v8/test/fuzzer/wasm-call.cc

135 lines
4.4 KiB
C++
Raw Normal View History

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include "include/v8.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/utils.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
#include "test/fuzzer/wasm-fuzzer-common.h"
#define MAX_NUM_FUNCTIONS 3
#define MAX_NUM_PARAMS 3
namespace v8 {
namespace internal {
namespace wasm {
namespace fuzzer {
class WasmCallFuzzer : public WasmExecutionFuzzer {
template <typename V>
static inline V read_value(const uint8_t** data, size_t* size, bool* ok) {
// The status flag {ok} checks that the decoding up until now was okay, and
// that a value of type V can be read without problems.
*ok &= (*size > sizeof(V));
if (!(*ok)) return 0;
V result = ReadLittleEndianValue<V>(*data);
*data += sizeof(V);
*size -= sizeof(V);
return result;
}
static void add_argument(Isolate* isolate, ValueType type,
WasmValue* interpreter_args,
Handle<Object>* compiler_args, int* argc,
const uint8_t** data, size_t* size, bool* ok) {
if (!(*ok)) return;
switch (type) {
case kWasmF32: {
float value = read_value<float>(data, size, ok);
interpreter_args[*argc] = WasmValue(value);
compiler_args[*argc] =
isolate->factory()->NewNumber(static_cast<double>(value));
break;
}
case kWasmF64: {
double value = read_value<double>(data, size, ok);
interpreter_args[*argc] = WasmValue(value);
compiler_args[*argc] = isolate->factory()->NewNumber(value);
break;
}
case kWasmI32: {
int32_t value = read_value<int32_t>(data, size, ok);
interpreter_args[*argc] = WasmValue(value);
compiler_args[*argc] =
isolate->factory()->NewNumber(static_cast<double>(value));
break;
}
default:
UNREACHABLE();
}
(*argc)++;
}
bool GenerateModule(
Isolate* isolate, Zone* zone, const uint8_t* data, size_t size,
ZoneBuffer& buffer, int32_t& num_args,
std::unique_ptr<WasmValue[]>& interpreter_args,
std::unique_ptr<Handle<Object>[]>& compiler_args) override {
bool ok = true;
uint8_t num_functions =
(read_value<uint8_t>(&data, &size, &ok) % MAX_NUM_FUNCTIONS) + 1;
ValueType types[] = {kWasmF32, kWasmF64, kWasmI32, kWasmI64};
interpreter_args.reset(new WasmValue[3]);
compiler_args.reset(new Handle<Object>[3]);
WasmModuleBuilder builder(zone);
for (int fun = 0; fun < num_functions; fun++) {
size_t num_params = static_cast<size_t>(
(read_value<uint8_t>(&data, &size, &ok) % MAX_NUM_PARAMS) + 1);
FunctionSig::Builder sig_builder(zone, 1, num_params);
sig_builder.AddReturn(kWasmI32);
for (size_t param = 0; param < num_params; param++) {
// The main function cannot handle int64 parameters.
ValueType param_type = types[(read_value<uint8_t>(&data, &size, &ok) %
(arraysize(types) - (fun == 0 ? 1 : 0)))];
sig_builder.AddParam(param_type);
if (fun == 0) {
add_argument(isolate, param_type, interpreter_args.get(),
compiler_args.get(), &num_args, &data, &size, &ok);
}
}
WasmFunctionBuilder* f = builder.AddFunction(sig_builder.Build());
uint32_t code_size = static_cast<uint32_t>(size / num_functions);
f->EmitCode(data, code_size);
uint8_t end_opcode = kExprEnd;
f->EmitCode(&end_opcode, 1);
data += code_size;
size -= code_size;
if (fun == 0) {
builder.AddExport(CStrVector("main"), f);
}
}
builder.SetMaxMemorySize(32);
builder.WriteTo(buffer);
if (!ok) {
// The input data was too short.
return 0;
}
return true;
}
};
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
return WasmCallFuzzer().FuzzWasmModule(data, size);
}
} // namespace fuzzer
} // namespace wasm
} // namespace internal
} // namespace v8