v8/test/torque/test-torque.tq

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1416 lines
33 KiB
Plaintext
Raw Normal View History

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Test line comment
/* Test mulitline
comment
*/
/*multiline_without_whitespace*/
namespace test {
macro ElementsKindTestHelper1(kind: constexpr ElementsKind): bool {
if constexpr (
kind == ElementsKind::UINT8_ELEMENTS ||
kind == ElementsKind::UINT16_ELEMENTS) {
return true;
} else {
return false;
}
}
macro ElementsKindTestHelper2(kind: constexpr ElementsKind): constexpr bool {
return kind == ElementsKind::UINT8_ELEMENTS ||
kind == ElementsKind::UINT16_ELEMENTS;
}
macro LabelTestHelper1(): never
labels Label1 {
goto Label1;
}
macro LabelTestHelper2(): never
labels Label2(Smi) {
goto Label2(42);
}
macro LabelTestHelper3(): never
labels Label3(Oddball, Smi) {
goto Label3(Null, 7);
}
@export
macro TestConstexpr1(): void {
check(FromConstexpr<bool>(
IsFastElementsKind(ElementsKind::PACKED_SMI_ELEMENTS)));
}
@export
macro TestConstexprIf(): void {
check(ElementsKindTestHelper1(ElementsKind::UINT8_ELEMENTS));
check(ElementsKindTestHelper1(ElementsKind::UINT16_ELEMENTS));
check(!ElementsKindTestHelper1(ElementsKind::UINT32_ELEMENTS));
}
@export
macro TestConstexprReturn(): void {
check(FromConstexpr<bool>(
ElementsKindTestHelper2(ElementsKind::UINT8_ELEMENTS)));
check(FromConstexpr<bool>(
ElementsKindTestHelper2(ElementsKind::UINT16_ELEMENTS)));
check(!FromConstexpr<bool>(
ElementsKindTestHelper2(ElementsKind::UINT32_ELEMENTS)));
check(FromConstexpr<bool>(
!ElementsKindTestHelper2(ElementsKind::UINT32_ELEMENTS)));
}
@export
macro TestGotoLabel(): Boolean {
try {
LabelTestHelper1() otherwise Label1;
} label Label1 {
return True;
}
}
@export
macro TestGotoLabelWithOneParameter(): Boolean {
try {
LabelTestHelper2() otherwise Label2;
} label Label2(smi: Smi) {
check(smi == 42);
return True;
}
}
@export
macro TestGotoLabelWithTwoParameters(): Boolean {
try {
LabelTestHelper3() otherwise Label3;
} label Label3(o: Oddball, smi: Smi) {
check(o == Null);
check(smi == 7);
return True;
}
}
builtin GenericBuiltinTest<T: type>(_param: T): JSAny {
return Null;
}
GenericBuiltinTest<JSAny>(param: JSAny): JSAny {
return param;
}
@export
macro TestBuiltinSpecialization(): void {
check(GenericBuiltinTest<Smi>(0) == Null);
check(GenericBuiltinTest<Smi>(1) == Null);
check(GenericBuiltinTest<JSAny>(Undefined) == Undefined);
check(GenericBuiltinTest<JSAny>(Undefined) == Undefined);
}
macro LabelTestHelper4(flag: constexpr bool): never
labels Label4, Label5 {
if constexpr (flag) {
goto Label4;
} else {
goto Label5;
}
}
macro CallLabelTestHelper4(flag: constexpr bool): bool {
try {
LabelTestHelper4(flag) otherwise Label4, Label5;
} label Label4 {
return true;
} label Label5 {
return false;
}
}
@export
macro TestPartiallyUnusedLabel(): Boolean {
const r1: bool = CallLabelTestHelper4(true);
const r2: bool = CallLabelTestHelper4(false);
if (r1 && !r2) {
return True;
} else {
return False;
}
}
macro GenericMacroTest<T: type>(_param: T): Object {
return Undefined;
}
GenericMacroTest<Object>(param2: Object): Object {
return param2;
}
macro GenericMacroTestWithLabels<T: type>(_param: T): Object
labels _X {
return Undefined;
}
GenericMacroTestWithLabels<Object>(param2: Object): Object
labels Y {
return Cast<Smi>(param2) otherwise Y;
}
@export
macro TestMacroSpecialization(): void {
try {
const _smi0: Smi = 0;
check(GenericMacroTest<Smi>(0) == Undefined);
check(GenericMacroTest<Smi>(1) == Undefined);
check(GenericMacroTest<Object>(Null) == Null);
check(GenericMacroTest<Object>(False) == False);
check(GenericMacroTest<Object>(True) == True);
check((GenericMacroTestWithLabels<Smi>(0) otherwise Fail) == Undefined);
check((GenericMacroTestWithLabels<Smi>(0) otherwise Fail) == Undefined);
try {
GenericMacroTestWithLabels<Object>(False) otherwise Expected;
} label Expected {}
} label Fail {
unreachable;
}
}
builtin TestHelperPlus1(x: Smi): Smi {
return x + 1;
}
builtin TestHelperPlus2(x: Smi): Smi {
return x + 2;
}
@export
macro TestFunctionPointers(implicit context: Context)(): Boolean {
let fptr: builtin(Smi) => Smi = TestHelperPlus1;
check(fptr(42) == 43);
fptr = TestHelperPlus2;
check(fptr(42) == 44);
return True;
}
@export
macro TestVariableRedeclaration(implicit context: Context)(): Boolean {
Revert "Reland "[Torque] Generalize Torque literals to larger size"" This reverts commit 517ed4ad001fd702331093e8ffa549b4dce8fb61. Reason for revert: There still seems to be an issue on V8 Win msvc related to this CL (https://ci.chromium.org/ui/p/v8/builders/ci/V8%20Win64%20-%20msvc/20568/overview). Original change's description: > Reland "[Torque] Generalize Torque literals to larger size" > > Previously, literals in Torque were stored as double values, which > made it impossible to precisely represent 64 bit integer values. > This CL replaces the old literal expression with an integer and > floating point literal expression that are unbounded in size. We > allow implicit conversion of these literals to arbitary integer > and floating point types respectively and insert a corresponding > bounds check into generated CSA. > > Changes in the reland: Simplified IntegerLiteral to single digit. > > Bug: v8:7793, chromium:1289282 > Change-Id: I31c762c2f31165c7a1d0b07842b764e5851ce189 > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3406750 > Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> > Reviewed-by: Tobias Tebbi <tebbi@chromium.org> > Commit-Queue: Nico Hartmann <nicohartmann@chromium.org> > Cr-Commit-Position: refs/heads/main@{#78811} Bug: v8:7793, chromium:1289282 Change-Id: I818cec9625fbd827a4a30088d8c8b759fb6c50d7 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3424484 Owners-Override: Nico Hartmann <nicohartmann@chromium.org> Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com> Commit-Queue: Nico Hartmann <nicohartmann@chromium.org> Cr-Commit-Position: refs/heads/main@{#78847}
