOrObjectElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
Label runtime(this, Label::kDeferred);
Node* elements = LoadElements(object);
elements =
TryGrowElementsCapacity(object, elements, PACKED_ELEMENTS, key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, context, object, key);
}
TF_BUILTIN(NewArgumentsElements, CodeStubAssembler) {
Node* frame = Parameter(Descriptor::kFrame);
Node* length = SmiToWord(Parameter(Descriptor::kLength));
Node* mapped_count = SmiToWord(Parameter(Descriptor::kMappedCount));
// Check if we can allocate in new space.
ElementsKind kind = PACKED_ELEMENTS;
int max_elements = FixedArray::GetMaxLengthForNewSpaceAllocation(kind);
Label if_newspace(this), if_oldspace(this, Label::kDeferred);
Branch(IntPtrLessThan(length, IntPtrConstant(max_elements)), &if_newspace,
&if_oldspace);
BIND(&if_newspace);
{
// Prefer EmptyFixedArray in case of non-positive {length} (the {length}
// can be negative here for rest parameters).
Label if_empty(this), if_notempty(this);
Branch(IntPtrLessThanOrEqual(length, IntPtrConstant(0)), &if_empty,
&if_notempty);
BIND(&if_empty);
Return(EmptyFixedArrayConstant());
BIND(&if_notempty);
{
// Allocate a FixedArray in new space.
Node* result = AllocateFixedArray(kind, length);
// The elements might be used to back mapped arguments. In that case fill
// the mapped elements (i.e. the first {mapped_count}) with the hole, but
// make sure not to overshoot the {length} if some arguments are missing.
Node* number_of_holes =
SelectConstant(IntPtrLessThan(mapped_count, length), mapped_count,
length, MachineType::PointerRepresentation());
Node* the_hole = TheHoleConstant();
// Fill the first elements up to {number_of_holes} with the hole.
VARIABLE(var_index, MachineType::PointerRepresentation());
Label loop1(this, &var_index), done_loop1(this);
var_index.Bind(IntPtrConstant(0));
Goto(&loop1);
BIND(&loop1);
{
// Load the current {index}.
Node* index = var_index.value();
// Check if we are done.
GotoIf(WordEqual(index, number_of_holes), &done_loop1);
// Store the hole into the {result}.
StoreFixedArrayElement(result, index, the_hole, SKIP_WRITE_BARRIER);
// Continue with next {index}.
var_index.Bind(IntPtrAdd(index, IntPtrConstant(1)));
Goto(&loop1);
}
BIND(&done_loop1);
// Compute the effective {offset} into the {frame}.
Node* offset = IntPtrAdd(length, IntPtrConstant(1));
// Copy the parameters from {frame} (starting at {offset}) to {result}.
Label loop2(this, &var_index), done_loop2(this);
Goto(&loop2);
BIND(&loop2);
{
// Load the current {index}.
Node* index = var_index.value();
// Check if we are done.
GotoIf(WordEqual(index, length), &done_loop2);
// Load the parameter at the given {index}.
Node* value = Load(MachineType::AnyTagged(), frame,
TimesPointerSize(IntPtrSub(offset, index)));
// Store the {value} into the {result}.
StoreFixedArrayElement(result, index, value, SKIP_WRITE_BARRIER);
// Continue with next {index}.
var_index.Bind(IntPtrAdd(index, IntPtrConstant(1)));
Goto(&loop2);
}
BIND(&done_loop2);
Return(result);
}
}
BIND(&if_oldspace);
{
// Allocate in old space (or large object space).
TailCallRuntime(Runtime::kNewArgumentsElements, NoContextConstant(),
BitcastWordToTagged(frame), SmiFromWord(length),
SmiFromWord(mapped_count));
}
}
TF_BUILTIN(ReturnReceiver, CodeStubAssembler) {
Return(Parameter(Descriptor::kReceiver));
}
class RecordWriteCodeStubAssembler : public CodeStubAssembler {
public:
explicit RecordWriteCodeStubAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
Node* IsMarking() {
Node* is_marking_addr = ExternalConstant(
ExternalReference::heap_is_marking_flag_address(this->isolate()));
return Load(MachineType::Uint8(), is_marking_addr);
}
Node* IsPageFlagSet(Node* object, int mask) {
Node* page = WordAnd(object, IntPtrConstant(~Page::kPageAlignmentMask));
Node* flags = Load(MachineType::Pointer(), page,
IntPtrConstant(MemoryChunk::kFlagsOffset));
return WordNotEqual(WordAnd(flags, IntPtrConstant(mask)),
IntPtrConstant(0));
}
void GotoIfNotBlack(Node* object, Label* not_black) {
Label exit(this);
Label* black = &exit;
DCHECK_EQ(strcmp(Marking::kBlackBitPattern, "11"), 0);
Node* cell;
Node* mask;
GetMarkBit(object, &cell, &mask);
mask = TruncateWordToWord32(mask);
Node* bits = Load(MachineType::Int32(), cell);
Node* bit_0 = Word32And(bits, mask);
GotoIf(Word32Equal(bit_0, Int32Constant(0)), not_black);
mask = Word32Shl(mask, Int32Constant(1));
Label word_boundary(this), in_word(this);
// If mask becomes zero, we know mask was `1 << 31`, i.e., the bit is on
// word boundary. Otherwise, the bit is within the word.
