2016-06-13 05:46:38 +00:00
|
|
|
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
|
|
|
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#include "src/base/ieee754.h"
|
|
|
|
#include "src/base/macros.h"
|
|
|
|
#include "testing/gmock-support.h"
|
|
|
|
#include "testing/gtest-support.h"
|
|
|
|
|
2016-06-13 07:06:49 +00:00
|
|
|
using testing::BitEq;
|
2016-06-13 05:46:38 +00:00
|
|
|
using testing::IsNaN;
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace base {
|
|
|
|
namespace ieee754 {
|
|
|
|
|
2016-06-20 05:51:37 +00:00
|
|
|
namespace {
|
|
|
|
|
2016-06-22 05:55:41 +00:00
|
|
|
double const kE = 2.718281828459045;
|
2016-06-20 05:51:37 +00:00
|
|
|
double const kPI = 3.141592653589793;
|
|
|
|
double const kTwo120 = 1.329227995784916e+36;
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
double const kInfinity = std::numeric_limits<double>::infinity();
|
|
|
|
double const kQNaN = std::numeric_limits<double>::quiet_NaN();
|
|
|
|
double const kSNaN = std::numeric_limits<double>::signaling_NaN();
|
2016-06-20 05:51:37 +00:00
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
TEST(Ieee754, Acos) {
|
|
|
|
EXPECT_THAT(acos(kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(acos(-kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(acos(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(acos(kSNaN), IsNaN());
|
|
|
|
|
|
|
|
EXPECT_EQ(0.0, acos(1.0));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Acosh) {
|
|
|
|
// Tests for acosh for exceptional values
|
|
|
|
EXPECT_EQ(kInfinity, acosh(kInfinity));
|
|
|
|
EXPECT_THAT(acosh(-kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(acosh(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(acosh(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(acosh(0.9), IsNaN());
|
|
|
|
|
|
|
|
// Test basic acosh functionality
|
|
|
|
EXPECT_EQ(0.0, acosh(1.0));
|
|
|
|
// acosh(1.5) = log((sqrt(5)+3)/2), case 1 < x < 2
|
|
|
|
EXPECT_EQ(0.9624236501192069e0, acosh(1.5));
|
|
|
|
// acosh(4) = log(sqrt(15)+4), case 2 < x < 2^28
|
|
|
|
EXPECT_EQ(2.0634370688955608e0, acosh(4.0));
|
|
|
|
// acosh(2^50), case 2^28 < x
|
|
|
|
EXPECT_EQ(35.35050620855721e0, acosh(1125899906842624.0));
|
|
|
|
// acosh(most-positive-float), no overflow
|
|
|
|
EXPECT_EQ(710.4758600739439e0, acosh(1.7976931348623157e308));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Asin) {
|
|
|
|
EXPECT_THAT(asin(kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(asin(-kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(asin(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(asin(kSNaN), IsNaN());
|
|
|
|
|
|
|
|
EXPECT_THAT(asin(0.0), BitEq(0.0));
|
|
|
|
EXPECT_THAT(asin(-0.0), BitEq(-0.0));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Asinh) {
|
|
|
|
// Tests for asinh for exceptional values
|
|
|
|
EXPECT_EQ(kInfinity, asinh(kInfinity));
|
|
|
|
EXPECT_EQ(-kInfinity, asinh(-kInfinity));
|
|
|
|
EXPECT_THAT(asin(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(asin(kSNaN), IsNaN());
|
|
|
|
|
|
|
|
// Test basic asinh functionality
|
|
|
|
EXPECT_THAT(asinh(0.0), BitEq(0.0));
|
|
|
|
EXPECT_THAT(asinh(-0.0), BitEq(-0.0));
|
|
|
|
// asinh(2^-29) = 2^-29, case |x| < 2^-28, where acosh(x) = x
|
|
|
|
EXPECT_EQ(1.862645149230957e-9, asinh(1.862645149230957e-9));
|
|
|
|
// asinh(-2^-29) = -2^-29, case |x| < 2^-28, where acosh(x) = x
|
|
|
|