2022-01-28 15:47:02 +00:00
let _var1: int31 = FromConstexpr<bool>(42 == 0) ? 0 : 1;
let _var2: int31 = FromConstexpr<bool>(42 == 0) ? 1 : 0;
return True;
}
@export
macro TestTernaryOperator(x: Smi): Smi {
const b: bool = x < 0 ? true : false;
return b ? x - 10 : x + 100;
}
@export
macro TestFunctionPointerToGeneric(): void {
const fptr1: builtin(Smi) => JSAny = GenericBuiltinTest<Smi>;
const fptr2: builtin(JSAny) => JSAny = GenericBuiltinTest<JSAny>;
check(fptr1(0) == Null);
check(fptr1(1) == Null);
check(fptr2(Undefined) == Undefined);
check(fptr2(Undefined) == Undefined);
}
type ObjectToObject = builtin(Context, JSAny) => JSAny;
@export
macro TestTypeAlias(x: ObjectToObject): BuiltinPtr {
return x;
}
@export
macro TestUnsafeCast(implicit context: Context)(n: Number): Boolean {
if (TaggedIsSmi(n)) {
const m: Smi = UnsafeCast<Smi>(n);
check(TestHelperPlus1(m) == 11);
return True;
}
return False;
}
@export
macro TestHexLiteral(): void {
check(Convert<intptr>(0xffff) + 1 == 0x10000);
check(Convert<intptr>(-0xffff) == -65535);
}
@export
macro TestLargeIntegerLiterals(implicit c: Context)(): void {
let _x: int32 = 0x40000000;
let _y: int32 = 0x7fffffff;
}
@export
macro TestMultilineAssert(): void {
const someVeryLongVariableNameThatWillCauseLineBreaks: Smi = 5;
check(
someVeryLongVariableNameThatWillCauseLineBreaks > 0 &&
someVeryLongVariableNameThatWillCauseLineBreaks < 10);
}
@export
macro TestNewlineInString(): void {
Print('Hello, World!\n');
}
const kConstexprConst: constexpr int31 = 5;
const kIntptrConst: intptr = 4;
const kSmiConst: Smi = 3;
@export
macro TestModuleConstBindings(): void {
check(kConstexprConst == Int32Constant(5));
check(kIntptrConst == 4);
check(kSmiConst == 3);
}
@export
macro TestLocalConstBindings(): void {
const x: constexpr int31 = 3;
const xSmi: Smi = x;
{
const x: Smi = x + FromConstexpr<Smi>(1);
check(x == xSmi + 1);
const xSmi: Smi = x;
check(x == xSmi);
check(x == 4);
}
check(xSmi == 3);
check(x == xSmi);
}
struct TestStructA {
indexes: FixedArray;
i: Smi;
k: Number;
}
struct TestStructB {
x: TestStructA;
y: Smi;
}
@export
macro TestStruct1(i: TestStructA): Smi {
return i.i;
}
@export
macro TestStruct2(implicit context: Context)(): TestStructA {
return TestStructA{
indexes: UnsafeCast<FixedArray>(kEmptyFixedArray),
i: 27,
k: 31
};
}
@export
macro TestStruct3(implicit context: Context)(): TestStructA {
let a: TestStructA =
TestStructA{indexes: UnsafeCast<FixedArray>(kEmptyFixedArray), i: 13, k: 5};
let _b: TestStructA = a;
const c: TestStructA = TestStruct2();
a.i = TestStruct1(c);
a.k = a.i;
let d: TestStructB;
d.x = a;
d = TestStructB{x: a, y: 7};
let _e: TestStructA = d.x;
let f: Smi = TestStructA{
indexes: UnsafeCast<FixedArray>(kEmptyFixedArray),
i: 27,
k: 31
}.i;
f = TestStruct2().i;
return a;
}
struct TestStructC {
x: TestStructA;
y: TestStructA;
}
@export
macro TestStruct4(implicit context: Context)(): TestStructC {
return TestStructC{x: TestStruct2(), y: TestStruct2()};
}
macro TestStructInLabel(implicit context: Context)(): never labels
Foo(TestStructA) {
goto Foo(TestStruct2());
}
@export // Silence unused warning.
macro CallTestStructInLabel(implicit context: Context)(): void {
try {
TestStructInLabel() otherwise Foo;
} label Foo(_s: TestStructA) {}
}
// This macro tests different versions of the for-loop where some parts
// are (not) present.
@export
macro TestForLoop(): void {
let sum: Smi = 0;
for (let i: Smi = 0; i < 5; ++i) sum += i;
check(sum == 10);
sum = 0;
let j: Smi = 0;
for (; j < 5; ++j) sum += j;
check(sum == 10);
sum = 0;
j = 0;
for (; j < 5;) sum += j++;
check(sum == 10);
// Check that break works. No test expression.
sum = 0;
for (let i: Smi = 0;; ++i) {
if (i == 5) break;
sum += i;
}
check(sum == 10);
sum = 0;
j = 0;
for (;;) {
if (j == 5) break;
sum += j;
j++;
}
check(sum == 10);
// The following tests are the same as above, but use continue to skip
// index 3.
sum = 0;
for (let i: Smi = 0; i < 5; ++i) {
if (i == 3) continue;
sum += i;
}
check(sum == 7);
sum = 0;
j = 0;
for (; j < 5; ++j) {
if (j == 3) continue;
sum += j;
}
check(sum == 7);
sum = 0;
j = 0;
for (; j < 5;) {
if (j == 3) {
j++;
continue;
}
sum += j;
j++;
}
check(sum == 7);
sum = 0;
for (let i: Smi = 0;; ++i) {
if (i == 3) continue;
if (i == 5) break;
sum += i;
}
check(sum == 7);
sum = 0;
j = 0;
for (;;) {
if (j == 3) {
j++;
continue;
}
if (j == 5) break;
sum += j;
j++;
}
check(sum == 7);
j = 0;
try {
for (;;) {
if (++j == 10) goto Exit;
}
} label Exit {
check(j == 10);
}
// Test if we can handle uninitialized values on the stack.