Branch(Word32Equal(mask, Int32Constant(0)), &word_boundary, &in_word);
BIND(&word_boundary);
{
Node* bit_1 = Word32And(
Load(MachineType::Int32(), IntPtrAdd(cell, IntPtrConstant(4))),
Int32Constant(1));
Branch(Word32Equal(bit_1, Int32Constant(0)), not_black, black);
}
BIND(&in_word);
{
Branch(Word32Equal(Word32And(bits, mask), Int32Constant(0)), not_black,
black);
}
BIND(&exit);
}
Node* IsWhite(Node* object) {
DCHECK_EQ(strcmp(Marking::kWhiteBitPattern, "00"), 0);
Node* cell;
Node* mask;
GetMarkBit(object, &cell, &mask);
mask = TruncateWordToWord32(mask);
// Non-white has 1 for the first bit, so we only need to check for the first
// bit.
return Word32Equal(Word32And(Load(MachineType::Int32(), cell), mask),
Int32Constant(0));
}
void GetMarkBit(Node* object, Node** cell, Node** mask) {
Node* page = WordAnd(object, IntPtrConstant(~Page::kPageAlignmentMask));
{
// Temp variable to calculate cell offset in bitmap.
Node* r0;
int shift = Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 -
Bitmap::kBytesPerCellLog2;
r0 = WordShr(object, IntPtrConstant(shift));
r0 = WordAnd(r0, IntPtrConstant((Page::kPageAlignmentMask >> shift) &
~(Bitmap::kBytesPerCell - 1)));
*cell = IntPtrAdd(IntPtrAdd(page, r0),
IntPtrConstant(MemoryChunk::kHeaderSize));
}
{
// Temp variable to calculate bit offset in cell.
Node* r1;
r1 = WordShr(object, IntPtrConstant(kPointerSizeLog2));
r1 = WordAnd(r1, IntPtrConstant((1 << Bitmap::kBitsPerCellLog2) - 1));
// It seems that LSB(e.g. cl) is automatically used, so no manual masking
// is needed. Uncomment the following line otherwise.
// WordAnd(r1, IntPtrConstant((1 << kBitsPerByte) - 1)));
*mask = WordShl(IntPtrConstant(1), r1);
}
}
Node* ShouldSkipFPRegs(Node* mode) {
return WordEqual(mode, SmiConstant(kDontSaveFPRegs));
}
Node* ShouldEmitRememberSet(Node* remembered_set) {
return WordEqual(remembered_set, SmiConstant(EMIT_REMEMBERED_SET));
}
void CallCFunction1WithCallerSavedRegistersMode(MachineType return_type,
MachineType arg0_type,
Node* function, Node* arg0,
Node* mode, Label* next) {
Label dont_save_fp(this), save_fp(this);
Branch(ShouldSkipFPRegs(mode), &dont_save_fp, &save_fp);
BIND(&dont_save_fp);
{
CallCFunction1WithCallerSavedRegisters(return_type, arg0_type, function,
arg0, kDontSaveFPRegs);
Goto(next);
}
BIND(&save_fp);
{
CallCFunction1WithCallerSavedRegisters(return_type, arg0_type, function,
arg0, kSaveFPRegs);
Goto(next);
}
}
void CallCFunction3WithCallerSavedRegistersMode(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
Node* mode, Label* next) {
Label dont_save_fp(this), save_fp(this);
Branch(ShouldSkipFPRegs(mode), &dont_save_fp, &save_fp);
BIND(&dont_save_fp);
{
CallCFunction3WithCallerSavedRegisters(return_type, arg0_type, arg1_type,
arg2_type, function, arg0, arg1,
arg2, kDontSaveFPRegs);
Goto(next);
}
BIND(&save_fp);
{
CallCFunction3WithCallerSavedRegisters(return_type, arg0_type, arg1_type,
arg2_type, function, arg0, arg1,
arg2, kSaveFPRegs);
Goto(next);
}
}
void InsertToStoreBufferAndGoto(Node* isolate, Node* slot, Node* mode,
Label* next) {
Node* store_buffer_top_addr =
ExternalConstant(ExternalReference::store_buffer_top(this->isolate()));
Node* store_buffer_top =
Load(MachineType::Pointer(), store_buffer_top_addr);
StoreNoWriteBarrier(MachineType::PointerRepresentation(), store_buffer_top,
slot);
Node* new_store_buffer_top =
IntPtrAdd(store_buffer_top, IntPtrConstant(kPointerSize));
StoreNoWriteBarrier(MachineType::PointerRepresentation(),
store_buffer_top_addr, new_store_buffer_top);
Node* test = WordAnd(new_store_buffer_top,
IntPtrConstant(StoreBuffer::kStoreBufferMask));
Label overflow(this);
Branch(WordEqual(test, IntPtrConstant(0)), &overflow, next);
BIND(&overflow);
{
Node* function = ExternalConstant(
ExternalReference::store_buffer_overflow_function(this->isolate()));
CallCFunction1WithCallerSavedRegistersMode(MachineType::Int32(),
MachineType::Pointer(),
