v8/test/cctest/wasm/test-run-wasm.cc

3520 lines
106 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include <string.h>
#include "src/base/utils/random-number-generator.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/wasm-compiler.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/test-signatures.h"
// TODO(titzer): pull WASM_64 up to a common header.
#if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64
#define WASM_64 1
#else
#define WASM_64 0
#endif
// TODO(titzer): check traps more robustly in tests.
// Currently, in tests, we just return 0xdeadbeef from the function in which
// the trap occurs if the runtime context is not available to throw a JavaScript
// exception.
#define CHECK_TRAP32(x) \
CHECK_EQ(0xdeadbeef, (bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xdeadbeefdeadbeef, (bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
static void init_env(FunctionEnv* env, FunctionSig* sig) {
env->module = nullptr;
env->sig = sig;
env->local_int32_count = 0;
env->local_int64_count = 0;
env->local_float32_count = 0;
env->local_float64_count = 0;
env->SumLocals();
}
const uint32_t kMaxGlobalsSize = 128;
// A helper for module environments that adds the ability to allocate memory
// and global variables.
class TestingModule : public ModuleEnv {
public:
TestingModule() : mem_size(0), global_offset(0) {
globals_area = 0;
mem_start = 0;
mem_end = 0;
module = nullptr;
linker = nullptr;
function_code = nullptr;
asm_js = false;
}
~TestingModule() {
if (mem_start) {
free(raw_mem_start<byte>());
}
if (function_code) delete function_code;
if (module) delete module;
}
byte* AddMemory(size_t size) {
CHECK_EQ(0, mem_start);
CHECK_EQ(0, mem_size);
mem_start = reinterpret_cast<uintptr_t>(malloc(size));
CHECK(mem_start);
byte* raw = raw_mem_start<byte>();
memset(raw, 0, size);
mem_end = mem_start + size;
mem_size = size;
return raw_mem_start<byte>();
}
template <typename T>
T* AddMemoryElems(size_t count) {
AddMemory(count * sizeof(T));
return raw_mem_start<T>();
}
template <typename T>
T* AddGlobal(MachineType mem_type) {
WasmGlobal* global = AddGlobal(mem_type);
return reinterpret_cast<T*>(globals_area + global->offset);
}
byte AddSignature(FunctionSig* sig) {
AllocModule();
if (!module->signatures) {
module->signatures = new std::vector<FunctionSig*>();
}
module->signatures->push_back(sig);
size_t size = module->signatures->size();
CHECK(size < 127);
return static_cast<byte>(size - 1);
}
template <typename T>
T* raw_mem_start() {
DCHECK(mem_start);
return reinterpret_cast<T*>(mem_start);
}
template <typename T>
T* raw_mem_end() {
DCHECK(mem_end);
return reinterpret_cast<T*>(mem_end);
}
template <typename T>
T raw_mem_at(int i) {
DCHECK(mem_start);
return reinterpret_cast<T*>(mem_start)[i];
}
template <typename T>
T raw_val_at(int i) {
T val;
memcpy(&val, reinterpret_cast<void*>(mem_start + i), sizeof(T));
return val;
}
// Zero-initialize the memory.
void BlankMemory() {
byte* raw = raw_mem_start<byte>();
memset(raw, 0, mem_size);
}
// Pseudo-randomly intialize the memory.
void RandomizeMemory(unsigned int seed = 88) {
byte* raw = raw_mem_start<byte>();
byte* end = raw_mem_end<byte>();
v8::base::RandomNumberGenerator rng;
rng.SetSeed(seed);
rng.NextBytes(raw, end - raw);
}
WasmFunction* AddFunction(FunctionSig* sig, Handle<Code> code) {
AllocModule();
if (module->functions == nullptr) {
module->functions = new std::vector<WasmFunction>();
function_code = new std::vector<Handle<Code>>();
}
module->functions->push_back({sig, 0, 0, 0, 0, 0, 0, 0, false, false});
function_code->push_back(code);
return &module->functions->back();
}
private:
size_t mem_size;
uint32_t global_offset;
byte global_data[kMaxGlobalsSize];
WasmGlobal* AddGlobal(MachineType mem_type) {
AllocModule();
if (globals_area == 0) {
globals_area = reinterpret_cast<uintptr_t>(global_data);
module->globals = new std::vector<WasmGlobal>();
}
byte size = WasmOpcodes::MemSize(mem_type);
global_offset = (global_offset + size - 1) & ~(size - 1); // align
module->globals->push_back({0, mem_type, global_offset, false});
global_offset += size;
// limit number of globals.