let _i: Smi;
for (let j: Smi = 0; j < 10; ++j) {
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
}
}
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
@export
macro TestSubtyping(x: Smi): void {
const _foo: JSAny = x;
}
macro IncrementIfSmi<A: type>(x: A): A {
typeswitch (x) {
case (x: Smi): {
return x + 1;
}
case (o: A): {
return o;
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
}
}
}
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
type NumberOrFixedArray = Number|FixedArray;
macro TypeswitchExample(implicit context: Context)(x: NumberOrFixedArray):
int32 {
let result: int32 = 0;
typeswitch (IncrementIfSmi(x)) {
case (_x: FixedArray): {
result = result + 1;
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
}
case (Number): {
result = result + 2;
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
}
}
result = result * 10;
[torque] add typeswitch statement This adds a typeswitch statement typeswitch (e) case (x1 : Type1) { ... } case (x2 : Type2) { } ... ... case (xn : TypeN) { ... } This checks to which of the given types the result of evaluating e can be cast, in the order in which they are listed. So if an earlier type matches, a value of this type won't reach a later case. The type-checks are performed by calling the cast<T>() macro. The type of the argument passed to the cast macro is dependent on the case and excludes all types checked earlier. For example, in const x : Object = ... typeswitch (x) case (x : Smi) { ... } case (x : HeapNumber) { ... } case (x : HeapObject) { ... } there will be calls to cast<Smi>(Object) and cast<HeapNumber>(HeapObject), because after the Smi check we know that x has to be a HeapObject. With the refactored base.tq definition of cast, this will generate efficient code and avoid repeating the Smi check in the second case. The type system ensures that all cases are reachable and that the type given to the last case is safe without a runtime check (in other words, the union of all checked types covers the type of e). The cases can also be written as case (Type) { ... } , in which case the switched value is not re-bound with the checked type. Bug: v8:7793 Change-Id: Iea4aed7465d62b445e3ae0d33f52921912e095e3 Reviewed-on: https://chromium-review.googlesource.com/1156506 Commit-Queue: Tobias Tebbi <tebbi@chromium.org> Reviewed-by: Daniel Clifford <danno@chromium.org> Cr-Commit-Position: refs/heads/master@{#54958}
2018-08-07 21:57:19 +00:00
typeswitch (IncrementIfSmi(x)) {
case (x: Smi): {
result = result + Convert<int32>(x);
}
case (a: FixedArray): {
result = result + Convert<int32>(a.length);
}
case (_x: HeapNumber): {
result = result + 7;
}
}
return result;
}
@export
macro TestTypeswitch(implicit context: Context)(): void {
check(TypeswitchExample(FromConstexpr<Smi>(5)) == 26);
const a: FixedArray = AllocateZeroedFixedArray(3);
check(TypeswitchExample(a) == 13);
check(TypeswitchExample(FromConstexpr<Number>(0.5)) == 27);
}
@export
macro TestTypeswitchAsanLsanFailure(implicit context: Context)(obj: Object):
void {
typeswitch (obj) {
case (_o: Smi): {
}
case (_o: JSTypedArray): {
}
case (_o: JSReceiver): {
}
case (_o: HeapObject): {
}
}
}
macro ExampleGenericOverload<A: type>(o: Object): A {
return o;
}
macro ExampleGenericOverload<A: type>(o: Smi): A {
return o + 1;
}
@export
macro TestGenericOverload(implicit context: Context)(): void {
const xSmi: Smi = 5;
const xObject: Object = xSmi;
check(ExampleGenericOverload<Smi>(xSmi) == 6);
check(UnsafeCast<Smi>(ExampleGenericOverload<Object>(xObject)) == 5);
}
@export
macro TestEquality(implicit context: Context)(): void {
const notEqual: bool =
AllocateHeapNumberWithValue(0.5) != AllocateHeapNumberWithValue(0.5);
check(!notEqual);
const equal: bool =
AllocateHeapNumberWithValue(0.5) == AllocateHeapNumberWithValue(0.5);
check(equal);
}
@export
macro TestOrAnd(x: bool, y: bool, z: bool): bool {
return x || y && z ? true : false;
}
@export
macro TestAndOr(x: bool, y: bool, z: bool): bool {
return x && y || z ? true : false;
}
@export
macro TestLogicalOperators(): void {
check(TestAndOr(true, true, true));
check(TestAndOr(true, true, false));
check(TestAndOr(true, false, true));
check(!TestAndOr(true, false, false));
check(TestAndOr(false, true, true));
check(!TestAndOr(false, true, false));
check(TestAndOr(false, false, true));
check(!TestAndOr(false, false, false));
check(TestOrAnd(true, true, true));
check(TestOrAnd(true, true, false));
check(TestOrAnd(true, false, true));
check(TestOrAnd(true, false, false));
check(TestOrAnd(false, true, true));
check(!TestOrAnd(false, true, false));
check(!TestOrAnd(false, false, true));
check(!TestOrAnd(false, false, false));
}
@export
macro TestCall(i: Smi): Smi labels A {
if (i < 5) return i;
goto A;
}
@export
macro TestOtherwiseWithCode1(): void {
let v: Smi = 0;
let s: Smi = 1;
try {
TestCall(10) otherwise goto B(++s);
} label B(v1: Smi) {
v = v1;
}
dcheck(v == 2);
}
@export
macro TestOtherwiseWithCode2(): void {
let s: Smi = 0;
for (let i: Smi = 0; i < 10; ++i) {
TestCall(i) otherwise break;
++s;
}
dcheck(s == 5);
}
@export
macro TestOtherwiseWithCode3(): void {
let s: Smi = 0;
for (let i: Smi = 0; i < 10; ++i) {
s += TestCall(i) otherwise break;
}
dcheck(s == 10);
}
@export
macro TestForwardLabel(): void {
try {
goto A;
} label A {
goto B(5);
} label B(b: Smi) {
dcheck(b == 5);
}
}
@export
macro TestQualifiedAccess(implicit context: Context)(): void {
const s: Smi = 0;
check(!Is<JSArray>(s));
}
@export
macro TestCatch1(implicit context: Context)(): Smi {
let r: Smi = 0;
try {
ThrowTypeError(MessageTemplate::kInvalidArrayLength);
} catch (_e, _message) {
r = 1;
return r;
}
}
@export
macro TestCatch2Wrapper(implicit context: Context)(): never {
ThrowTypeError(MessageTemplate::kInvalidArrayLength);
}
@export
macro TestCatch2(implicit context: Context)(): Smi {
let r: Smi = 0;
try {
TestCatch2Wrapper();
} catch (_e, _message) {
r = 2;
return r;
}
}
@export
macro TestCatch3WrapperWithLabel(implicit context: Context)():
never labels _Abort {
ThrowTypeError(MessageTemplate::kInvalidArrayLength);
}
@export
macro TestCatch3(implicit context: Context)(): Smi {
let r: Smi = 0;
try {
TestCatch3WrapperWithLabel() otherwise Abort;
} catch (_e, _message) {
r = 2;
return r;
} label Abort {
return -1;
}
}
// This test doesn't actually test the functionality of iterators,
// it's only purpose is to make sure tha the CSA macros in the
// IteratorBuiltinsAssembler match the signatures provided in
// iterator.tq.