function, isolate, mode, next);
}
}
};
TF_BUILTIN(RecordWrite, RecordWriteCodeStubAssembler) {
Node* object = BitcastTaggedToWord(Parameter(Descriptor::kObject));
Node* slot = Parameter(Descriptor::kSlot);
Node* isolate = Parameter(Descriptor::kIsolate);
Node* remembered_set = Parameter(Descriptor::kRememberedSet);
Node* fp_mode = Parameter(Descriptor::kFPMode);
Node* value = Load(MachineType::Pointer(), slot);
Label generational_wb(this);
Label incremental_wb(this);
Label exit(this);
Branch(ShouldEmitRememberSet(remembered_set), &generational_wb,
&incremental_wb);
BIND(&generational_wb);
{
Label test_old_to_new_flags(this);
Label store_buffer_exit(this), store_buffer_incremental_wb(this);
// When incremental marking is not on, we skip cross generation pointer
// checking here, because there are checks for
// `kPointersFromHereAreInterestingMask` and
// `kPointersToHereAreInterestingMask` in
// `src/compiler/<arch>/code-generator-<arch>.cc` before calling this stub,
// which serves as the cross generation checking.
Branch(IsMarking(), &test_old_to_new_flags, &store_buffer_exit);
BIND(&test_old_to_new_flags);
{
// TODO(albertnetymk): Try to cache the page flag for value and object,
// instead of calling IsPageFlagSet each time.
Node* value_in_new_space =
IsPageFlagSet(value, MemoryChunk::kIsInNewSpaceMask);
GotoIfNot(value_in_new_space, &incremental_wb);
Node* object_in_new_space =
IsPageFlagSet(object, MemoryChunk::kIsInNewSpaceMask);
GotoIf(object_in_new_space, &incremental_wb);
Goto(&store_buffer_incremental_wb);
}
BIND(&store_buffer_exit);
{ InsertToStoreBufferAndGoto(isolate, slot, fp_mode, &exit); }
BIND(&store_buffer_incremental_wb);
{ InsertToStoreBufferAndGoto(isolate, slot, fp_mode, &incremental_wb); }
}
BIND(&incremental_wb);
{
Label call_incremental_wb(this);
#ifndef V8_CONCURRENT_MARKING
GotoIfNotBlack(object, &exit);
#endif
// There are two cases we need to call incremental write barrier.
// 1) value_is_white
GotoIf(IsWhite(value), &call_incremental_wb);
// 2) is_compacting && value_in_EC && obj_isnt_skip
// is_compacting = true when is_marking = true
GotoIfNot(IsPageFlagSet(value, MemoryChunk::kEvacuationCandidateMask),
&exit);
GotoIf(
IsPageFlagSet(object, MemoryChunk::kSkipEvacuationSlotsRecordingMask),
&exit);
Goto(&call_incremental_wb);
BIND(&call_incremental_wb);
{
Node* function = ExternalConstant(
ExternalReference::incremental_marking_record_write_function(
this->isolate()));
CallCFunction3WithCallerSavedRegistersMode(
MachineType::Int32(), MachineType::Pointer(), MachineType::Pointer(),
MachineType::Pointer(), function, object, slot, isolate, fp_mode,
&exit);
}
}
BIND(&exit);
Return(TrueConstant());
}
class DeletePropertyBaseAssembler : public CodeStubAssembler {
public:
explicit DeletePropertyBaseAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
void DeleteDictionaryProperty(Node* receiver, Node* properties, Node* name,
Node* context, Label* dont_delete,
Label* notfound) {
VARIABLE(var_name_index, MachineType::PointerRepresentation());
Label dictionary_found(this, &var_name_index);
NameDictionaryLookup<NameDictionary>(properties, name, &dictionary_found,
&var_name_index, notfound);
BIND(&dictionary_found);
Node* key_index = var_name_index.value();
Node* details =
LoadDetailsByKeyIndex<NameDictionary>(properties, key_index);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesDontDeleteMask),
dont_delete);
// Overwrite the entry itself (see NameDictionary::SetEntry).
Node* filler = TheHoleConstant();
DCHECK(Heap::RootIsImmortalImmovable(Heap::kTheHoleValueRootIndex));
StoreFixedArrayElement(properties, key_index, filler, SKIP_WRITE_BARRIER);
StoreValueByKeyIndex<NameDictionary>(properties, key_index, filler,
SKIP_WRITE_BARRIER);
StoreDetailsByKeyIndex<NameDictionary>(properties, key_index,
SmiConstant(0));
// Update bookkeeping information (see NameDictionary::ElementRemoved).