EXPECT_EQ(-1.862645149230957e-9, asinh(-1.862645149230957e-9));
|
|
|
|
// asinh(2^-28), case 2 > |x| >= 2^-28
|
|
|
|
EXPECT_EQ(3.725290298461914e-9, asinh(3.725290298461914e-9));
|
|
|
|
// asinh(-2^-28), case 2 > |x| >= 2^-28
|
|
|
|
EXPECT_EQ(-3.725290298461914e-9, asinh(-3.725290298461914e-9));
|
|
|
|
// asinh(1), case 2 > |x| > 2^-28
|
|
|
|
EXPECT_EQ(0.881373587019543e0, asinh(1.0));
|
|
|
|
// asinh(-1), case 2 > |x| > 2^-28
|
|
|
|
EXPECT_EQ(-0.881373587019543e0, asinh(-1.0));
|
|
|
|
// asinh(5), case 2^28 > |x| > 2
|
|
|
|
EXPECT_EQ(2.3124383412727525e0, asinh(5.0));
|
|
|
|
// asinh(-5), case 2^28 > |x| > 2
|
|
|
|
EXPECT_EQ(-2.3124383412727525e0, asinh(-5.0));
|
|
|
|
// asinh(2^28), case 2^28 > |x|
|
|
|
|
EXPECT_EQ(20.101268236238415e0, asinh(268435456.0));
|
|
|
|
// asinh(-2^28), case 2^28 > |x|
|
|
|
|
EXPECT_EQ(-20.101268236238415e0, asinh(-268435456.0));
|
|
|
|
// asinh(<most-positive-float>), no overflow
|
|
|
|
EXPECT_EQ(710.4758600739439e0, asinh(1.7976931348623157e308));
|
|
|
|
// asinh(-<most-positive-float>), no overflow
|
|
|
|
EXPECT_EQ(-710.4758600739439e0, asinh(-1.7976931348623157e308));
|
|
|
|
}
|
|
|
|
|
2016-06-13 07:06:49 +00:00
|
|
|
TEST(Ieee754, Atan) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(atan(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atan(kSNaN), IsNaN());
|
2016-06-13 07:06:49 +00:00
|
|
|
EXPECT_THAT(atan(-0.0), BitEq(-0.0));
|
|
|
|
EXPECT_THAT(atan(0.0), BitEq(0.0));
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_DOUBLE_EQ(1.5707963267948966, atan(kInfinity));
|
|
|
|
EXPECT_DOUBLE_EQ(-1.5707963267948966, atan(-kInfinity));
|
2016-06-13 07:06:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Atan2) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(atan2(kQNaN, kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atan2(kQNaN, kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atan2(kSNaN, kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atan2(kSNaN, kSNaN), IsNaN());
|
|
|
|
EXPECT_DOUBLE_EQ(0.7853981633974483, atan2(kInfinity, kInfinity));
|
|
|
|
EXPECT_DOUBLE_EQ(2.356194490192345, atan2(kInfinity, -kInfinity));
|
|
|
|
EXPECT_DOUBLE_EQ(-0.7853981633974483, atan2(-kInfinity, kInfinity));
|
|
|
|
EXPECT_DOUBLE_EQ(-2.356194490192345, atan2(-kInfinity, -kInfinity));
|
2016-06-13 07:06:49 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 09:13:22 +00:00
|
|
|
TEST(Ieee754, Atanh) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(atanh(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atanh(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(atanh(kInfinity), IsNaN());
|
|
|
|
EXPECT_EQ(kInfinity, atanh(1));
|
|
|
|
EXPECT_EQ(-kInfinity, atanh(-1));
|
2016-06-17 09:13:22 +00:00
|
|
|
EXPECT_DOUBLE_EQ(0.54930614433405478, atanh(0.5));
|
|
|
|
}
|
|
|
|
|
2016-06-17 15:21:48 +00:00
|
|
|
TEST(Ieee754, Cos) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(cos(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(cos(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(cos(kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(cos(-kInfinity), IsNaN());
|
2016-06-17 15:21:48 +00:00
|
|
|
|
|
|
|
// Tests for cos for |x| < pi/4
|
|
|
|
EXPECT_EQ(1.0, 1 / cos(-0.0));
|
|
|
|
EXPECT_EQ(1.0, 1 / cos(0.0));
|
|
|
|
// cos(x) = 1 for |x| < 2^-27
|
|
|
|
EXPECT_EQ(1, cos(2.3283064365386963e-10));
|
|
|
|
EXPECT_EQ(1, cos(-2.3283064365386963e-10));
|
|
|
|
// Test KERNELCOS for |x| < 0.3.