@export
transitioning macro TestIterator(implicit context: Context)(
o: JSReceiver, map: Map): void {
try {
const t1: JSAny = iterator::GetIteratorMethod(o);
const t2: iterator::IteratorRecord = iterator::GetIterator(o);
const _t3: JSAny = iterator::IteratorStep(t2) otherwise Fail;
const _t4: JSAny = iterator::IteratorStep(t2, map) otherwise Fail;
const _t5: JSAny = iterator::IteratorValue(o);
const _t6: JSAny = iterator::IteratorValue(o, map);
const _t7: JSArray = iterator::IterableToList(t1, t1);
iterator::IteratorCloseOnException(t2);
} label Fail {}
}
[torque] Implement methods and constructors for structs and classes With the changes in this patch, it is now possible to add methods to both Torque's class and struct types. As a special case, "constructor" methods are used to initialize the values of classes and structs when they are constructed. The functionality in this patch includes: - The refactoring of class- and struct-handling code to share field and method declaration code between both. - Addition of the "%Allocate" intrinsic that allocates raw bytes to be allocated from the V8 GC's NewSpace heap as the basis for freshly created, initialized class objects. - An implementation of a CallMethodExpression AST node that enables calling methods and constructors, including special handling of passing through the "this" pointer for method calls on structs by reference. The syntax for struct construction using "{}" remains as before, but now calls the struct's matching constructor rather than implicitly initializing the struct fields with the initialization arguments. A new syntax for allocation classes is introduced: "new ClassName{constructor_param1, constructor_param1, ...}", which de-sugars to an %Allocate call followed by a call to the matching constructor. - class constructors can use the "super" keyword to initialize their super class. - If classes and struct do not have a constructor, Torque creates a default constructor for them based on their field declarations, where each field's initial value is assigned to a same-typed parameter to the the default constructor. The default constructor's parameters are in field-declaration order, and for derived classes, the default constructor automatically uses a "super" initialization call to initialize inherited fields. - Class field declarations now automatically create ".field" and ".field=" operators that create CSA-compatible object accessors. - Addition of a no-argument constructor for JSArrays that creates an empty, PACKED_SMI_ELEMENTS JSArray using the machinery added elsewhere in this patch. Bug: v8:7793 Change-Id: I31ce5f4b444656ab999555d780aeeba605666bfa Reviewed-on: https://chromium-review.googlesource.com/c/1392192 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#58860}
2019-01-16 16:25:29 +00:00
@export
macro TestFrame1(implicit context: Context)(): void {
const f: Frame = LoadFramePointer();
const frameType: FrameType =
Cast<FrameType>(f.context_or_frame_type) otherwise unreachable;
dcheck(frameType == STUB_FRAME);
dcheck(f.caller == LoadParentFramePointer());
typeswitch (f) {
case (_f: StandardFrame): {
unreachable;
}
case (_f: StubFrame): {
[torque] Implement methods and constructors for structs and classes With the changes in this patch, it is now possible to add methods to both Torque's class and struct types. As a special case, "constructor" methods are used to initialize the values of classes and structs when they are constructed. The functionality in this patch includes: - The refactoring of class- and struct-handling code to share field and method declaration code between both. - Addition of the "%Allocate" intrinsic that allocates raw bytes to be allocated from the V8 GC's NewSpace heap as the basis for freshly created, initialized class objects. - An implementation of a CallMethodExpression AST node that enables calling methods and constructors, including special handling of passing through the "this" pointer for method calls on structs by reference. The syntax for struct construction using "{}" remains as before, but now calls the struct's matching constructor rather than implicitly initializing the struct fields with the initialization arguments. A new syntax for allocation classes is introduced: "new ClassName{constructor_param1, constructor_param1, ...}", which de-sugars to an %Allocate call followed by a call to the matching constructor. - class constructors can use the "super" keyword to initialize their super class. - If classes and struct do not have a constructor, Torque creates a default constructor for them based on their field declarations, where each field's initial value is assigned to a same-typed parameter to the the default constructor. The default constructor's parameters are in field-declaration order, and for derived classes, the default constructor automatically uses a "super" initialization call to initialize inherited fields. - Class field declarations now automatically create ".field" and ".field=" operators that create CSA-compatible object accessors. - Addition of a no-argument constructor for JSArrays that creates an empty, PACKED_SMI_ELEMENTS JSArray using the machinery added elsewhere in this patch. Bug: v8:7793 Change-Id: I31ce5f4b444656ab999555d780aeeba605666bfa Reviewed-on: https://chromium-review.googlesource.com/c/1392192 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#58860}
2019-01-16 16:25:29 +00:00
}
}
}
[torque] Implement methods and constructors for structs and classes With the changes in this patch, it is now possible to add methods to both Torque's class and struct types. As a special case, "constructor" methods are used to initialize the values of classes and structs when they are constructed. The functionality in this patch includes: - The refactoring of class- and struct-handling code to share field and method declaration code between both. - Addition of the "%Allocate" intrinsic that allocates raw bytes to be allocated from the V8 GC's NewSpace heap as the basis for freshly created, initialized class objects. - An implementation of a CallMethodExpression AST node that enables calling methods and constructors, including special handling of passing through the "this" pointer for method calls on structs by reference. The syntax for struct construction using "{}" remains as before, but now calls the struct's matching constructor rather than implicitly initializing the struct fields with the initialization arguments. A new syntax for allocation classes is introduced: "new ClassName{constructor_param1, constructor_param1, ...}", which de-sugars to an %Allocate call followed by a call to the matching constructor. - class constructors can use the "super" keyword to initialize their super class. - If classes and struct do not have a constructor, Torque creates a default constructor for them based on their field declarations, where each field's initial value is assigned to a same-typed parameter to the the default constructor. The default constructor's parameters are in field-declaration order, and for derived classes, the default constructor automatically uses a "super" initialization call to initialize inherited fields. - Class field declarations now automatically create ".field" and ".field=" operators that create CSA-compatible object accessors. - Addition of a no-argument constructor for JSArrays that creates an empty, PACKED_SMI_ELEMENTS JSArray using the machinery added elsewhere in this patch. Bug: v8:7793 Change-Id: I31ce5f4b444656ab999555d780aeeba605666bfa Reviewed-on: https://chromium-review.googlesource.com/c/1392192 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#58860}
2019-01-16 16:25:29 +00:00
@export
macro TestNew(implicit context: Context)(): void {
const f: JSArray = NewJSArray();
check(f.IsEmpty());
f.length = 0;
}
