v8/test/cctest/heap/test-spaces.cc

930 lines
32 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/base/platform/platform.h"
#include "src/snapshot/snapshot.h"
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/utils-inl.h"
namespace v8 {
namespace internal {
#if 0
static void VerifyRegionMarking(Address page_start) {
#ifdef ENABLE_CARDMARKING_WRITE_BARRIER
Page* p = Page::FromAddress(page_start);
p->SetRegionMarks(Page::kAllRegionsCleanMarks);
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
}
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
Page::FromAddress(addr)->MarkRegionDirty(addr);
}
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
}
#endif
}
#endif
// TODO(gc) you can no longer allocate pages like this. Details are hidden.
#if 0
TEST(Page) {
byte* mem = NewArray<byte>(2*Page::kPageSize);
CHECK(mem != NULL);
Address start = reinterpret_cast<Address>(mem);
Address page_start = RoundUp(start, Page::kPageSize);
Page* p = Page::FromAddress(page_start);
// Initialized Page has heap pointer, normally set by memory_allocator.
p->heap_ = CcTest::heap();
CHECK(p->address() == page_start);
CHECK(p->is_valid());
p->opaque_header = 0;
p->SetIsLargeObjectPage(false);
CHECK(!p->next_page()->is_valid());
CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
Page::kObjectStartOffset);
CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
// test region marking
VerifyRegionMarking(page_start);
DeleteArray(mem);
}
#endif
// Temporarily sets a given allocator in an isolate.
class TestMemoryAllocatorScope {
public:
TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
: isolate_(isolate),
old_allocator_(isolate->memory_allocator_) {
isolate->memory_allocator_ = allocator;
}
~TestMemoryAllocatorScope() {
isolate_->memory_allocator_ = old_allocator_;
}
private:
Isolate* isolate_;
MemoryAllocator* old_allocator_;
DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
};
// Temporarily sets a given code range in an isolate.
class TestCodeRangeScope {
public:
TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
: isolate_(isolate),
old_code_range_(isolate->code_range_) {
isolate->code_range_ = code_range;
}
~TestCodeRangeScope() {
isolate_->code_range_ = old_code_range_;
}
private:
Isolate* isolate_;
CodeRange* old_code_range_;
DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
};
static void VerifyMemoryChunk(Isolate* isolate,
Heap* heap,
CodeRange* code_range,
size_t reserve_area_size,
size_t commit_area_size,
size_t second_commit_area_size,
Executability executable) {
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator->SetUp(heap->MaxReserved(),
heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
TestCodeRangeScope test_code_range_scope(isolate, code_range);
size_t header_size = (executable == EXECUTABLE)
? MemoryAllocator::CodePageGuardStartOffset()
: MemoryChunk::kObjectStartOffset;
size_t guard_size = (executable == EXECUTABLE)
? MemoryAllocator::CodePageGuardSize()
: 0;
MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
commit_area_size,
executable,
NULL);
size_t alignment = code_range != NULL && code_range->valid()
? MemoryChunk::kAlignment
: base::OS::CommitPageSize();
size_t reserved_size =
((executable == EXECUTABLE))
? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
alignment)
: RoundUp(header_size + reserve_area_size,
base::OS::CommitPageSize());
CHECK(memory_chunk->size() == reserved_size);
CHECK(memory_chunk->area_start() < memory_chunk->address() +
memory_chunk->size());
CHECK(memory_chunk->area_end() <= memory_chunk->address() +
memory_chunk->size());
CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
Address area_start = memory_chunk->area_start();
memory_chunk->CommitArea(second_commit_area_size);
CHECK(area_start == memory_chunk->area_start());
CHECK(memory_chunk->area_start() < memory_chunk->address() +
memory_chunk->size());
CHECK(memory_chunk->area_end() <= memory_chunk->address() +
memory_chunk->size());
CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
second_commit_area_size);
memory_allocator->Free(memory_chunk);
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(Regress3540) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
const int pageSize = Page::kPageSize;
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(
memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
CodeRange* code_range = new CodeRange(isolate);
const size_t code_range_size = 4 * pageSize;
if (!code_range->SetUp(
code_range_size +
RoundUp(v8::base::OS::CommitPageSize() * kReservedCodeRangePages,
MemoryChunk::kAlignment) +