|
|
|
|
// cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2)
|
|
|
|
EXPECT_EQ(0.9876883405951378, cos(0.15707963267948966));
|
|
|
|
// Test KERNELCOS for x ~= 0.78125
|
|
|
|
EXPECT_EQ(0.7100335477927638, cos(0.7812504768371582));
|
|
|
|
EXPECT_EQ(0.7100338835660797, cos(0.78125));
|
|
|
|
// Test KERNELCOS for |x| > 0.3.
|
|
|
|
// cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4)
|
|
|
|
EXPECT_EQ(0.9238795325112867, cos(0.39269908169872414));
|
|
|
|
// Test KERNELTAN for |x| < 0.67434.
|
|
|
|
EXPECT_EQ(0.9238795325112867, cos(-0.39269908169872414));
|
|
|
|
|
|
|
|
// Tests for cos.
|
|
|
|
EXPECT_EQ(1, cos(3.725290298461914e-9));
|
|
|
|
// Cover different code paths in KERNELCOS.
|
|
|
|
EXPECT_EQ(0.9689124217106447, cos(0.25));
|
|
|
|
EXPECT_EQ(0.8775825618903728, cos(0.5));
|
|
|
|
EXPECT_EQ(0.7073882691671998, cos(0.785));
|
|
|
|
// Test that cos(Math.PI/2) != 0 since Math.PI is not exact.
|
|
|
|
EXPECT_EQ(6.123233995736766e-17, cos(1.5707963267948966));
|
|
|
|
// Test cos for various phases.
|
2016-06-20 05:51:37 +00:00
|
|
|
EXPECT_EQ(0.7071067811865474, cos(7.0 / 4 * kPI));
|
|
|
|
EXPECT_EQ(0.7071067811865477, cos(9.0 / 4 * kPI));
|
|
|
|
EXPECT_EQ(-0.7071067811865467, cos(11.0 / 4 * kPI));
|
|
|
|
EXPECT_EQ(-0.7071067811865471, cos(13.0 / 4 * kPI));
|
2016-06-17 15:21:48 +00:00
|
|
|
EXPECT_EQ(0.9367521275331447, cos(1000000.0));
|
2016-06-20 05:51:37 +00:00
|
|
|
EXPECT_EQ(-3.435757038074824e-12, cos(1048575.0 / 2 * kPI));
|
|
|
|
|
|
|
|
// Test Hayne-Panek reduction.
|
|
|
|
EXPECT_EQ(-0.9258790228548379e0, cos(kTwo120));
|
|
|
|
EXPECT_EQ(-0.9258790228548379e0, cos(-kTwo120));
|
2016-06-17 15:21:48 +00:00
|
|
|
}
|
|
|
|
|
2016-06-30 08:41:05 +00:00
|
|
|
TEST(Ieee754, Cosh) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(cosh(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(cosh(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(cosh(kInfinity), kInfinity);
|
|
|
|
EXPECT_THAT(cosh(-kInfinity), kInfinity);
|
2016-06-30 08:41:05 +00:00
|
|
|
EXPECT_EQ(1, cosh(0.0));
|
|
|
|
EXPECT_EQ(1, cosh(-0.0));
|
|
|
|
}
|
|
|
|
|
2016-06-17 05:19:35 +00:00
|
|
|
TEST(Ieee754, Exp) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(exp(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(exp(kSNaN), IsNaN());
|
|
|
|
EXPECT_EQ(0.0, exp(-kInfinity));
|
2016-06-17 05:19:35 +00:00
|
|
|
EXPECT_EQ(0.0, exp(-1000));
|
|
|
|
EXPECT_EQ(0.0, exp(-745.1332191019412));
|
|
|
|
EXPECT_EQ(2.2250738585072626e-308, exp(-708.39641853226408));
|
|
|
|
EXPECT_EQ(3.307553003638408e-308, exp(-708.0));
|
|
|
|
EXPECT_EQ(4.9406564584124654e-324, exp(-7.45133219101941108420e+02));
|
|
|
|
EXPECT_EQ(0.36787944117144233, exp(-1.0));
|
|
|
|
EXPECT_EQ(1.0, exp(-0.0));
|
|
|
|
EXPECT_EQ(1.0, exp(0.0));
|
|
|
|
EXPECT_EQ(1.0, exp(2.2250738585072014e-308));
|
2016-06-22 05:55:41 +00:00
|
|
|
|
|
|
|
// Test that exp(x) is monotonic near 1.