[torque] Implement methods and constructors for structs and classes With the changes in this patch, it is now possible to add methods to both Torque's class and struct types. As a special case, "constructor" methods are used to initialize the values of classes and structs when they are constructed. The functionality in this patch includes: - The refactoring of class- and struct-handling code to share field and method declaration code between both. - Addition of the "%Allocate" intrinsic that allocates raw bytes to be allocated from the V8 GC's NewSpace heap as the basis for freshly created, initialized class objects. - An implementation of a CallMethodExpression AST node that enables calling methods and constructors, including special handling of passing through the "this" pointer for method calls on structs by reference. The syntax for struct construction using "{}" remains as before, but now calls the struct's matching constructor rather than implicitly initializing the struct fields with the initialization arguments. A new syntax for allocation classes is introduced: "new ClassName{constructor_param1, constructor_param1, ...}", which de-sugars to an %Allocate call followed by a call to the matching constructor. - class constructors can use the "super" keyword to initialize their super class. - If classes and struct do not have a constructor, Torque creates a default constructor for them based on their field declarations, where each field's initial value is assigned to a same-typed parameter to the the default constructor. The default constructor's parameters are in field-declaration order, and for derived classes, the default constructor automatically uses a "super" initialization call to initialize inherited fields. - Class field declarations now automatically create ".field" and ".field=" operators that create CSA-compatible object accessors. - Addition of a no-argument constructor for JSArrays that creates an empty, PACKED_SMI_ELEMENTS JSArray using the machinery added elsewhere in this patch. Bug: v8:7793 Change-Id: I31ce5f4b444656ab999555d780aeeba605666bfa Reviewed-on: https://chromium-review.googlesource.com/c/1392192 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#58860}
2019-01-16 16:25:29 +00:00
struct TestInner {
macro SetX(newValue: int32): void {
this.x = newValue;
[torque] Implement methods and constructors for structs and classes With the changes in this patch, it is now possible to add methods to both Torque's class and struct types. As a special case, "constructor" methods are used to initialize the values of classes and structs when they are constructed. The functionality in this patch includes: - The refactoring of class- and struct-handling code to share field and method declaration code between both. - Addition of the "%Allocate" intrinsic that allocates raw bytes to be allocated from the V8 GC's NewSpace heap as the basis for freshly created, initialized class objects. - An implementation of a CallMethodExpression AST node that enables calling methods and constructors, including special handling of passing through the "this" pointer for method calls on structs by reference. The syntax for struct construction using "{}" remains as before, but now calls the struct's matching constructor rather than implicitly initializing the struct fields with the initialization arguments. A new syntax for allocation classes is introduced: "new ClassName{constructor_param1, constructor_param1, ...}", which de-sugars to an %Allocate call followed by a call to the matching constructor. - class constructors can use the "super" keyword to initialize their super class. - If classes and struct do not have a constructor, Torque creates a default constructor for them based on their field declarations, where each field's initial value is assigned to a same-typed parameter to the the default constructor. The default constructor's parameters are in field-declaration order, and for derived classes, the default constructor automatically uses a "super" initialization call to initialize inherited fields. - Class field declarations now automatically create ".field" and ".field=" operators that create CSA-compatible object accessors. - Addition of a no-argument constructor for JSArrays that creates an empty, PACKED_SMI_ELEMENTS JSArray using the machinery added elsewhere in this patch. Bug: v8:7793 Change-Id: I31ce5f4b444656ab999555d780aeeba605666bfa Reviewed-on: https://chromium-review.googlesource.com/c/1392192 Commit-Queue: Daniel Clifford <danno@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#58860}
2019-01-16 16:25:29 +00:00
}
macro GetX(): int32 {
return this.x;
}
x: int32;
y: int32;
}
struct TestOuter {
a: int32;
b: TestInner;
c: int32;
}
@export
macro TestStructConstructor(implicit context: Context)(): void {
// Test default constructor
let a: TestOuter = TestOuter{a: 5, b: TestInner{x: 6, y: 7}, c: 8};
check(a.a == 5);
check(a.b.x == 6);
check(a.b.y == 7);
check(a.c == 8);
a.b.x = 1;
check(a.b.x == 1);
a.b.SetX(2);
check(a.b.x == 2);
check(a.b.GetX() == 2);
}
class InternalClass extends HeapObject {
macro Flip(): void labels NotASmi {
const tmp = Cast<Smi>(this.b) otherwise NotASmi;
this.b = this.a;
this.a = tmp;
}
a: Smi;
b: Number;
}
macro NewInternalClass(x: Smi): InternalClass {
return new InternalClass{a: x, b: x + 1};
}
@export
macro TestInternalClass(implicit context: Context)(): void {
const o = NewInternalClass(5);
o.Flip() otherwise unreachable;
check(o.a == 6);
check(o.b == 5);
}
struct StructWithConst {
macro TestMethod1(): int32 {
return this.b;
}
macro TestMethod2(): Object {
return this.a;
}
a: Object;
const b: int32;
}
@export
macro TestConstInStructs(): void {
const x = StructWithConst{a: Null, b: 1};
let y = StructWithConst{a: Null, b: 1};
y.a = Undefined;
const _copy = x;
check(x.TestMethod1() == 1);
check(x.TestMethod2() == Null);
}
@export
macro TestParentFrameArguments(implicit context: Context)(): void {
const parentFrame = LoadParentFramePointer();
const castFrame = Cast<StandardFrame>(parentFrame) otherwise unreachable;
const arguments = GetFrameArguments(castFrame, 1);
ArgumentsIterator{arguments, current: 0};
}
struct TestIterator {
macro Next(): Object labels NoMore {
if (this.count-- == 0) goto NoMore;
return TheHole;
}
count: Smi;
}
@export
macro TestNewFixedArrayFromSpread(implicit context: Context)(): Object {
let i = TestIterator{count: 5};
return new FixedArray{map: kFixedArrayMap, length: 5, objects: ...i};
}
class SmiPair extends HeapObject {
macro GetA():&Smi {
return &this.a;
}
a: Smi;
b: Smi;
}
macro Swap<T: type>(a:&T, b:&T): void {
const tmp = *a;
*a = *b;
*b = tmp;
}
@export
macro TestReferences(): void {
const array = new SmiPair{a: 7, b: 2};
const ref:&Smi = &array.a;
*ref = 3 + *ref;
-- *ref;
Swap(&array.b, array.GetA());
check(array.a == 2);
check(array.b == 9);
}
@export
macro TestSlices(): void {
const it = TestIterator{count: 3};
const a = new FixedArray{map: kFixedArrayMap, length: 3, objects: ...it};
check(a.length == 3);
const oneTwoThree = Convert<Smi>(123);
a.objects[0] = oneTwoThree;
const firstRef:&Object = &a.objects[0];
check(TaggedEqual(*firstRef, oneTwoThree));
const slice: MutableSlice<Object> = &a.objects;
const firstRefAgain:&Object = slice.TryAtIndex(0) otherwise unreachable;
check(TaggedEqual(*firstRefAgain, oneTwoThree));
[torque] Add user-defined Slice struct This CL consists of several preparatory steps for slices in Torque. Above all, it introduces a user-defined struct, torque_internal::Slice<T>, that performs bounds checking and returns references to elements in arrays. To enable this, several smaller changes were also made: - Constructors of internal classes such as torque_internal::Reference<T> now require a special 'Unsafe' argument, making it clear that there be dragons. - Struct methods are now declared during finalization. This allows instances of generic structs to have methods referring to the same struct. Previously, methods would be declared before the instance had been fully registered, leading to errors during type resolution. Furthermore, such methods were declared in a temporary namespace, that would then erroneously escape and lead to use-after-free issues. - Instances of TypeArgumentInference were not running in the correct (Torque) scopes, leading to type resolution errors. - The chain of ContextualVariable::Scope for any given ContextualVariable (such as CurrentScope) can now be walked, simplifying debugging. R=jgruber@chromium.org, tebbi@chromium.org Bug: v8:7793 Change-Id: I36f808f63cc3ce441062dfc56f511f24f1e3121e Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1758322 Commit-Queue: Georg Schmid <gsps@google.com> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#63314}