Node* nof = GetNumberOfElements<NameDictionary>(properties);
Node* new_nof = SmiSub(nof, SmiConstant(1));
SetNumberOfElements<NameDictionary>(properties, new_nof);
Node* num_deleted = GetNumberOfDeletedElements<NameDictionary>(properties);
Node* new_deleted = SmiAdd(num_deleted, SmiConstant(1));
SetNumberOfDeletedElements<NameDictionary>(properties, new_deleted);
// Shrink the dictionary if necessary (see NameDictionary::Shrink).
Label shrinking_done(this);
Node* capacity = GetCapacity<NameDictionary>(properties);
GotoIf(SmiGreaterThan(new_nof, SmiShr(capacity, 2)), &shrinking_done);
GotoIf(SmiLessThan(new_nof, SmiConstant(16)), &shrinking_done);
CallRuntime(Runtime::kShrinkPropertyDictionary, context, receiver);
Goto(&shrinking_done);
BIND(&shrinking_done);
Return(TrueConstant());
}
};
TF_BUILTIN(DeleteProperty, DeletePropertyBaseAssembler) {
Node* receiver = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* language_mode = Parameter(Descriptor::kLanguageMode);
Node* context = Parameter(Descriptor::kContext);
VARIABLE(var_index, MachineType::PointerRepresentation());
VARIABLE(var_unique, MachineRepresentation::kTagged, key);
Label if_index(this), if_unique_name(this), if_notunique(this),
if_notfound(this), slow(this);
GotoIf(TaggedIsSmi(receiver), &slow);
Node* receiver_map = LoadMap(receiver);
Node* instance_type = LoadMapInstanceType(receiver_map);
GotoIf(Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
&slow);
TryToName(key, &if_index, &var_index, &if_unique_name, &var_unique, &slow,
&if_notunique);
BIND(&if_index);
{
Comment("integer index");
Goto(&slow); // TODO(jkummerow): Implement more smarts here.
}
BIND(&if_unique_name);
{
Comment("key is unique name");
Node* unique = var_unique.value();
CheckForAssociatedProtector(unique, &slow);
Label dictionary(this), dont_delete(this);
GotoIf(IsDictionaryMap(receiver_map), &dictionary);
// Fast properties need to clear recorded slots, which can only be done
// in C++.
Goto(&slow);
BIND(&dictionary);
{
Node* properties = LoadSlowProperties(receiver);
DeleteDictionaryProperty(receiver, properties, unique, context,
&dont_delete, &if_notfound);
}
BIND(&dont_delete);
{
STATIC_ASSERT(LanguageModeSize == 2);
GotoIf(SmiNotEqual(language_mode, SmiConstant(LanguageMode::kSloppy)),
&slow);
Return(FalseConstant());
}
}
BIND(&if_notunique);
{
// If the string was not found in the string table, then no object can
// have a property with that name.
TryInternalizeString(key, &if_index, &var_index, &if_unique_name,
&var_unique, &if_notfound, &slow);
}
BIND(&if_notfound);
Return(TrueConstant());
BIND(&slow);
{
TailCallRuntime(Runtime::kDeleteProperty, context, receiver, key,
language_mode);
}
}
[turbofan] Optimize fast enum cache driven for..in. This CL adds support to optimize for..in in fast enum-cache mode to the same degree that it was optimized in Crankshaft, without adding the same deoptimization loop that Crankshaft had with missing enum cache indices. That means code like for (var k in o) { var v = o[k]; // ... } and code like for (var k in o) { if (Object.prototype.hasOwnProperty.call(o, k)) { var v = o[k]; // ... } } which follows the https://eslint.org/docs/rules/guard-for-in linter rule, can now utilize the enum cache indices if o has only fast properties on the receiver, which speeds up the access o[k] significantly and reduces the pollution of the global megamorphic stub cache. For example the micro-benchmark in the tracking bug v8:6702 now runs faster than ever before: forIn: 1516 ms. forInHasOwnProperty: 1674 ms. forInHasOwnPropertySafe: 1595 ms. forInSum: 2051 ms. forInSumSafe: 2215 ms. Compared to numbers from V8 5.8 which is the last version running with Crankshaft forIn: 1641 ms. forInHasOwnProperty: 1719 ms. forInHasOwnPropertySafe: 1802 ms. forInSum: 2226 ms. forInSumSafe: 2409 ms. and V8 6.0 which is the current stable version with TurboFan: forIn: 1713 ms. forInHasOwnProperty: 5417 ms. forInHasOwnPropertySafe: 5324 ms. forInSum: 7556 ms. forInSumSafe: 11067 ms. It also improves the throughput on the string-fasta benchmark by around 7-10%, and there seems to be a ~5% improvement on the Speedometer/React