|
2016-06-17 05:19:35 +00:00
|
|
|
EXPECT_GE(exp(1.0), exp(0.9999999999999999));
|
|
|
|
EXPECT_LE(exp(1.0), exp(1.0000000000000002));
|
2016-06-22 05:55:41 +00:00
|
|
|
|
|
|
|
// Test that we produce the correctly rounded result for 1.
|
|
|
|
EXPECT_EQ(kE, exp(1.0));
|
|
|
|
|
2016-06-17 05:19:35 +00:00
|
|
|
EXPECT_EQ(7.38905609893065e0, exp(2.0));
|
|
|
|
EXPECT_EQ(1.7976931348622732e308, exp(7.09782712893383973096e+02));
|
|
|
|
EXPECT_EQ(2.6881171418161356e+43, exp(100.0));
|
|
|
|
EXPECT_EQ(8.218407461554972e+307, exp(709.0));
|
|
|
|
EXPECT_EQ(1.7968190737295725e308, exp(709.7822265625e0));
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(kInfinity, exp(709.7827128933841e0));
|
|
|
|
EXPECT_EQ(kInfinity, exp(710.0));
|
|
|
|
EXPECT_EQ(kInfinity, exp(1000.0));
|
|
|
|
EXPECT_EQ(kInfinity, exp(kInfinity));
|
2016-06-17 05:19:35 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 09:13:22 +00:00
|
|
|
TEST(Ieee754, Expm1) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(expm1(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(expm1(kSNaN), IsNaN());
|
|
|
|
EXPECT_EQ(-1.0, expm1(-kInfinity));
|
|
|
|
EXPECT_EQ(kInfinity, expm1(kInfinity));
|
2016-06-17 09:13:22 +00:00
|
|
|
EXPECT_EQ(0.0, expm1(-0.0));
|
|
|
|
EXPECT_EQ(0.0, expm1(0.0));
|
|
|
|
EXPECT_EQ(1.718281828459045, expm1(1.0));
|
|
|
|
EXPECT_EQ(2.6881171418161356e+43, expm1(100.0));
|
|
|
|
EXPECT_EQ(8.218407461554972e+307, expm1(709.0));
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(kInfinity, expm1(710.0));
|
2016-06-17 09:13:22 +00:00
|
|
|
}
|
|
|
|
|
2016-06-13 05:46:38 +00:00
|
|
|
TEST(Ieee754, Log) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(log(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log(-kInfinity), IsNaN());
|
2016-06-13 05:46:38 +00:00
|
|
|
EXPECT_THAT(log(-1.0), IsNaN());
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(-kInfinity, log(-0.0));
|
|
|
|
EXPECT_EQ(-kInfinity, log(0.0));
|
2016-06-13 05:46:38 +00:00
|
|
|
EXPECT_EQ(0.0, log(1.0));
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(kInfinity, log(kInfinity));
|
2016-06-22 05:55:41 +00:00
|
|
|
|
|
|
|
// Test that log(E) produces the correctly rounded result.