CHECK_LT(global_offset, kMaxGlobalsSize);
return &module->globals->back();
}
void AllocModule() {
if (module == nullptr) {
module = new WasmModule();
module->globals = nullptr;
module->functions = nullptr;
module->data_segments = nullptr;
}
}
};
// A helper for compiling functions that are only internally callable WASM code.
class WasmFunctionCompiler : public HandleAndZoneScope,
private GraphAndBuilders {
public:
explicit WasmFunctionCompiler(FunctionSig* sig)
: GraphAndBuilders(main_zone()),
jsgraph(this->isolate(), this->graph(), this->common(), nullptr,
nullptr, this->machine()),
descriptor_(nullptr) {
init_env(&env, sig);
}
JSGraph jsgraph;
FunctionEnv env;
// The call descriptor is initialized when the function is compiled.
CallDescriptor* descriptor_;
Isolate* isolate() { return main_isolate(); }
Graph* graph() const { return main_graph_; }
Zone* zone() const { return graph()->zone(); }
CommonOperatorBuilder* common() { return &main_common_; }
MachineOperatorBuilder* machine() { return &main_machine_; }
CallDescriptor* descriptor() { return descriptor_; }
void Build(const byte* start, const byte* end) {
compiler::WasmGraphBuilder builder(main_zone(), &jsgraph, env.sig);
TreeResult result = BuildTFGraph(&builder, &env, start, end);
if (result.failed()) {
ptrdiff_t pc = result.error_pc - result.start;
ptrdiff_t pt = result.error_pt - result.start;
std::ostringstream str;
str << "Verification failed: " << result.error_code << " pc = +" << pc;
if (result.error_pt) str << ", pt = +" << pt;
str << ", msg = " << result.error_msg.get();
FATAL(str.str().c_str());
}
if (FLAG_trace_turbo_graph) {
OFStream os(stdout);
os << AsRPO(*jsgraph.graph());
}
}
byte AllocateLocal(LocalType type) {
int result = static_cast<int>(env.total_locals);
env.AddLocals(type, 1);
byte b = static_cast<byte>(result);
CHECK_EQ(result, b);
return b;
}
Handle<Code> Compile(ModuleEnv* module) {
descriptor_ = module->GetWasmCallDescriptor(this->zone(), env.sig);
CompilationInfo info("wasm compile", this->isolate(), this->zone());
Handle<Code> result =
Pipeline::GenerateCodeForTesting(&info, descriptor_, this->graph());
#ifdef ENABLE_DISASSEMBLER
if (!result.is_null() && FLAG_print_opt_code) {
OFStream os(stdout);
result->Disassemble("wasm code", os);
}
#endif
return result;
}
uint32_t CompileAndAdd(TestingModule* module) {
uint32_t index = 0;
if (module->module && module->module->functions) {
index = static_cast<uint32_t>(module->module->functions->size());
}
module->AddFunction(env.sig, Compile(module));
return index;
}
};
// A helper class to build graphs from Wasm bytecode, generate machine
// code, and run that code.
template <typename ReturnType>
class WasmRunner {
public:
WasmRunner(MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: signature_(MachineTypeForC<ReturnType>() == MachineType::None() ? 0 : 1,
GetParameterCount(p0, p1, p2, p3), storage_),
compiler_(&signature_),
call_wrapper_(p0, p1, p2, p3),
compilation_done_(false) {
int index = 0;
MachineType ret = MachineTypeForC<ReturnType>();
if (ret != MachineType::None()) {
storage_[index++] = WasmOpcodes::LocalTypeFor(ret);
}
if (p0 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p0);
if (p1 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p1);
if (p2 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p2);
if (p3 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p3);
}
FunctionEnv* env() { return &compiler_.env; }
// Builds a graph from the given Wasm code, and generates the machine
// code and call wrapper for that graph. This method must not be called
// more than once.
void Build(const byte* start, const byte* end) {
DCHECK(!compilation_done_);
compilation_done_ = true;
// Build the TF graph.
compiler_.Build(start, end);
// Generate code.