benchmark locally. For this to work, the ForInPrepare bytecode was split into ForInEnumerate and ForInPrepare, which is very similar to how it was handled in Fullcodegen initially. In TurboFan we introduce a new operator LoadFieldByIndex that does the dynamic property load. This also removes the CheckMapValue operator again in favor of just using LoadField, ReferenceEqual and CheckIf, which work automatically with the EscapeAnalysis and the BranchConditionElimination. Bug: v8:6702 Change-Id: I91235413eea478ba77ace7bd14bb2f62e155dd9a Reviewed-on: https://chromium-review.googlesource.com/645949 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Cr-Commit-Position: refs/heads/master@{#47768}
2017-09-01 10:49:06 +00:00
TF_BUILTIN(ForInEnumerate, CodeStubAssembler) {
Node* receiver = Parameter(Descriptor::kReceiver);
Node* context = Parameter(Descriptor::kContext);
Label if_empty(this), if_runtime(this, Label::kDeferred);
Node* receiver_map = CheckEnumCache(receiver, &if_empty, &if_runtime);
Return(receiver_map);
BIND(&if_empty);
Return(EmptyFixedArrayConstant());
BIND(&if_runtime);
TailCallRuntime(Runtime::kForInEnumerate, context, receiver);
}
TF_BUILTIN(ForInFilter, CodeStubAssembler) {
Node* key = Parameter(Descriptor::kKey);
Node* object = Parameter(Descriptor::kObject);
Node* context = Parameter(Descriptor::kContext);
CSA_ASSERT(this, IsString(key));
Label if_true(this), if_false(this);
TNode<Oddball> result = HasProperty(object, key, context, kForInHasProperty);
[turbofan] Optimize fast enum cache driven for..in. This CL adds support to optimize for..in in fast enum-cache mode to the same degree that it was optimized in Crankshaft, without adding the same deoptimization loop that Crankshaft had with missing enum cache indices. That means code like for (var k in o) { var v = o[k]; // ... } and code like for (var k in o) { if (Object.prototype.hasOwnProperty.call(o, k)) { var v = o[k]; // ... } } which follows the https://eslint.org/docs/rules/guard-for-in linter rule, can now utilize the enum cache indices if o has only fast properties on the receiver, which speeds up the access o[k] significantly and reduces the pollution of the global megamorphic stub cache. For example the micro-benchmark in the tracking bug v8:6702 now runs faster than ever before: forIn: 1516 ms. forInHasOwnProperty: 1674 ms. forInHasOwnPropertySafe: 1595 ms. forInSum: 2051 ms. forInSumSafe: 2215 ms. Compared to numbers from V8 5.8 which is the last version running with Crankshaft forIn: 1641 ms. forInHasOwnProperty: 1719 ms. forInHasOwnPropertySafe: 1802 ms. forInSum: 2226 ms. forInSumSafe: 2409 ms. and V8 6.0 which is the current stable version with TurboFan: forIn: 1713 ms. forInHasOwnProperty: 5417 ms. forInHasOwnPropertySafe: 5324 ms. forInSum: 7556 ms. forInSumSafe: 11067 ms. It also improves the throughput on the string-fasta benchmark by around 7-10%, and there seems to be a ~5% improvement on the Speedometer/React benchmark locally. For this to work, the ForInPrepare bytecode was split into ForInEnumerate and ForInPrepare, which is very similar to how it was handled in Fullcodegen initially. In TurboFan we introduce a new operator LoadFieldByIndex that does the dynamic property load. This also removes the CheckMapValue operator again in favor of just using LoadField, ReferenceEqual and CheckIf, which work automatically with the EscapeAnalysis and the BranchConditionElimination. Bug: v8:6702 Change-Id: I91235413eea478ba77ace7bd14bb2f62e155dd9a Reviewed-on: https://chromium-review.googlesource.com/645949 Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Cr-Commit-Position: refs/heads/master@{#47768}
2017-09-01 10:49:06 +00:00
Branch(IsTrue(result), &if_true, &if_false);
BIND(&if_true);
Return(key);
BIND(&if_false);
Return(UndefinedConstant());
}
TF_BUILTIN(SameValue, CodeStubAssembler) {
Node* lhs = Parameter(Descriptor::kLeft);
Node* rhs = Parameter(Descriptor::kRight);
Label if_true(this), if_false(this);
BranchIfSameValue(lhs, rhs, &if_true, &if_false);
BIND(&if_true);
Return(TrueConstant());
BIND(&if_false);
Return(FalseConstant());
}
class InternalBuiltinsAssembler : public CodeStubAssembler {