|
|
|
|
EXPECT_EQ(1.0, log(kE));
|
2016-06-13 05:46:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Log1p) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(log1p(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log1p(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log1p(-kInfinity), IsNaN());
|
|
|
|
EXPECT_EQ(-kInfinity, log1p(-1.0));
|
2016-06-13 05:46:38 +00:00
|
|
|
EXPECT_EQ(0.0, log1p(0.0));
|
|
|
|
EXPECT_EQ(-0.0, log1p(-0.0));
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(kInfinity, log1p(kInfinity));
|
2016-06-13 05:46:38 +00:00
|
|
|
EXPECT_EQ(6.9756137364252422e-03, log1p(0.007));
|
|
|
|
EXPECT_EQ(709.782712893384, log1p(1.7976931348623157e308));
|
|
|
|
EXPECT_EQ(2.7755575615628914e-17, log1p(2.7755575615628914e-17));
|
|
|
|
EXPECT_EQ(9.313225741817976e-10, log1p(9.313225746154785e-10));
|
|
|
|
EXPECT_EQ(-0.2876820724517809, log1p(-0.25));
|
|
|
|
EXPECT_EQ(0.22314355131420976, log1p(0.25));
|
|
|
|
EXPECT_EQ(2.3978952727983707, log1p(10));
|
|
|
|
EXPECT_EQ(36.841361487904734, log1p(10e15));
|
|
|
|
EXPECT_EQ(37.08337388996168, log1p(12738099905822720));
|
|
|
|
EXPECT_EQ(37.08336444902049, log1p(12737979646738432));
|
|
|
|
EXPECT_EQ(1.3862943611198906, log1p(3));
|
|
|
|
EXPECT_EQ(1.3862945995384413, log1p(3 + 9.5367431640625e-7));
|
|
|
|
EXPECT_EQ(0.5596157879354227, log1p(0.75));
|
|
|
|
EXPECT_EQ(0.8109302162163288, log1p(1.25));
|
|
|
|
}
|
|
|
|
|
2016-06-16 11:22:32 +00:00
|
|
|
TEST(Ieee754, Log2) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(log2(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log2(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log2(-kInfinity), IsNaN());
|
2016-06-16 11:22:32 +00:00
|
|
|
EXPECT_THAT(log2(-1.0), IsNaN());
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(-kInfinity, log2(0.0));
|
|
|
|
EXPECT_EQ(-kInfinity, log2(-0.0));
|
|
|
|
EXPECT_EQ(kInfinity, log2(kInfinity));
|
2016-06-16 11:22:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Ieee754, Log10) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(log10(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log10(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(log10(-kInfinity), IsNaN());
|
2016-06-16 11:22:32 +00:00
|
|
|
EXPECT_THAT(log10(-1.0), IsNaN());
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(-kInfinity, log10(0.0));
|
|
|
|
EXPECT_EQ(-kInfinity, log10(-0.0));
|
|
|
|
EXPECT_EQ(kInfinity, log10(kInfinity));
|
2016-06-16 11:22:32 +00:00
|
|
|
EXPECT_EQ(3.0, log10(1000.0));
|
|
|
|
EXPECT_EQ(14.0, log10(100000000000000)); // log10(10 ^ 14)
|
|
|
|
EXPECT_EQ(3.7389561269540406, log10(5482.2158));
|
|
|
|
EXPECT_EQ(14.661551142893833, log10(458723662312872.125782332587));
|
|
|
|
EXPECT_EQ(-0.9083828622192334, log10(0.12348583358871));
|
2016-06-17 10:15:53 +00:00
|
|
|
EXPECT_EQ(5.0, log10(100000.0));
|
2016-06-16 11:22:32 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 15:21:48 +00:00
|
|
|
TEST(Ieee754, Cbrt) {
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(cbrt(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(cbrt(kSNaN), IsNaN());
|
|
|
|
EXPECT_EQ(kInfinity, cbrt(kInfinity));
|
|
|
|
EXPECT_EQ(-kInfinity, cbrt(-kInfinity));
|
2016-06-17 09:13:22 +00:00
|
|
|
EXPECT_EQ(1.4422495703074083, cbrt(3));
|
|
|
|
EXPECT_EQ(100, cbrt(100 * 100 * 100));
|
|
|
|
EXPECT_EQ(46.415888336127786, cbrt(100000));
|
|
|
|
}
|
|
|
|
|
2016-06-17 15:21:48 +00:00
|
|
|
TEST(Ieee754, Sin) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(sin(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(sin(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(sin(kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(sin(-kInfinity), IsNaN());
|
2016-06-17 15:21:48 +00:00
|
|
|
|
|
|
|
// Tests for sin for |x| < pi/4
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(-kInfinity, 1 / sin(-0.0));
|
|
|
|
EXPECT_EQ(kInfinity, 1 / sin(0.0));
|
2016-06-17 15:21:48 +00:00
|
|
|
// sin(x) = x for x < 2^-27
|
|
|
|
EXPECT_EQ(2.3283064365386963e-10, sin(2.3283064365386963e-10));
|
|
|
|
EXPECT_EQ(-2.3283064365386963e-10, sin(-2.3283064365386963e-10));
|
|
|
|
// sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4)
|
|
|
|
EXPECT_EQ(0.3826834323650898, sin(0.39269908169872414));
|
|
|
|
EXPECT_EQ(-0.3826834323650898, sin(-0.39269908169872414));
|
|
|
|
|
|
|
|
// Tests for sin.