Handle<Code> code = compiler_.Compile(env()->module);
// Construct the call wrapper.
Node* inputs[5];
int input_count = 0;
inputs[input_count++] = call_wrapper_.HeapConstant(code);
for (size_t i = 0; i < signature_.parameter_count(); i++) {
inputs[input_count++] = call_wrapper_.Parameter(i);
}
call_wrapper_.Return(call_wrapper_.AddNode(
call_wrapper_.common()->Call(compiler_.descriptor()), input_count,
inputs));
}
ReturnType Call() { return call_wrapper_.Call(); }
template <typename P0>
ReturnType Call(P0 p0) {
return call_wrapper_.Call(p0);
}
template <typename P0, typename P1>
ReturnType Call(P0 p0, P1 p1) {
return call_wrapper_.Call(p0, p1);
}
template <typename P0, typename P1, typename P2>
ReturnType Call(P0 p0, P1 p1, P2 p2) {
return call_wrapper_.Call(p0, p1, p2);
}
template <typename P0, typename P1, typename P2, typename P3>
ReturnType Call(P0 p0, P1 p1, P2 p2, P3 p3) {
return call_wrapper_.Call(p0, p1, p2, p3);
}
byte AllocateLocal(LocalType type) {
int result = static_cast<int>(env()->total_locals);
env()->AddLocals(type, 1);
byte b = static_cast<byte>(result);
CHECK_EQ(result, b);
return b;
}
private:
LocalType storage_[5];
FunctionSig signature_;
WasmFunctionCompiler compiler_;
BufferedRawMachineAssemblerTester<ReturnType> call_wrapper_;
bool compilation_done_;
static size_t GetParameterCount(MachineType p0, MachineType p1,
MachineType p2, MachineType p3) {
if (p0 == MachineType::None()) return 0;
if (p1 == MachineType::None()) return 1;
if (p2 == MachineType::None()) return 2;
if (p3 == MachineType::None()) return 3;
return 4;
}
};
#define BUILD(r, ...) \
do { \
byte code[] = {__VA_ARGS__}; \
r.Build(code, code + arraysize(code)); \
} while (false)
TEST(Run_WasmInt8Const) {
WasmRunner<int8_t> r;
const byte kExpectedValue = 121;
// return(kExpectedValue)
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru1) {
WasmRunner<int8_t> r;
const byte kExpectedValue = 122;
// kExpectedValue
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru2) {
WasmRunner<int8_t> r;
const byte kExpectedValue = 123;
// -99 kExpectedValue
BUILD(r, WASM_I8(-99), WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_all) {
for (int value = -128; value <= 127; value++) {
WasmRunner<int8_t> r;
// return(value)
BUILD(r, WASM_I8(value));
int8_t result = r.Call();
CHECK_EQ(value, result);
}
}
TEST(Run_WasmInt32Const) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = 0x11223344;
// return(kExpectedValue)
BUILD(r, WASM_I32(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt32Const_many) {
FOR_INT32_INPUTS(i) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = *i;
// return(kExpectedValue)
BUILD(r, WASM_I32(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
}
TEST(Run_WasmMemorySize) {
WasmRunner<int32_t> r;
TestingModule module;
module.AddMemory(1024);
r.env()->module = &module;
BUILD(r, kExprMemorySize);
CHECK_EQ(1024, r.Call());
}
#if WASM_64
TEST(Run_WasmInt64Const) {
WasmRunner<int64_t> r;
const int64_t kExpectedValue = 0x1122334455667788LL;
// return(kExpectedValue)
BUILD(r, WASM_I64(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt64Const_many) {
int cntr = 0;
FOR_INT32_INPUTS(i) {
WasmRunner<int64_t> r;