public:
explicit InternalBuiltinsAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
TNode<IntPtrT> GetPendingMicrotaskCount();
void SetPendingMicrotaskCount(TNode<IntPtrT> count);
TNode<FixedArray> GetMicrotaskQueue();
void SetMicrotaskQueue(TNode<FixedArray> queue);
TNode<Context> GetCurrentContext();
void SetCurrentContext(TNode<Context> context);
void EnterMicrotaskContext(TNode<Context> context);
void LeaveMicrotaskContext();
TNode<Object> GetPendingException() {
auto ref = ExternalReference(kPendingExceptionAddress, isolate());
return TNode<Object>::UncheckedCast(
Load(MachineType::AnyTagged(), ExternalConstant(ref)));
}
void ClearPendingException() {
auto ref = ExternalReference(kPendingExceptionAddress, isolate());
StoreNoWriteBarrier(MachineRepresentation::kTagged, ExternalConstant(ref),
TheHoleConstant());
}
TNode<Object> GetScheduledException() {
auto ref = ExternalReference::scheduled_exception_address(isolate());
return TNode<Object>::UncheckedCast(
Load(MachineType::AnyTagged(), ExternalConstant(ref)));
}
void ClearScheduledException() {
auto ref = ExternalReference::scheduled_exception_address(isolate());
StoreNoWriteBarrier(MachineRepresentation::kTagged, ExternalConstant(ref),
TheHoleConstant());
}
};
TNode<IntPtrT> InternalBuiltinsAssembler::GetPendingMicrotaskCount() {
auto ref = ExternalReference::pending_microtask_count_address(isolate());
if (kIntSize == 8) {
return TNode<IntPtrT>::UncheckedCast(
Load(MachineType::Int64(), ExternalConstant(ref)));
} else {
Node* const value = Load(MachineType::Int32(), ExternalConstant(ref));
return ChangeInt32ToIntPtr(value);
}
}
void InternalBuiltinsAssembler::SetPendingMicrotaskCount(TNode<IntPtrT> count) {
auto ref = ExternalReference::pending_microtask_count_address(isolate());
auto rep = kIntSize == 8 ? MachineRepresentation::kWord64
: MachineRepresentation::kWord32;
if (kIntSize == 4 && kPointerSize == 8) {
Node* const truncated_count =
TruncateInt64ToInt32(TNode<Int64T>::UncheckedCast(count));
StoreNoWriteBarrier(rep, ExternalConstant(ref), truncated_count);
} else {
StoreNoWriteBarrier(rep, ExternalConstant(ref), count);
}
}
TNode<FixedArray> InternalBuiltinsAssembler::GetMicrotaskQueue() {
return TNode<FixedArray>::UncheckedCast(
LoadRoot(Heap::kMicrotaskQueueRootIndex));
}
void InternalBuiltinsAssembler::SetMicrotaskQueue(TNode<FixedArray> queue) {
StoreRoot(Heap::kMicrotaskQueueRootIndex, queue);
}
TNode<Context> InternalBuiltinsAssembler::GetCurrentContext() {
auto ref = ExternalReference(kContextAddress, isolate());
return TNode<Context>::UncheckedCast(
Load(MachineType::AnyTagged(), ExternalConstant(ref)));
}
void InternalBuiltinsAssembler::SetCurrentContext(TNode<Context> context) {
auto ref = ExternalReference(kContextAddress, isolate());
StoreNoWriteBarrier(MachineRepresentation::kTagged, ExternalConstant(ref),
context);
}
void InternalBuiltinsAssembler::EnterMicrotaskContext(
TNode<Context> microtask_context) {
auto ref = ExternalReference::handle_scope_implementer_address(isolate());
Node* const hsi = Load(MachineType::Pointer(), ExternalConstant(ref));
StoreNoWriteBarrier(
MachineType::PointerRepresentation(), hsi,
IntPtrConstant(HandleScopeImplementerOffsets::kMicrotaskContext),
BitcastTaggedToWord(microtask_context));
// Load mirrored std::vector length from
// HandleScopeImplementer::entered_contexts_count_
auto type = kSizetSize == 8 ? MachineType::Uint64() : MachineType::Uint32();
Node* entered_contexts_length = Load(
type, hsi,
IntPtrConstant(HandleScopeImplementerOffsets::kEnteredContextsCount));
auto rep = kSizetSize == 8 ? MachineRepresentation::kWord64
: MachineRepresentation::kWord32;
StoreNoWriteBarrier(
rep, hsi,
IntPtrConstant(
HandleScopeImplementerOffsets::kEnteredContextCountDuringMicrotasks),
entered_contexts_length);
}
void InternalBuiltinsAssembler::LeaveMicrotaskContext() {
auto ref = ExternalReference::handle_scope_implementer_address(isolate());
Node* const hsi = Load(MachineType::Pointer(), ExternalConstant(ref));
StoreNoWriteBarrier(
MachineType::PointerRepresentation(), hsi,
IntPtrConstant(HandleScopeImplementerOffsets::kMicrotaskContext),
