v8/src/arm/code-stubs-arm.h

795 lines
30 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_CODE_STUBS_ARM_H_
#define V8_ARM_CODE_STUBS_ARM_H_
#include "ic-inl.h"
namespace v8 {
namespace internal {
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public PlatformCodeStub {
public:
enum ArgumentType {
TAGGED = 0 << TranscendentalCache::kTranscendentalTypeBits,
UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
};
TranscendentalCacheStub(TranscendentalCache::Type type,
ArgumentType argument_type)
: type_(type), argument_type_(argument_type) { }
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
ArgumentType argument_type_;
void GenerateCallCFunction(MacroAssembler* masm, Register scratch);
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_ | argument_type_; }
Runtime::FunctionId RuntimeFunction();
};
class StoreBufferOverflowStub: public PlatformCodeStub {
public:
explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
: save_doubles_(save_fp) { }
void Generate(MacroAssembler* masm);
virtual bool IsPregenerated();
static void GenerateFixedRegStubsAheadOfTime();
virtual bool SometimesSetsUpAFrame() { return false; }
private:
SaveFPRegsMode save_doubles_;
Major MajorKey() { return StoreBufferOverflow; }
int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
};
class UnaryOpStub: public PlatformCodeStub {
public:
UnaryOpStub(Token::Value op,
UnaryOverwriteMode mode,
UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
: op_(op),
mode_(mode),
operand_type_(operand_type) {
}
private:
Token::Value op_;
UnaryOverwriteMode mode_;
// Operand type information determined at runtime.
UnaryOpIC::TypeInfo operand_type_;
virtual void PrintName(StringStream* stream);
class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
class OpBits: public BitField<Token::Value, 1, 7> {};
class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
Major MajorKey() { return UnaryOp; }
int MinorKey() {
return ModeBits::encode(mode_)
| OpBits::encode(op_)
| OperandTypeInfoBits::encode(operand_type_);
}
// Note: A lot of the helper functions below will vanish when we use virtual
// function instead of switch more often.
void Generate(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
void GenerateSmiStub(MacroAssembler* masm);
void GenerateSmiStubSub(MacroAssembler* masm);
void GenerateSmiStubBitNot(MacroAssembler* masm);
void GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow);
void GenerateSmiCodeBitNot(MacroAssembler* masm, Label* slow);
void GenerateHeapNumberStub(MacroAssembler* masm);
void GenerateHeapNumberStubSub(MacroAssembler* masm);
void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);
void GenerateGenericStub(MacroAssembler* masm);
void GenerateGenericStubSub(MacroAssembler* masm);
void GenerateGenericStubBitNot(MacroAssembler* masm);
void GenerateGenericCodeFallback(MacroAssembler* masm);
virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
virtual InlineCacheState GetICState() {
return UnaryOpIC::ToState(operand_type_);
}
virtual void FinishCode(Handle<Code> code) {
code->set_unary_op_type(operand_type_);
}
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersLong adds too much
// overhead. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii);
// Generate code for copying a large number of characters. This function
// is allowed to spend extra time setting up conditions to make copying
// faster. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharactersLong(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
int flags);
// Probe the symbol table for a two character string. If the string is
// not found by probing a jump to the label not_found is performed. This jump
// does not guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in register r0.
// Contents of both c1 and c2 registers are modified. At the exit c1 is
// guaranteed to contain halfword with low and high bytes equal to
// initial contents of c1 and c2 respectively.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
// Omit left string check in stub (left is definitely a string).
NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
// Omit right string check in stub (right is definitely a string).
NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
// Omit both string checks in stub.
NO_STRING_CHECK_IN_STUB =
NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
};
class StringAddStub: public PlatformCodeStub {
public:
explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return flags_; }
void Generate(MacroAssembler* masm);
void GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* slow);
const StringAddFlags flags_;
};
class SubStringStub: public PlatformCodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public PlatformCodeStub {
public:
StringCompareStub() { }
// Compares two flat ASCII strings and returns result in r0.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
// Compares two flat ASCII strings for equality and returns result
// in r0.