2019-08-21 11:47:44 +00:00
const threeTwoOne = Convert<Smi>(321);
*firstRefAgain = threeTwoOne;
check(TaggedEqual(a.objects[0], threeTwoOne));
[torque] Add user-defined Slice struct This CL consists of several preparatory steps for slices in Torque. Above all, it introduces a user-defined struct, torque_internal::Slice<T>, that performs bounds checking and returns references to elements in arrays. To enable this, several smaller changes were also made: - Constructors of internal classes such as torque_internal::Reference<T> now require a special 'Unsafe' argument, making it clear that there be dragons. - Struct methods are now declared during finalization. This allows instances of generic structs to have methods referring to the same struct. Previously, methods would be declared before the instance had been fully registered, leading to errors during type resolution. Furthermore, such methods were declared in a temporary namespace, that would then erroneously escape and lead to use-after-free issues. - Instances of TypeArgumentInference were not running in the correct (Torque) scopes, leading to type resolution errors. - The chain of ContextualVariable::Scope for any given ContextualVariable (such as CurrentScope) can now be walked, simplifying debugging. R=jgruber@chromium.org, tebbi@chromium.org Bug: v8:7793 Change-Id: I36f808f63cc3ce441062dfc56f511f24f1e3121e Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1758322 Commit-Queue: Georg Schmid <gsps@google.com> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#63314}
2019-08-21 11:47:44 +00:00
// *slice; // error, not allowed
// a.objects; // error, not allowed
// a.objects = slice; // error, not allowed
// TODO(gsps): Currently errors, but should be allowed:
// const _sameSlice: MutableSlice<Object> = &(*slice);
// (*slice)[0] : Smi
}
[torque] Add user-defined Slice struct This CL consists of several preparatory steps for slices in Torque. Above all, it introduces a user-defined struct, torque_internal::Slice<T>, that performs bounds checking and returns references to elements in arrays. To enable this, several smaller changes were also made: - Constructors of internal classes such as torque_internal::Reference<T> now require a special 'Unsafe' argument, making it clear that there be dragons. - Struct methods are now declared during finalization. This allows instances of generic structs to have methods referring to the same struct. Previously, methods would be declared before the instance had been fully registered, leading to errors during type resolution. Furthermore, such methods were declared in a temporary namespace, that would then erroneously escape and lead to use-after-free issues. - Instances of TypeArgumentInference were not running in the correct (Torque) scopes, leading to type resolution errors. - The chain of ContextualVariable::Scope for any given ContextualVariable (such as CurrentScope) can now be walked, simplifying debugging. R=jgruber@chromium.org, tebbi@chromium.org Bug: v8:7793 Change-Id: I36f808f63cc3ce441062dfc56f511f24f1e3121e Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1758322 Commit-Queue: Georg Schmid <gsps@google.com> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Tobias Tebbi <tebbi@chromium.org> Cr-Commit-Position: refs/heads/master@{#63314}
2019-08-21 11:47:44 +00:00
@export
macro TestSliceEnumeration(implicit context: Context)(): Undefined {
const fixedArray: FixedArray = AllocateZeroedFixedArray(3);
for (let i: intptr = 0; i < 3; i++) {
check(UnsafeCast<Smi>(fixedArray.objects[i]) == 0);
fixedArray.objects[i] = Convert<Smi>(i) + 3;
}
let slice = &fixedArray.objects;
for (let i: intptr = 0; i < slice.length; i++) {
let ref = slice.TryAtIndex(i) otherwise unreachable;
const value = UnsafeCast<Smi>(*ref);
check(value == Convert<Smi>(i) + 3);
*ref = value + 4;
}
let it = slice.Iterator();
let count: Smi = 0;
while (true) {
const value = UnsafeCast<Smi>(it.Next() otherwise break);
check(value == count + 7);
count++;
}
check(count == 3);
check(it.Empty());
return Undefined;
}
@export
macro TestStaticAssert(): void {
static_assert(1 + 2 == 3);
static_assert(Convert<uintptr>(5) < Convert<uintptr>(6));
static_assert(!(Convert<uintptr>(5) < Convert<uintptr>(5)));
static_assert(!(Convert<uintptr>(6) < Convert<uintptr>(5)));
static_assert(Convert<uintptr>(5) <= Convert<uintptr>(5));
static_assert(Convert<uintptr>(5) <= Convert<uintptr>(6));
static_assert(!(Convert<uintptr>(6) <= Convert<uintptr>(5)));
static_assert(Convert<intptr>(-6) < Convert<intptr>(-5));
static_assert(!(Convert<intptr>(-5) < Convert<intptr>(-5)));
static_assert(!(Convert<intptr>(-5) < Convert<intptr>(-6)));
static_assert(Convert<intptr>(-5) <= Convert<intptr>(-5));
static_assert(Convert<intptr>(-6) <= Convert<intptr>(-5));
static_assert(!(Convert<intptr>(-5) <= Convert<intptr>(-6)));
}
class SmiBox extends HeapObject {
value: Smi;
unrelated: Smi;
}
builtin NewSmiBox(implicit context: Context)(value: Smi): SmiBox {
return new SmiBox{value, unrelated: 0};
}
@export
macro TestLoadEliminationFixed(implicit context: Context)(): void {
const box = NewSmiBox(123);
const v1 = box.value;
box.unrelated = 999;
const v2 = (box.unrelated == 0) ? box.value : box.value;
static_assert(TaggedEqual(v1, v2));
box.value = 11;
const v3 = box.value;
const eleven: Smi = 11;
static_assert(TaggedEqual(v3, eleven));
}
@export
macro TestLoadEliminationVariable(implicit context: Context)(): void {
const a = UnsafeCast<FixedArray>(kEmptyFixedArray);
const box = NewSmiBox(1);
const v1 = a.objects[box.value];
const u1 = a.objects[box.value + 2];
const v2 = a.objects[box.value];
const u2 = a.objects[box.value + 2];
static_assert(TaggedEqual(v1, v2));
static_assert(TaggedEqual(u1, u2));
}
@export
macro TestRedundantArrayElementCheck(implicit context: Context)(): Smi {
const a = kEmptyFixedArray;
for (let i: Smi = 0; i < a.length; i++) {
if (a.objects[i] == TheHole) {
if (a.objects[i] == TheHole) {
return -1;
} else {
static_assert(false);
}
}
}
return 1;
}
@export
macro TestRedundantSmiCheck(implicit context: Context)(): Smi {
const a = kEmptyFixedArray;
const x = a.objects[1];
typeswitch (x) {
case (Smi): {
Cast<Smi>(x) otherwise VerifiedUnreachable();
return -1;
}
case (Object): {
}
}
return 1;
}
struct SBox<T: type> {
value: T;
}
@export
macro TestGenericStruct1(): intptr {
const i: intptr = 123;
let box = SBox{value: i};
let boxbox: SBox<SBox<intptr>> = SBox{value: box};
check(box.value == 123);
boxbox.value.value *= 2;
check(boxbox.value.value == 246);
return boxbox.value.value;
}
struct TestTuple<T1: type, T2: type> {
const fst: T1;
const snd: T2;
}
macro TupleSwap<T1: type, T2: type>(tuple: TestTuple<T1, T2>):
TestTuple<T2, T1> {
return TestTuple{fst: tuple.snd, snd: tuple.fst};
}
@export
macro TestGenericStruct2():
TestTuple<TestTuple<intptr, Smi>, TestTuple<Smi, intptr>> {
const intptrAndSmi = TestTuple<intptr, Smi>{fst: 1, snd: 2};
const smiAndIntptr = TupleSwap(intptrAndSmi);
check(intptrAndSmi.fst == smiAndIntptr.snd);
check(intptrAndSmi.snd == smiAndIntptr.fst);
const tupleTuple =
TestTuple<TestTuple<intptr, Smi>>{fst: intptrAndSmi, snd: smiAndIntptr};
return tupleTuple;
}
macro BranchAndWriteResult(x: Smi, box: SmiBox): bool {
if (x > 5 || x < 0) {
box.value = 1;
return true;
} else {
box.value = 2;
return false;
}
}
@export
macro TestBranchOnBoolOptimization(implicit context: Context)(input: Smi):
void {
const box = NewSmiBox(1);
// If the two branches get combined into one, we should be able to determine
// the value of {box} statically.