IntPtrConstant(0));
if (kSizetSize == 4) {
StoreNoWriteBarrier(
MachineRepresentation::kWord32, hsi,
IntPtrConstant(HandleScopeImplementerOffsets::
kEnteredContextCountDuringMicrotasks),
Int32Constant(0));
} else {
StoreNoWriteBarrier(
MachineRepresentation::kWord64, hsi,
IntPtrConstant(HandleScopeImplementerOffsets::
kEnteredContextCountDuringMicrotasks),
Int64Constant(0));
}
}
TF_BUILTIN(RunMicrotasks, InternalBuiltinsAssembler) {
Label init_queue_loop(this);
Goto(&init_queue_loop);
BIND(&init_queue_loop);
{
TVARIABLE(IntPtrT, index, IntPtrConstant(0));
Label loop(this, &index);
TNode<IntPtrT> num_tasks = GetPendingMicrotaskCount();
ReturnIf(IntPtrEqual(num_tasks, IntPtrConstant(0)), UndefinedConstant());
TNode<FixedArray> queue = GetMicrotaskQueue();
CSA_ASSERT(this, IntPtrGreaterThanOrEqual(
LoadAndUntagFixedArrayBaseLength(queue), num_tasks));
CSA_ASSERT(this, IntPtrGreaterThan(num_tasks, IntPtrConstant(0)));
SetPendingMicrotaskCount(IntPtrConstant(0));
SetMicrotaskQueue(
TNode<FixedArray>::UncheckedCast(EmptyFixedArrayConstant()));
Goto(&loop);
BIND(&loop);
{
TNode<HeapObject> microtask =
TNode<HeapObject>::UncheckedCast(LoadFixedArrayElement(queue, index));
index = IntPtrAdd(index, IntPtrConstant(1));
CSA_ASSERT(this, TaggedIsNotSmi(microtask));
TNode<Map> microtask_map = LoadMap(microtask);
TNode<Int32T> microtask_type = LoadMapInstanceType(microtask_map);
Label is_call_handler_info(this);
Label is_function(this);
Label is_promise_resolve_thenable_job(this);
Label is_promise_reaction_job(this);
Label is_unreachable(this);
int32_t case_values[] = {TUPLE3_TYPE, // CallHandlerInfo
JS_FUNCTION_TYPE,
PROMISE_RESOLVE_THENABLE_JOB_INFO_TYPE,
PROMISE_REACTION_JOB_INFO_TYPE};
Label* case_labels[] = {&is_call_handler_info, &is_function,
&is_promise_resolve_thenable_job,
&is_promise_reaction_job};
static_assert(arraysize(case_values) == arraysize(case_labels), "");
Switch(microtask_type, &is_unreachable, case_values, case_labels,
arraysize(case_labels));
BIND(&is_call_handler_info);
{
// Bailout to C++ slow path for the remainder of the loop.
auto index_ref =
ExternalReference(kMicrotaskQueueBailoutIndexAddress, isolate());
auto count_ref =
ExternalReference(kMicrotaskQueueBailoutCountAddress, isolate());
auto rep = kIntSize == 4 ? MachineRepresentation::kWord32
: MachineRepresentation::kWord64;
// index was pre-incremented, decrement for bailout to C++.
Node* value = IntPtrSub(index, IntPtrConstant(1));
if (kPointerSize == 4) {
DCHECK_EQ(kIntSize, 4);
StoreNoWriteBarrier(rep, ExternalConstant(index_ref), value);
StoreNoWriteBarrier(rep, ExternalConstant(count_ref), num_tasks);
} else {
Node* count = num_tasks;
if (kIntSize == 4) {
value = TruncateInt64ToInt32(value);
count = TruncateInt64ToInt32(count);
}
StoreNoWriteBarrier(rep, ExternalConstant(index_ref), value);
StoreNoWriteBarrier(rep, ExternalConstant(count_ref), count);
}
Return(queue);
}
BIND(&is_function);
{
Label cont(this);
VARIABLE(exception, MachineRepresentation::kTagged, TheHoleConstant());
TNode<Context> old_context = GetCurrentContext();
TNode<Context> fn_context = TNode<Context>::UncheckedCast(
LoadObjectField(microtask, JSFunction::kContextOffset));
TNode<Context> native_context =
TNode<Context>::UncheckedCast(LoadNativeContext(fn_context));
SetCurrentContext(native_context);
EnterMicrotaskContext(fn_context);
Node* const call = CallJS(CodeFactory::Call(isolate()), native_context,
microtask, UndefinedConstant());
GotoIfException(call, &cont);
Goto(&cont);
BIND(&cont);
LeaveMicrotaskContext();
SetCurrentContext(old_context);
Branch(IntPtrLessThan(index, num_tasks), &loop, &init_queue_loop);
}
BIND(&is_promise_resolve_thenable_job);
{
VARIABLE(exception, MachineRepresentation::kTagged, TheHoleConstant());
TNode<Context> old_context = GetCurrentContext();
TNode<Context> microtask_context =
TNode<Context>::UncheckedCast(LoadObjectField(
microtask, PromiseResolveThenableJobInfo::kContextOffset));
TNode<Context> native_context =
TNode<Context>::UncheckedCast(LoadNativeContext(microtask_context));
SetCurrentContext(native_context);
EnterMicrotaskContext(microtask_context);
Label if_unhandled_exception(this), done(this);