v8::internal::MemoryAllocator::CodePageAreaSize())) {
return;
}
Address address;
size_t size;
size_t request_size = code_range_size - 2 * pageSize;
address = code_range->AllocateRawMemory(
request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
&size);
CHECK(address != NULL);
Address null_address;
size_t null_size;
request_size = code_range_size - pageSize;
null_address = code_range->AllocateRawMemory(
request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()),
&null_size);
CHECK(null_address == NULL);
code_range->FreeRawMemory(address, size);
delete code_range;
memory_allocator->TearDown();
delete memory_allocator;
}
static unsigned int Pseudorandom() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
return lo & 0xFFFFF;
}
TEST(MemoryChunk) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t reserve_area_size = 1 * MB;
size_t initial_commit_area_size, second_commit_area_size;
for (int i = 0; i < 100; i++) {
initial_commit_area_size = Pseudorandom();
second_commit_area_size = Pseudorandom();
// With CodeRange.
CodeRange* code_range = new CodeRange(isolate);
const size_t code_range_size = 32 * MB;
if (!code_range->SetUp(code_range_size)) return;
VerifyMemoryChunk(isolate,
heap,
code_range,
reserve_area_size,
initial_commit_area_size,
second_commit_area_size,
EXECUTABLE);
VerifyMemoryChunk(isolate,
heap,
code_range,
reserve_area_size,
initial_commit_area_size,
second_commit_area_size,
NOT_EXECUTABLE);
delete code_range;
// Without CodeRange.
code_range = NULL;
VerifyMemoryChunk(isolate,
heap,
code_range,
reserve_area_size,
initial_commit_area_size,
second_commit_area_size,
EXECUTABLE);
VerifyMemoryChunk(isolate,
heap,
code_range,
reserve_area_size,
initial_commit_area_size,
second_commit_area_size,
NOT_EXECUTABLE);
}
}
TEST(MemoryAllocator) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator != nullptr);
CHECK(memory_allocator->SetUp(heap->MaxReserved(),
heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
{
int total_pages = 0;
OldSpace faked_space(heap, OLD_SPACE, NOT_EXECUTABLE);
Page* first_page = memory_allocator->AllocatePage(
faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
first_page->InsertAfter(faked_space.anchor()->prev_page());
CHECK(first_page->is_valid());
CHECK(first_page->next_page() == faked_space.anchor());
total_pages++;
for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
CHECK(p->owner() == &faked_space);
}
// Again, we should get n or n - 1 pages.
Page* other = memory_allocator->AllocatePage(faked_space.AreaSize(),
&faked_space, NOT_EXECUTABLE);
CHECK(other->is_valid());
total_pages++;
other->InsertAfter(first_page);
int page_count = 0;
for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
CHECK(p->owner() == &faked_space);
page_count++;
}
CHECK(total_pages == page_count);
Page* second_page = first_page->next_page();
CHECK(second_page->is_valid());
// OldSpace's destructor will tear down the space and free up all pages.
}
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(NewSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator->SetUp(heap->MaxReserved(),
heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
NewSpace new_space(heap);
CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(),
CcTest::heap()->ReservedSemiSpaceSize()));
CHECK(new_space.HasBeenSetUp());
while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) {
Object* obj =
new_space.AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize)
.ToObjectChecked();
CHECK(new_space.Contains(HeapObject::cast(obj)));
}
new_space.TearDown();
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(OldSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator->SetUp(heap->MaxReserved(),
heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
OldSpace* s = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
CHECK(s != NULL);
CHECK(s->SetUp());
while (s->Available() > 0) {
s->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize).ToObjectChecked();
}
delete s;
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(CompactionSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator != nullptr);
CHECK(
memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
CompactionSpace* compaction_space =
new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
CHECK(compaction_space != NULL);
CHECK(compaction_space->SetUp());
OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
CHECK(old_space != NULL);
CHECK(old_space->SetUp());
// Cannot loop until "Available()" since we initially have 0 bytes available
// and would thus neither grow, nor be able to allocate an object.