static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3);
private:
virtual Major MajorKey() { return StringCompare; }
virtual int MinorKey() { return 0; }
virtual void Generate(MacroAssembler* masm);
static void GenerateAsciiCharsCompareLoop(MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch1,
Register scratch2,
Label* chars_not_equal);
};
// This stub can convert a signed int32 to a heap number (double). It does
// not work for int32s that are in Smi range! No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public PlatformCodeStub {
public:
WriteInt32ToHeapNumberStub(Register the_int,
Register the_heap_number,
Register scratch)
: the_int_(the_int),
the_heap_number_(the_heap_number),
scratch_(scratch) { }
bool IsPregenerated();
static void GenerateFixedRegStubsAheadOfTime();
private:
Register the_int_;
Register the_heap_number_;
Register scratch_;
// Minor key encoding in 16 bits.
class IntRegisterBits: public BitField<int, 0, 4> {};
class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
class ScratchRegisterBits: public BitField<int, 8, 4> {};
Major MajorKey() { return WriteInt32ToHeapNumber; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return IntRegisterBits::encode(the_int_.code())
| HeapNumberRegisterBits::encode(the_heap_number_.code())
| ScratchRegisterBits::encode(scratch_.code());
}
void Generate(MacroAssembler* masm);
};
class NumberToStringStub: public PlatformCodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
bool object_is_smi,
Label* not_found);
private:
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class RecordWriteStub: public PlatformCodeStub {
public:
RecordWriteStub(Register object,
Register value,
Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode)
: object_(object),
value_(value),
address_(address),
remembered_set_action_(remembered_set_action),
save_fp_regs_mode_(fp_mode),
regs_(object, // An input reg.
address, // An input reg.
value) { // One scratch reg.
}
enum Mode {
STORE_BUFFER_ONLY,
INCREMENTAL,
INCREMENTAL_COMPACTION
};
virtual bool IsPregenerated();
static void GenerateFixedRegStubsAheadOfTime();
virtual bool SometimesSetsUpAFrame() { return false; }
static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
masm->instr_at_put(pos, (masm->instr_at(pos) & ~B27) | (B24 | B20));
ASSERT(Assembler::IsTstImmediate(masm->instr_at(pos)));
}
static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
masm->instr_at_put(pos, (masm->instr_at(pos) & ~(B24 | B20)) | B27);
ASSERT(Assembler::IsBranch(masm->instr_at(pos)));
}
static Mode GetMode(Code* stub) {
Instr first_instruction = Assembler::instr_at(stub->instruction_start());
Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
Assembler::kInstrSize);
if (Assembler::IsBranch(first_instruction)) {
return INCREMENTAL;
}
ASSERT(Assembler::IsTstImmediate(first_instruction));
if (Assembler::IsBranch(second_instruction)) {
return INCREMENTAL_COMPACTION;
}
ASSERT(Assembler::IsTstImmediate(second_instruction));
return STORE_BUFFER_ONLY;
}
static void Patch(Code* stub, Mode mode) {
MacroAssembler masm(NULL,
stub->instruction_start(),
stub->instruction_size());
switch (mode) {
case STORE_BUFFER_ONLY:
ASSERT(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
PatchBranchIntoNop(&masm, 0);
PatchBranchIntoNop(&masm, Assembler::kInstrSize);
break;
case INCREMENTAL:
ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, 0);
break;
case INCREMENTAL_COMPACTION:
ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, Assembler::kInstrSize);
break;
}
ASSERT(GetMode(stub) == mode);
CPU::FlushICache(stub->instruction_start(), 2 * Assembler::kInstrSize);
}
private:
// This is a helper class for freeing up 3 scratch registers. The input is
// two registers that must be preserved and one scratch register provided by
// the caller.
class RegisterAllocation {
public:
RegisterAllocation(Register object,
Register address,
Register scratch0)
: object_(object),
address_(address),
scratch0_(scratch0) {
ASSERT(!AreAliased(scratch0, object, address, no_reg));
scratch1_ = GetRegThatIsNotOneOf(object_, address_, scratch0_);
}
void Save(MacroAssembler* masm) {
ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
// We don't have to save scratch0_ because it was given to us as
// a scratch register.
masm->push(scratch1_);
}
void Restore(MacroAssembler* masm) {
masm->pop(scratch1_);
}
// If we have to call into C then we need to save and restore all caller-
// saved registers that were not already preserved. The scratch registers
// will be restored by other means so we don't bother pushing them here.