if (BranchAndWriteResult(input, box)) {
static_assert(box.value == 1);
} else {
static_assert(box.value == 2);
}
}
bitfield struct TestBitFieldStruct extends uint8 {
a: bool: 1 bit;
b: uint16: 3 bit;
c: uint32: 3 bit;
d: bool: 1 bit;
}
@export
macro TestBitFieldLoad(
val: TestBitFieldStruct, expectedA: bool, expectedB: uint16,
expectedC: uint32, expectedD: bool): void {
check(val.a == expectedA);
check(val.b == expectedB);
check(val.c == expectedC);
check(val.d == expectedD);
}
@export
macro TestBitFieldStore(val: TestBitFieldStruct): void {
let val: TestBitFieldStruct = val; // Get a mutable local copy.
const a: bool = val.a;
const b: uint16 = val.b;
let c: uint32 = val.c;
const d: bool = val.d;
val.a = !a;
TestBitFieldLoad(val, !a, b, c, d);
c = Unsigned(7 - Signed(val.c));
val.c = c;
TestBitFieldLoad(val, !a, b, c, d);
val.d = val.b == val.c;
TestBitFieldLoad(val, !a, b, c, b == c);
}
@export
macro TestBitFieldInit(a: bool, b: uint16, c: uint32, d: bool): void {
const val: TestBitFieldStruct = TestBitFieldStruct{a: a, b: b, c: c, d: d};
TestBitFieldLoad(val, a, b, c, d);
}
// Some other bitfield structs, to verify getting uintptr values out of word32
// structs and vice versa.
bitfield struct TestBitFieldStruct2 extends uint32 {
a: uintptr: 5 bit;
b: uintptr: 6 bit;
}
bitfield struct TestBitFieldStruct3 extends uintptr {
c: bool: 1 bit;
d: uint32: 9 bit;
e: uintptr: 17 bit;
}
@export
macro TestBitFieldUintptrOps(
val2: TestBitFieldStruct2, val3: TestBitFieldStruct3): void {
let val2: TestBitFieldStruct2 = val2; // Get a mutable local copy.
let val3: TestBitFieldStruct3 = val3; // Get a mutable local copy.
// Caller is expected to provide these exact values, so we can verify
// reading values before starting to write anything.
check(val2.a == 3);
check(val2.b == 61);
check(val3.c);
check(val3.d == 500);
check(val3.e == 0x1cc);
val2.b = 16;
check(val2.a == 3);
check(val2.b == 16);
val2.b++;
check(val2.a == 3);
check(val2.b == 17);
val3.d = 99;
val3.e = 1234;
check(val3.c);
check(val3.d == 99);
check(val3.e == 1234);
}
2020-03-03 15:53:40 +00:00
bitfield struct TestBitFieldStruct4 extends uint31 {
a: bool: 1 bit;
b: int32: 3 bit;
c: bool: 1 bit;
}
bitfield struct TestBitFieldStruct5 extends uint31 {
b: int32: 19 bit;
a: bool: 1 bit;
c: bool: 1 bit;
}
@export
macro TestBitFieldMultipleFlags(a: bool, b: int32, c: bool): void {
const f = TestBitFieldStruct4{a: a, b: b, c: c};
let simpleExpression = f.a & f.b == 3 & !f.c;
let expectedReduction = (Signed(f) & 0x1f) == Convert<int32>(1 | 3 << 1);
static_assert(simpleExpression == expectedReduction);
simpleExpression = !f.a & f.b == 4 & f.c;
expectedReduction = (Signed(f) & 0x1f) == Convert<int32>(4 << 1 | 1 << 4);
static_assert(simpleExpression == expectedReduction);
simpleExpression = f.b == 0 & f.c;
expectedReduction = (Signed(f) & 0x1e) == Convert<int32>(1 << 4);
static_assert(simpleExpression == expectedReduction);
simpleExpression = f.a & f.c;
expectedReduction = (Signed(f) & 0x11) == Convert<int32>(1 | 1 << 4);
static_assert(simpleExpression == expectedReduction);
const f2 = TestBitFieldStruct5{b: b, a: a, c: c};
simpleExpression = !f2.a & f2.b == 1234 & f2.c;
expectedReduction = (Signed(f2) & 0x1fffff) == Convert<int32>(1234 | 1 << 20);
static_assert(simpleExpression == expectedReduction);
simpleExpression = !f2.a & !f2.c;
expectedReduction = (Signed(f2) & 0x180000) == Convert<int32>(0);
static_assert(simpleExpression == expectedReduction);
}
@export
class ExportedSubClass extends ExportedSubClassBase {
c_field: int32;
d_field: int32;
e_field: Smi;
}
2020-03-03 15:53:40 +00:00
@export
class ExportedSubClassBase extends HeapObject {
a: HeapObject;
b: HeapObject;
}
2020-03-03 15:53:40 +00:00
@abstract
class AbstractInternalClass extends HeapObject {
}
class AbstractInternalClassSubclass1 extends AbstractInternalClass {}
class AbstractInternalClassSubclass2 extends AbstractInternalClass {}
class InternalClassWithSmiElements extends FixedArrayBase {
data: Smi;
object: Oddball;
entries[length]: Smi;
}
2020-03-03 15:53:40 +00:00
struct InternalClassStructElement {
a: Smi;
b: Smi;
}
2020-03-03 15:53:40 +00:00
class InternalClassWithStructElements extends HeapObject {
dummy1: int32;
dummy2: int32;
const count: Smi;
data: Smi;
object: Object;
entries[count]: Smi;
more_entries[count]: InternalClassStructElement;
}
2020-03-03 15:53:40 +00:00
struct SmiGeneratorIterator {
macro Next(): Smi labels _NoMore {
return this.value++;
2020-03-03 15:53:40 +00:00
}
value: Smi;
}
2020-03-03 15:53:40 +00:00
struct InternalClassStructElementGeneratorIterator {
macro Next(): InternalClassStructElement labels _NoMore {
return InternalClassStructElement{a: this.value++, b: this.value++};
2020-03-03 15:53:40 +00:00
}
value: Smi;
}
2020-03-03 15:53:40 +00:00
@export
macro TestFullyGeneratedClassWithElements(): void {
// Test creation, initialization and access of a fully generated class with
// simple (Smi) elements
const length: Smi = Convert<Smi>(3);
const object1 = new InternalClassWithSmiElements{
length,
data: 0,
object: Undefined,
entries: ...SmiGeneratorIterator {
value: 11
}
};
dcheck(object1.length == 3);
dcheck(object1.data == 0);
dcheck(object1.object == Undefined);
dcheck(object1.entries[0] == 11);
dcheck(object1.entries[1] == 12);
dcheck(object1.entries[2] == 13);
// Test creation, initialization and access of a fully generated class
// with elements that are a struct.