const int kNumObjects = 100;
const int kNumObjectsPerPage =
compaction_space->AreaSize() / Page::kMaxRegularHeapObjectSize;
const int kExpectedPages =
(kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
for (int i = 0; i < kNumObjects; i++) {
compaction_space->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize)
.ToObjectChecked();
}
int pages_in_old_space = old_space->CountTotalPages();
int pages_in_compaction_space = compaction_space->CountTotalPages();
CHECK_EQ(pages_in_compaction_space, kExpectedPages);
CHECK_LE(pages_in_old_space, 1);
old_space->MergeCompactionSpace(compaction_space);
CHECK_EQ(old_space->CountTotalPages(),
pages_in_old_space + pages_in_compaction_space);
delete compaction_space;
delete old_space;
memory_allocator->TearDown();
delete memory_allocator;
}
TEST(CompactionSpaceUsingExternalMemory) {
const int kObjectSize = 512;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
MemoryAllocator* allocator = new MemoryAllocator(isolate);
CHECK(allocator != nullptr);
CHECK(allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_scope(isolate, allocator);
CompactionSpaceCollection* collection = new CompactionSpaceCollection(heap);
CompactionSpace* compaction_space = collection->Get(OLD_SPACE);
CHECK(compaction_space != NULL);
CHECK(compaction_space->SetUp());
OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
CHECK(old_space != NULL);
CHECK(old_space->SetUp());
// The linear allocation area already counts as used bytes, making
// exact testing impossible.
heap->DisableInlineAllocation();
// Test:
// * Allocate a backing store in old_space.
// * Compute the number num_rest_objects of kObjectSize objects that fit into
// of available memory.
// kNumRestObjects.
// * Add the rest of available memory to the compaction space.
// * Allocate kNumRestObjects in the compaction space.
// * Allocate one object more.
// * Merge the compaction space and compare the expected number of pages.
// Allocate a single object in old_space to initialize a backing page.
old_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked();
// Compute the number of objects that fit into the rest in old_space.
intptr_t rest = static_cast<int>(old_space->Available());
CHECK_GT(rest, 0);
intptr_t num_rest_objects = rest / kObjectSize;
// After allocating num_rest_objects in compaction_space we allocate a bit
// more.
const intptr_t kAdditionalCompactionMemory = kObjectSize;
// We expect a single old_space page.
const intptr_t kExpectedInitialOldSpacePages = 1;
// We expect a single additional page in compaction space because we mostly
// use external memory.
const intptr_t kExpectedCompactionPages = 1;
// We expect two pages to be reachable from old_space in the end.
const intptr_t kExpectedOldSpacePagesAfterMerge = 2;
CHECK_EQ(old_space->CountTotalPages(), kExpectedInitialOldSpacePages);
CHECK_EQ(compaction_space->CountTotalPages(), 0);
CHECK_EQ(compaction_space->Capacity(), 0);
// Make the rest of memory available for compaction.
old_space->DivideUponCompactionSpaces(&collection, 1, rest);
CHECK_EQ(compaction_space->CountTotalPages(), 0);
CHECK_EQ(compaction_space->Capacity(), rest);
while (num_rest_objects-- > 0) {
compaction_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked();
}
// We only used external memory so far.
CHECK_EQ(compaction_space->CountTotalPages(), 0);
// Additional allocation.
compaction_space->AllocateRawUnaligned(kAdditionalCompactionMemory)
.ToObjectChecked();
// Now the compaction space shouldve also acquired a page.