void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
masm->stm(db_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
if (mode == kSaveFPRegs) {
CpuFeatures::Scope scope(VFP2);
masm->sub(sp,
sp,
Operand(kDoubleSize * (DwVfpRegister::kNumRegisters - 1)));
// Save all VFP registers except d0.
for (int i = DwVfpRegister::kNumRegisters - 1; i > 0; i--) {
DwVfpRegister reg = DwVfpRegister::from_code(i);
masm->vstr(reg, MemOperand(sp, (i - 1) * kDoubleSize));
}
}
}
inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
SaveFPRegsMode mode) {
if (mode == kSaveFPRegs) {
CpuFeatures::Scope scope(VFP2);
// Restore all VFP registers except d0.
for (int i = DwVfpRegister::kNumRegisters - 1; i > 0; i--) {
DwVfpRegister reg = DwVfpRegister::from_code(i);
masm->vldr(reg, MemOperand(sp, (i - 1) * kDoubleSize));
}
masm->add(sp,
sp,
Operand(kDoubleSize * (DwVfpRegister::kNumRegisters - 1)));
}
masm->ldm(ia_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
}
inline Register object() { return object_; }
inline Register address() { return address_; }
inline Register scratch0() { return scratch0_; }
inline Register scratch1() { return scratch1_; }
private:
Register object_;
Register address_;
Register scratch0_;
Register scratch1_;
Register GetRegThatIsNotOneOf(Register r1,
Register r2,
Register r3) {
for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
Register candidate = Register::FromAllocationIndex(i);
if (candidate.is(r1)) continue;
if (candidate.is(r2)) continue;
if (candidate.is(r3)) continue;
return candidate;
}
UNREACHABLE();
return no_reg;
}
friend class RecordWriteStub;
};
enum OnNoNeedToInformIncrementalMarker {
kReturnOnNoNeedToInformIncrementalMarker,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
};
void Generate(MacroAssembler* masm);
void GenerateIncremental(MacroAssembler* masm, Mode mode);
void CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode);
void InformIncrementalMarker(MacroAssembler* masm, Mode mode);
Major MajorKey() { return RecordWrite; }
int MinorKey() {
return ObjectBits::encode(object_.code()) |
ValueBits::encode(value_.code()) |
AddressBits::encode(address_.code()) |
RememberedSetActionBits::encode(remembered_set_action_) |
SaveFPRegsModeBits::encode(save_fp_regs_mode_);
}
void Activate(Code* code) {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
class ObjectBits: public BitField<int, 0, 4> {};
class ValueBits: public BitField<int, 4, 4> {};
class AddressBits: public BitField<int, 8, 4> {};
class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {};
class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {};
Register object_;
Register value_;
Register address_;
RememberedSetAction remembered_set_action_;
SaveFPRegsMode save_fp_regs_mode_;
Label slow_;
RegisterAllocation regs_;
};
// Enter C code from generated RegExp code in a way that allows
// the C code to fix the return address in case of a GC.
// Currently only needed on ARM.
class RegExpCEntryStub: public PlatformCodeStub {
public:
RegExpCEntryStub() {}
virtual ~RegExpCEntryStub() {}
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return RegExpCEntry; }
int MinorKey() { return 0; }
bool NeedsImmovableCode() { return true; }
};
// Trampoline stub to call into native code. To call safely into native code
// in the presence of compacting GC (which can move code objects) we need to
// keep the code which called into native pinned in the memory. Currently the
// simplest approach is to generate such stub early enough so it can never be
// moved by GC
class DirectCEntryStub: public PlatformCodeStub {
public:
DirectCEntryStub() {}
void Generate(MacroAssembler* masm);
void GenerateCall(MacroAssembler* masm, ExternalReference function);
void GenerateCall(MacroAssembler* masm, Register target);
private:
Major MajorKey() { return DirectCEntry; }
int MinorKey() { return 0; }
bool NeedsImmovableCode() { return true; }
};
class FloatingPointHelper : public AllStatic {
public:
enum Destination {
kVFPRegisters,
kCoreRegisters
};
// Loads smis from r0 and r1 (right and left in binary operations) into
// floating point registers. Depending on the destination the values ends up
// either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
// floating point registers VFP3 must be supported. If core registers are
// requested when VFP3 is supported d6 and d7 will be scratched.
static void LoadSmis(MacroAssembler* masm,
Destination destination,
Register scratch1,
Register scratch2);
// Convert the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1.
static void ConvertNumberToInt32(MacroAssembler* masm,
Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
Register scratch3,
DwVfpRegister double_scratch,
Label* not_int32);
// Converts the integer (untagged smi) in |int_scratch| to a double, storing
// the result either in |double_dst| or |dst2:dst1|, depending on
// |destination|.