|
|
|
|
EXPECT_EQ(0.479425538604203, sin(0.5));
|
|
|
|
EXPECT_EQ(-0.479425538604203, sin(-0.5));
|
2016-06-20 05:51:37 +00:00
|
|
|
EXPECT_EQ(1, sin(kPI / 2.0));
|
|
|
|
EXPECT_EQ(-1, sin(-kPI / 2.0));
|
2016-06-17 15:21:48 +00:00
|
|
|
// Test that sin(Math.PI) != 0 since Math.PI is not exact.
|
2016-06-20 05:51:37 +00:00
|
|
|
EXPECT_EQ(1.2246467991473532e-16, sin(kPI));
|
|
|
|
EXPECT_EQ(-7.047032979958965e-14, sin(2200.0 * kPI));
|
2016-06-17 15:21:48 +00:00
|
|
|
// Test sin for various phases.
|
2016-06-20 05:51:37 +00:00
|
|
|
EXPECT_EQ(-0.7071067811865477, sin(7.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(0.7071067811865474, sin(9.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(0.7071067811865483, sin(11.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(-0.7071067811865479, sin(13.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(-3.2103381051568376e-11, sin(1048576.0 / 4 * kPI));
|
|
|
|
|
|
|
|
// Test Hayne-Panek reduction.
|
|
|
|
EXPECT_EQ(0.377820109360752e0, sin(kTwo120));
|
|
|
|
EXPECT_EQ(-0.377820109360752e0, sin(-kTwo120));
|
|
|
|
}
|
|
|
|
|
2016-06-30 08:41:05 +00:00
|
|
|
TEST(Ieee754, Sinh) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(sinh(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(sinh(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(sinh(kInfinity), kInfinity);
|
|
|
|
EXPECT_THAT(sinh(-kInfinity), -kInfinity);
|
2016-06-30 08:41:05 +00:00
|
|
|
EXPECT_EQ(0.0, sinh(0.0));
|
|
|
|
EXPECT_EQ(-0.0, sinh(-0.0));
|
|
|
|
}
|
|
|
|
|
2016-06-20 05:51:37 +00:00
|
|
|
TEST(Ieee754, Tan) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(tan(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(tan(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(tan(kInfinity), IsNaN());
|
|
|
|
EXPECT_THAT(tan(-kInfinity), IsNaN());
|
2016-06-20 05:51:37 +00:00
|
|
|
|
|
|
|
// Tests for tan for |x| < pi/4
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_EQ(kInfinity, 1 / tan(0.0));
|
|
|
|
EXPECT_EQ(-kInfinity, 1 / tan(-0.0));
|
2016-06-20 05:51:37 +00:00
|
|
|
// tan(x) = x for |x| < 2^-28
|
|
|
|
EXPECT_EQ(2.3283064365386963e-10, tan(2.3283064365386963e-10));
|
|
|
|
EXPECT_EQ(-2.3283064365386963e-10, tan(-2.3283064365386963e-10));
|
|
|
|
// Test KERNELTAN for |x| > 0.67434.