Node* const ret = CallBuiltin(Builtins::kPromiseResolveThenableJob,
native_context, microtask);
GotoIfException(ret, &if_unhandled_exception, &exception);
Goto(&done);
BIND(&if_unhandled_exception);
CallRuntime(Runtime::kReportMessage, native_context, exception.value());
Goto(&done);
BIND(&done);
LeaveMicrotaskContext();
SetCurrentContext(old_context);
Branch(IntPtrLessThan(index, num_tasks), &loop, &init_queue_loop);
}
BIND(&is_promise_reaction_job);
{
Label if_multiple(this);
Label if_single(this);
Node* const value =
LoadObjectField(microtask, PromiseReactionJobInfo::kValueOffset);
Node* const tasks =
LoadObjectField(microtask, PromiseReactionJobInfo::kTasksOffset);
Node* const deferred_promises = LoadObjectField(
microtask, PromiseReactionJobInfo::kDeferredPromiseOffset);
Node* const deferred_on_resolves = LoadObjectField(
microtask, PromiseReactionJobInfo::kDeferredOnResolveOffset);
Node* const deferred_on_rejects = LoadObjectField(
microtask, PromiseReactionJobInfo::kDeferredOnRejectOffset);
TNode<Context> old_context = GetCurrentContext();
TNode<Context> microtask_context = TNode<Context>::UncheckedCast(
LoadObjectField(microtask, PromiseReactionJobInfo::kContextOffset));
TNode<Context> native_context =
TNode<Context>::UncheckedCast(LoadNativeContext(microtask_context));
SetCurrentContext(native_context);
EnterMicrotaskContext(microtask_context);
Branch(IsFixedArray(deferred_promises), &if_multiple, &if_single);
BIND(&if_single);
{
CallBuiltin(Builtins::kPromiseHandle, native_context, value, tasks,
deferred_promises, deferred_on_resolves,
deferred_on_rejects);
LeaveMicrotaskContext();
SetCurrentContext(old_context);
Branch(IntPtrLessThan(index, num_tasks), &loop, &init_queue_loop);
}
BIND(&if_multiple);
{
TVARIABLE(IntPtrT, inner_index, IntPtrConstant(0));
TNode<IntPtrT> inner_length =
LoadAndUntagFixedArrayBaseLength(deferred_promises);
Label inner_loop(this, &inner_index), done(this);
CSA_ASSERT(this, IntPtrGreaterThan(inner_length, IntPtrConstant(0)));
Goto(&inner_loop);
BIND(&inner_loop);
{
Node* const task = LoadFixedArrayElement(tasks, inner_index);
Node* const deferred_promise =
LoadFixedArrayElement(deferred_promises, inner_index);
Node* const deferred_on_resolve =
LoadFixedArrayElement(deferred_on_resolves, inner_index);
Node* const deferred_on_reject =
LoadFixedArrayElement(deferred_on_rejects, inner_index);
CallBuiltin(Builtins::kPromiseHandle, native_context, value, task,
deferred_promise, deferred_on_resolve,
deferred_on_reject);
inner_index = IntPtrAdd(inner_index, IntPtrConstant(1));
Branch(IntPtrLessThan(inner_index, inner_length), &inner_loop,
&done);
}
BIND(&done);
LeaveMicrotaskContext();
SetCurrentContext(old_context);
Branch(IntPtrLessThan(index, num_tasks), &loop, &init_queue_loop);
}
}
BIND(&is_unreachable);
Unreachable();
}
}
}
TF_BUILTIN(PromiseResolveThenableJob, InternalBuiltinsAssembler) {
VARIABLE(exception, MachineRepresentation::kTagged, TheHoleConstant());
Callable call = CodeFactory::Call(isolate());
Label reject_promise(this, Label::kDeferred);
TNode<PromiseResolveThenableJobInfo> microtask =
TNode<PromiseResolveThenableJobInfo>::UncheckedCast(
Parameter(Descriptor::kMicrotask));
TNode<Context> context =
TNode<Context>::UncheckedCast(Parameter(Descriptor::kContext));
TNode<JSReceiver> thenable = TNode<JSReceiver>::UncheckedCast(LoadObjectField(
microtask, PromiseResolveThenableJobInfo::kThenableOffset));
TNode<JSReceiver> then = TNode<JSReceiver>::UncheckedCast(
LoadObjectField(microtask, PromiseResolveThenableJobInfo::kThenOffset));
TNode<JSFunction> resolve = TNode<JSFunction>::UncheckedCast(LoadObjectField(
microtask, PromiseResolveThenableJobInfo::kResolveOffset));
TNode<JSFunction> reject = TNode<JSFunction>::UncheckedCast(
LoadObjectField(microtask, PromiseResolveThenableJobInfo::kRejectOffset));
Node* const result = CallJS(call, context, then, thenable, resolve, reject);
GotoIfException(result, &reject_promise, &exception);
Return(UndefinedConstant());
BIND(&reject_promise);
CallJS(call, context, reject, UndefinedConstant(), exception.value());
Return(UndefinedConstant());
}
} // namespace internal
} // namespace v8