// Warning: The value in |int_scratch| will be changed in the process!
static void ConvertIntToDouble(MacroAssembler* masm,
Register int_scratch,
Destination destination,
DwVfpRegister double_dst,
Register dst1,
Register dst2,
Register scratch2,
SwVfpRegister single_scratch);
// Load the number from object into double_dst in the double format.
// Control will jump to not_int32 if the value cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be loaded.
static void LoadNumberAsInt32Double(MacroAssembler* masm,
Register object,
Destination destination,
DwVfpRegister double_dst,
DwVfpRegister double_scratch,
Register dst1,
Register dst2,
Register heap_number_map,
Register scratch1,
Register scratch2,
SwVfpRegister single_scratch,
Label* not_int32);
// Loads the number from object into dst as a 32-bit integer.
// Control will jump to not_int32 if the object cannot be exactly represented
// by a 32-bit integer.
// Floating point value in the 32-bit integer range that are not exact integer
// won't be converted.
// scratch3 is not used when VFP3 is supported.
static void LoadNumberAsInt32(MacroAssembler* masm,
Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
Register scratch3,
DwVfpRegister double_scratch0,
DwVfpRegister double_scratch1,
Label* not_int32);
// Generate non VFP3 code to check if a double can be exactly represented by a
// 32-bit integer. This does not check for 0 or -0, which need
// to be checked for separately.
// Control jumps to not_int32 if the value is not a 32-bit integer, and falls
// through otherwise.
// src1 and src2 will be cloberred.
//
// Expected input:
// - src1: higher (exponent) part of the double value.
// - src2: lower (mantissa) part of the double value.
// Output status:
// - dst: 32 higher bits of the mantissa. (mantissa[51:20])
// - src2: contains 1.
// - other registers are clobbered.
static void DoubleIs32BitInteger(MacroAssembler* masm,
Register src1,
Register src2,
Register dst,
Register scratch,
Label* not_int32);
// Generates code to call a C function to do a double operation using core
// registers. (Used when VFP3 is not supported.)
// This code never falls through, but returns with a heap number containing
// the result in r0.
// Register heapnumber_result must be a heap number in which the
// result of the operation will be stored.
// Requires the following layout on entry:
// r0: Left value (least significant part of mantissa).
// r1: Left value (sign, exponent, top of mantissa).
// r2: Right value (least significant part of mantissa).
// r3: Right value (sign, exponent, top of mantissa).
static void CallCCodeForDoubleOperation(MacroAssembler* masm,
Token::Value op,
Register heap_number_result,
Register scratch);
// Loads the objects from |object| into floating point registers.
// Depending on |destination| the value ends up either in |dst| or
// in |dst1|/|dst2|. If |destination| is kVFPRegisters, then VFP3
// must be supported. If kCoreRegisters are requested and VFP3 is
// supported, |dst| will be scratched. If |object| is neither smi nor
// heap number, |not_number| is jumped to with |object| still intact.
static void LoadNumber(MacroAssembler* masm,
FloatingPointHelper::Destination destination,
Register object,
DwVfpRegister dst,
Register dst1,
Register dst2,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* not_number);
};
class StringDictionaryLookupStub: public PlatformCodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
explicit StringDictionaryLookupStub(LookupMode mode) : mode_(mode) { }
void Generate(MacroAssembler* masm);
static void GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<String> name,
Register scratch0);
static void GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1);
virtual bool SometimesSetsUpAFrame() { return false; }
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
Major MajorKey() { return StringDictionaryLookup; }
int MinorKey() {
return LookupModeBits::encode(mode_);
}
class LookupModeBits: public BitField<LookupMode, 0, 1> {};
LookupMode mode_;
};
} } // namespace v8::internal
#endif // V8_ARM_CODE_STUBS_ARM_H_