|
|
|
|
EXPECT_EQ(0.8211418015898941, tan(11.0 / 16.0));
|
|
|
|
EXPECT_EQ(-0.8211418015898941, tan(-11.0 / 16.0));
|
|
|
|
EXPECT_EQ(0.41421356237309503, tan(0.39269908169872414));
|
|
|
|
// crbug/427468
|
|
|
|
EXPECT_EQ(0.7993357819992383, tan(0.6743358));
|
|
|
|
|
|
|
|
// Tests for tan.
|
|
|
|
EXPECT_EQ(3.725290298461914e-9, tan(3.725290298461914e-9));
|
|
|
|
// Test that tan(PI/2) != Infinity since PI is not exact.
|
|
|
|
EXPECT_EQ(1.633123935319537e16, tan(kPI / 2));
|
|
|
|
// Cover different code paths in KERNELTAN (tangent and cotangent)
|
|
|
|
EXPECT_EQ(0.5463024898437905, tan(0.5));
|
|
|
|
EXPECT_EQ(2.0000000000000027, tan(1.107148717794091));
|
|
|
|
EXPECT_EQ(-1.0000000000000004, tan(7.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(0.9999999999999994, tan(9.0 / 4.0 * kPI));
|
|
|
|
EXPECT_EQ(-6.420676210313675e-11, tan(1048576.0 / 2.0 * kPI));
|
|
|
|
EXPECT_EQ(2.910566692924059e11, tan(1048575.0 / 2.0 * kPI));
|
|
|
|
|
|
|
|
// Test Hayne-Panek reduction.
|
|
|
|
EXPECT_EQ(-0.40806638884180424e0, tan(kTwo120));
|
|
|
|
EXPECT_EQ(0.40806638884180424e0, tan(-kTwo120));
|
2016-06-17 15:21:48 +00:00
|
|
|
}
|
|
|
|
|
2016-06-30 08:41:05 +00:00
|
|
|
TEST(Ieee754, Tanh) {
|
|
|
|
// Test values mentioned in the EcmaScript spec.
|
[builtins] Unify most of the remaining Math builtins.
Import fdlibm versions of acos, acosh, asin and asinh, which are more
precise and produce the same result across platforms (we were using
libm versions for asin and acos so far, where both speed and precision
depended on the operating system so far). Introduce appropriate TurboFan
operators for these functions and use them both for inlining and for the
generic builtin.
Also migrate the Math.imul and Math.fround builtins to TurboFan builtins
to ensure that their behavior is always exactly the same as the inlined
TurboFan version (i.e. C++ truncation semantics for double to float
don't necessarily meet the JavaScript semantics).
For completeness, also migrate Math.sign, which can even get some nice
love in TurboFan.
Drive-by-fix: Some alpha-sorting on the Math related functions, and
cleanup the list of Math intrinsics that we have to export via the
native context currently.
BUG=v8:3266,v8:3496,v8:3509,v8:3952,v8:5169,v8:5170,v8:5171,v8:5172
TBR=rossberg@chromium.org
R=franzih@chromium.org
Review-Url: https://codereview.chromium.org/2116753002
Cr-Commit-Position: refs/heads/master@{#37476}
2016-07-01 11:11:33 +00:00
|
|
|
EXPECT_THAT(tanh(kQNaN), IsNaN());
|
|
|
|
EXPECT_THAT(tanh(kSNaN), IsNaN());
|
|
|
|
EXPECT_THAT(tanh(kInfinity), 1);
|
|
|
|
EXPECT_THAT(tanh(-kInfinity), -1);
|
2016-06-30 08:41:05 +00:00
|
|
|
EXPECT_EQ(0.0, tanh(0.0));
|
|
|
|
EXPECT_EQ(-0.0, tanh(-0.0));
|
|
|
|
}
|
|
|
|
|
2016-06-13 05:46:38 +00:00
|
|
|
} // namespace ieee754
|
|
|
|
} // namespace base
|
|
|
|
} // namespace v8
|