CHECK_EQ(compaction_space->CountTotalPages(), kExpectedCompactionPages);
old_space->MergeCompactionSpace(compaction_space);
CHECK_EQ(old_space->CountTotalPages(), kExpectedOldSpacePagesAfterMerge);
delete collection;
delete old_space;
allocator->TearDown();
delete allocator;
}
CompactionSpaceCollection** HeapTester::InitializeCompactionSpaces(
Heap* heap, int num_spaces) {
CompactionSpaceCollection** spaces =
new CompactionSpaceCollection*[num_spaces];
for (int i = 0; i < num_spaces; i++) {
spaces[i] = new CompactionSpaceCollection(heap);
}
return spaces;
}
void HeapTester::DestroyCompactionSpaces(CompactionSpaceCollection** spaces,
int num_spaces) {
for (int i = 0; i < num_spaces; i++) {
delete spaces[i];
}
delete[] spaces;
}
void HeapTester::MergeCompactionSpaces(PagedSpace* space,
CompactionSpaceCollection** spaces,
int num_spaces) {
AllocationSpace id = space->identity();
for (int i = 0; i < num_spaces; i++) {
space->MergeCompactionSpace(spaces[i]->Get(id));
CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(), 0);
CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Capacity(), 0);
CHECK_EQ(spaces[i]->Get(id)->Waste(), 0);
}
}
void HeapTester::AllocateInCompactionSpaces(CompactionSpaceCollection** spaces,
AllocationSpace id, int num_spaces,
int num_objects, int object_size) {
for (int i = 0; i < num_spaces; i++) {
for (int j = 0; j < num_objects; j++) {
spaces[i]->Get(id)->AllocateRawUnaligned(object_size).ToObjectChecked();
}
spaces[i]->Get(id)->EmptyAllocationInfo();
CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(),
num_objects * object_size);
CHECK_GE(spaces[i]->Get(id)->accounting_stats_.Capacity(),
spaces[i]->Get(id)->accounting_stats_.Size());
}
}
void HeapTester::CompactionStats(CompactionSpaceCollection** spaces,
AllocationSpace id, int num_spaces,
intptr_t* capacity, intptr_t* size) {
*capacity = 0;
*size = 0;
for (int i = 0; i < num_spaces; i++) {
*capacity += spaces[i]->Get(id)->accounting_stats_.Capacity();
*size += spaces[i]->Get(id)->accounting_stats_.Size();
}
}
void HeapTester::TestCompactionSpaceDivide(int num_additional_objects,
int object_size,
int num_compaction_spaces,
int additional_capacity_in_bytes) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
CHECK(old_space != nullptr);
CHECK(old_space->SetUp());
old_space->AllocateRawUnaligned(object_size).ToObjectChecked();
old_space->EmptyAllocationInfo();
intptr_t rest_capacity = old_space->accounting_stats_.Capacity() -
old_space->accounting_stats_.Size();
intptr_t capacity_for_compaction_space =
rest_capacity / num_compaction_spaces;
int num_objects_in_compaction_space =
static_cast<int>(capacity_for_compaction_space) / object_size +
num_additional_objects;
CHECK_GT(num_objects_in_compaction_space, 0);
intptr_t initial_old_space_capacity = old_space->accounting_stats_.Capacity();
CompactionSpaceCollection** spaces =
InitializeCompactionSpaces(heap, num_compaction_spaces);
old_space->DivideUponCompactionSpaces(spaces, num_compaction_spaces,
capacity_for_compaction_space);
intptr_t compaction_capacity = 0;
intptr_t compaction_size = 0;
CompactionStats(spaces, OLD_SPACE, num_compaction_spaces,
&compaction_capacity, &compaction_size);
intptr_t old_space_capacity = old_space->accounting_stats_.Capacity();
intptr_t old_space_size = old_space->accounting_stats_.Size();
// Compaction space memory is subtracted from the original space's capacity.
CHECK_EQ(old_space_capacity,
initial_old_space_capacity - compaction_capacity);
CHECK_EQ(compaction_size, 0);
AllocateInCompactionSpaces(spaces, OLD_SPACE, num_compaction_spaces,
num_objects_in_compaction_space, object_size);
// Old space size and capacity should be the same as after dividing.