const object2 = new InternalClassWithStructElements{
dummy1: 44,
dummy2: 45,
count: length,
data: 55,
object: Undefined,
entries: ...SmiGeneratorIterator{value: 3},
more_entries: ...InternalClassStructElementGeneratorIterator {
value: 1
}
};
dcheck(object2.dummy1 == 44);
dcheck(object2.dummy2 == 45);
dcheck(object2.count == 3);
dcheck(object2.data == 55);
dcheck(object2.object == Undefined);
dcheck(object2.entries[0] == 3);
dcheck(object2.entries[1] == 4);
dcheck(object2.entries[2] == 5);
dcheck(object2.more_entries[0].a == 1);
dcheck(object2.more_entries[0].b == 2);
dcheck(object2.more_entries[1].a == 3);
dcheck(object2.more_entries[1].b == 4);
dcheck(object2.more_entries[2].a == 5);
dcheck(object2.more_entries[2].b == 6);
}
2020-03-03 15:53:40 +00:00
@export
macro TestFullyGeneratedClassFromCpp(): ExportedSubClass {
return new
ExportedSubClass{a: Null, b: Null, c_field: 7, d_field: 8, e_field: 9};
}
2020-06-23 07:08:51 +00:00
@export
class ExportedSubClass2 extends ExportedSubClassBase {
x_field: int32;
y_field: int32;
z_field: Smi;
}
@export
macro TestGeneratedCastOperators(implicit context: Context)(): void {
2020-06-23 07:08:51 +00:00
const a = new
ExportedSubClass{a: Null, b: Null, c_field: 3, d_field: 4, e_field: 5};
const b = new ExportedSubClassBase{a: Undefined, b: Null};
const c = new
ExportedSubClass2{a: Null, b: Null, x_field: 3, y_field: 4, z_field: 5};
const aO: Object = a;
const bO: Object = b;
const cO: Object = c;
dcheck(Is<ExportedSubClassBase>(aO));
dcheck(Is<ExportedSubClass>(aO));
dcheck(!Is<ExportedSubClass2>(aO));
dcheck(Is<ExportedSubClassBase>(bO));
dcheck(!Is<ExportedSubClass>(bO));
dcheck(Is<ExportedSubClassBase>(cO));
dcheck(!Is<ExportedSubClass>(cO));
dcheck(Is<ExportedSubClass2>(cO));
2020-06-23 07:08:51 +00:00
const jsf: JSFunction =
*NativeContextSlot(ContextSlot::REGEXP_FUNCTION_INDEX);
dcheck(!Is<JSSloppyArgumentsObject>(jsf));
2020-06-23 07:08:51 +00:00
const parameterValues = NewFixedArray(0, ConstantIterator(TheHole));
const elements = NewSloppyArgumentsElements(
0, context, parameterValues, ConstantIterator(TheHole));
const fastArgs = arguments::NewJSFastAliasedArgumentsObject(
elements, Convert<Smi>(0), jsf);
dcheck(Is<JSArgumentsObject>(fastArgs));
2020-06-23 07:08:51 +00:00
}
extern runtime InYoungGeneration(implicit context: Context)(HeapObject):
Boolean;
@export
macro TestNewPretenured(implicit context: Context)(): void {
const obj = new (Pretenured) ExportedSubClassBase{a: Undefined, b: Null};
dcheck(Is<ExportedSubClassBase>(obj));
dcheck(InYoungGeneration(obj) == False);
}
@export
macro TestWord8Phi(): void {
for (let i: intptr = -5; i < 5; ++i) {
let x: int8;
if (i == -1) {
x = -1;
} else {
x = Convert<int8>(i);
}
check(x == Convert<int8>(i));
}
}
@export
macro TestOffHeapSlice(ptr: RawPtr<char8>, length: intptr): void {
const string = UnsafeCast<SeqOneByteString>(Convert<String>('Hello World!'));
check(*torque_internal::unsafe::NewOffHeapReference(ptr) == string.chars[0]);
let offHeapSlice = torque_internal::unsafe::NewOffHeapConstSlice(ptr, length);
let onHeapSlice = &string.chars;
for (let i: intptr = 0; i < onHeapSlice.length; ++i) {
check(*onHeapSlice.AtIndex(i) == *offHeapSlice.AtIndex(i));
}
}
struct TwoValues {
a: Smi;
b: Map;
}
builtin ReturnTwoValues(implicit context: Context)(
value: Smi, obj: HeapObject): TwoValues {
return TwoValues{a: value + 1, b: obj.map};
}
@export
macro TestCallMultiReturnBuiltin(implicit context: Context)(): void {
const result = ReturnTwoValues(444, FromConstexpr<String>('hi'));
check(result.a == 445);
check(result.b == FromConstexpr<String>('hi').map);
}
@export
macro TestRunLazyTwice(lazySmi: Lazy<Smi>): Smi {
const firstResult = RunLazy(lazySmi);
const secondResult = RunLazy(lazySmi);
return firstResult + secondResult;
}
macro GetLazySmi(): Smi {
return 3;
}
macro AddTwoSmiValues(a: Smi, b: Smi): Smi {
return a + b;
}
macro AddSmiAndConstexprValues(a: Smi, b: constexpr int31): Smi {
return a + b;
}
@export
macro TestCreateLazyNodeFromTorque(): void {
const lazy = %MakeLazy<Smi>('GetLazySmi');
const result = TestRunLazyTwice(lazy);
check(result == 6);
// The macro can also be referred to using namespace qualifications.
const lazy2 = %MakeLazy<Smi>('test::GetLazySmi');
const result2 = TestRunLazyTwice(lazy2);
check(result2 == 6);
// We can save params to the macro. The most common usage is likely a
// single-arg macro that just returns the arg, but we can use any number of
// params.
const lazy3 = %MakeLazy<Smi>('AddTwoSmiValues', 5, 6);
const result3 = TestRunLazyTwice(lazy3);
check(result3 == 22);
// It's okay if some of the params are constexpr and some aren't.
const lazy4 = %MakeLazy<Smi>('AddSmiAndConstexprValues', 7, 8);
const result4 = TestRunLazyTwice(lazy4);
check(result4 == 30);
}
}