CHECK_EQ(old_space->accounting_stats_.Size(), old_space_size);
CHECK_EQ(old_space->accounting_stats_.Capacity(), old_space_capacity);
CompactionStats(spaces, OLD_SPACE, num_compaction_spaces,
&compaction_capacity, &compaction_size);
MergeCompactionSpaces(old_space, spaces, num_compaction_spaces);
CHECK_EQ(old_space->accounting_stats_.Capacity(),
old_space_capacity + compaction_capacity);
CHECK_EQ(old_space->accounting_stats_.Size(),
old_space_size + compaction_size);
// We check against the expected end capacity.
CHECK_EQ(old_space->accounting_stats_.Capacity(),
initial_old_space_capacity + additional_capacity_in_bytes);
DestroyCompactionSpaces(spaces, num_compaction_spaces);
delete old_space;
}
HEAP_TEST(CompactionSpaceDivideSinglePage) {
const int kObjectSize = KB;
const int kCompactionSpaces = 4;
// Since the bound for objects is tight and the dividing is best effort, we
// subtract some objects to make sure we still fit in the initial page.
// A CHECK makes sure that the overall number of allocated objects stays
// > 0.
const int kAdditionalObjects = -10;
const int kAdditionalCapacityRequired = 0;
TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces,
kAdditionalCapacityRequired);
}
HEAP_TEST(CompactionSpaceDivideMultiplePages) {
const int kObjectSize = KB;
const int kCompactionSpaces = 4;
// Allocate half a page of objects to ensure that we need one more page per
// compaction space.
const int kAdditionalObjects = (Page::kPageSize / kObjectSize / 2);
const int kAdditionalCapacityRequired =
Page::kAllocatableMemory * kCompactionSpaces;
TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces,
kAdditionalCapacityRequired);
}
TEST(LargeObjectSpace) {
v8::V8::Initialize();
LargeObjectSpace* lo = CcTest::heap()->lo_space();
CHECK(lo != NULL);
int lo_size = Page::kPageSize;
Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked();
CHECK(obj->IsHeapObject());
HeapObject* ho = HeapObject::cast(obj);
CHECK(lo->Contains(HeapObject::cast(obj)));
CHECK(lo->FindObject(ho->address()) == obj);
CHECK(lo->Contains(ho));
while (true) {
intptr_t available = lo->Available();
{ AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
if (allocation.IsRetry()) break;
}
// The available value is conservative such that it may report
// zero prior to heap exhaustion.
CHECK(lo->Available() < available || available == 0);
}
CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry());
}
TEST(SizeOfFirstPageIsLargeEnough) {
if (i::FLAG_always_opt) return;
// Bootstrapping without a snapshot causes more allocations.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
if (Snapshot::EmbedsScript(isolate)) return;
// If this test fails due to enabling experimental natives that are not part
// of the snapshot, we may need to adjust CalculateFirstPageSizes.
// Freshly initialized VM gets by with one page per space.
for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
}
// Executing the empty script gets by with one page per space.
HandleScope scope(isolate);
CompileRun("/*empty*/");
for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
}
// No large objects required to perform the above steps.
CHECK(isolate->heap()->lo_space()->IsEmpty());
}
UNINITIALIZED_TEST(NewSpaceGrowsToTargetCapacity) {
FLAG_target_semi_space_size = 2 * (Page::kPageSize / MB);
if (FLAG_optimize_for_size) return;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
NewSpace* new_space = i_isolate->heap()->new_space();
// This test doesn't work if we start with a non-default new space
// configuration.
if (new_space->InitialTotalCapacity() == Page::kPageSize) {
CHECK_EQ(new_space->CommittedMemory(), new_space->InitialTotalCapacity());
// Fill up the first (and only) page of the semi space.
FillCurrentPage(new_space);
// Try to allocate out of the new space. A new page should be added and
// the
// allocation should succeed.
v8::internal::AllocationResult allocation =
new_space->AllocateRawUnaligned(80);
CHECK(!allocation.IsRetry());
CHECK_EQ(new_space->CommittedMemory(), 2 * Page::kPageSize);
// Turn the allocation into a proper object so isolate teardown won't
// crash.
HeapObject* free_space = NULL;
CHECK(allocation.To(&free_space));
new_space->heap()->CreateFillerObjectAt(free_space->address(), 80);
}
}
isolate->Dispose();
}
static HeapObject* AllocateUnaligned(NewSpace* space, int size) {
AllocationResult allocation = space->AllocateRawUnaligned(size);
CHECK(!allocation.IsRetry());
HeapObject* filler = NULL;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler->address(), size);
return filler;
}
class Observer : public InlineAllocationObserver {
public:
explicit Observer(intptr_t step_size)
: InlineAllocationObserver(step_size), count_(0) {}
void Step(int bytes_allocated, Address, size_t) override { count_++; }
int count() const { return count_; }
private:
int count_;
};
UNINITIALIZED_TEST(InlineAllocationObserver) {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
NewSpace* new_space = i_isolate->heap()->new_space();
Observer observer1(128);
new_space->AddInlineAllocationObserver(&observer1);
// The observer should not get notified if we have only allocated less than
// 128 bytes.
AllocateUnaligned(new_space, 64);
CHECK_EQ(observer1.count(), 0);
// The observer should get called when we have allocated exactly 128 bytes.
AllocateUnaligned(new_space, 64);
CHECK_EQ(observer1.count(), 1);
// Another >128 bytes should get another notification.
AllocateUnaligned(new_space, 136);
CHECK_EQ(observer1.count(), 2);
// Allocating a large object should get only one notification.
AllocateUnaligned(new_space, 1024);
CHECK_EQ(observer1.count(), 3);
// Allocating another 2048 bytes in small objects should get 16
// notifications.
for (int i = 0; i < 64; ++i) {
AllocateUnaligned(new_space, 32);
}
CHECK_EQ(observer1.count(), 19);
// Multiple observers should work.
Observer observer2(96);
new_space->AddInlineAllocationObserver(&observer2);
AllocateUnaligned(new_space, 2048);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 1);
AllocateUnaligned(new_space, 104);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 2);
// Callback should stop getting called after an observer is removed.
new_space->RemoveInlineAllocationObserver(&observer1);
AllocateUnaligned(new_space, 384);
CHECK_EQ(observer1.count(), 20); // no more notifications.
CHECK_EQ(observer2.count(), 3); // this one is still active.
// Ensure that PauseInlineAllocationObserversScope work correctly.
AllocateUnaligned(new_space, 48);
CHECK_EQ(observer2.count(), 3);
{
PauseInlineAllocationObserversScope pause_observers(new_space);
CHECK_EQ(observer2.count(), 3);
AllocateUnaligned(new_space, 384);
CHECK_EQ(observer2.count(), 3);
}
CHECK_EQ(observer2.count(), 3);
// Coupled with the 48 bytes allocated before the pause, another 48 bytes
// allocated here should trigger a notification.
AllocateUnaligned(new_space, 48);
CHECK_EQ(observer2.count(), 4);
new_space->RemoveInlineAllocationObserver(&observer2);
AllocateUnaligned(new_space, 384);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 4);
}
isolate->Dispose();
}
UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
NewSpace* new_space = i_isolate->heap()->new_space();
Observer observer1(512);
new_space->AddInlineAllocationObserver(&observer1);
Observer observer2(576);
new_space->AddInlineAllocationObserver(&observer2);
for (int i = 0; i < 512; ++i) {
AllocateUnaligned(new_space, 32);
}
new_space->RemoveInlineAllocationObserver(&observer1);
new_space->RemoveInlineAllocationObserver(&observer2);
CHECK_EQ(observer1.count(), 32);
CHECK_EQ(observer2.count(), 28);
}
isolate->Dispose();
}
} // namespace internal
} // namespace v8