const int64_t kExpectedValue = (static_cast<int64_t>(*i) << 32) | cntr;
// return(kExpectedValue)
BUILD(r, WASM_I64(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
cntr++;
}
}
#endif
TEST(Run_WasmInt32Param0) {
WasmRunner<int32_t> r(MachineType::Int32());
// return(local[0])
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param0_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// local[0]
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param1) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// local[1]
BUILD(r, WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(-111, *i)); }
}
TEST(Run_WasmInt32Add) {
WasmRunner<int32_t> r;
// 11 + 44
BUILD(r, WASM_I32_ADD(WASM_I8(11), WASM_I8(44)));
CHECK_EQ(55, r.Call());
}
TEST(Run_WasmInt32Add_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P2) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// p0 + p1
BUILD(r, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmFloat32Add) {
WasmRunner<int32_t> r;
// int(11.5f + 44.5f)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f))));
CHECK_EQ(56, r.Call());
}
TEST(Run_WasmFloat64Add) {
WasmRunner<int32_t> r;
// return int(13.5d + 43.5d)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5))));
CHECK_EQ(57, r.Call());
}
void TestInt32Binop(WasmOpcode opcode, int32_t expected, int32_t a, int32_t b) {
{
WasmRunner<int32_t> r;
// K op K
BUILD(r, WASM_BINOP(opcode, WASM_I32(a), WASM_I32(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
TEST(Run_WasmInt32Binops) {
TestInt32Binop(kExprI32Add, 88888888, 33333333, 55555555);
TestInt32Binop(kExprI32Sub, -1111111, 7777777, 8888888);
TestInt32Binop(kExprI32Mul, 65130756, 88734, 734);
TestInt32Binop(kExprI32DivS, -66, -4777344, 72384);
TestInt32Binop(kExprI32DivU, 805306368, 0xF0000000, 5);
TestInt32Binop(kExprI32RemS, -3, -3003, 1000);
TestInt32Binop(kExprI32RemU, 4, 4004, 1000);
TestInt32Binop(kExprI32And, 0xEE, 0xFFEE, 0xFF0000FF);
TestInt32Binop(kExprI32Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011);
TestInt32Binop(kExprI32Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE);
TestInt32Binop(kExprI32Shl, 0xA0000000, 0xA, 28);
TestInt32Binop(kExprI32ShrU, 0x07000010, 0x70000100, 4);
TestInt32Binop(kExprI32ShrS, 0xFF000000, 0x80000000, 7);
TestInt32Binop(kExprI32Eq, 1, -99, -99);
TestInt32Binop(kExprI32Ne, 0, -97, -97);
TestInt32Binop(kExprI32LtS, 1, -4, 4);
TestInt32Binop(kExprI32LeS, 0, -2, -3);
TestInt32Binop(kExprI32LtU, 1, 0, -6);
TestInt32Binop(kExprI32LeU, 1, 98978, 0xF0000000);
TestInt32Binop(kExprI32GtS, 1, 4, -4);
TestInt32Binop(kExprI32GeS, 0, -3, -2);
TestInt32Binop(kExprI32GtU, 1, -6, 0);
TestInt32Binop(kExprI32GeU, 1, 0xF0000000, 98978);
}
void TestInt32Unop(WasmOpcode opcode, int32_t expected, int32_t a) {
{
WasmRunner<int32_t> r;
// return op K
BUILD(r, WASM_UNOP(opcode, WASM_I32(a)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32());
// return op a
BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0)));
CHECK_EQ(expected, r.Call(a));
}
}
TEST(Run_WasmInt32Clz) {
TestInt32Unop(kExprI32Clz, 0, 0x80001000);
TestInt32Unop(kExprI32Clz, 1, 0x40000500);
TestInt32Unop(kExprI32Clz, 2, 0x20000300);
TestInt32Unop(kExprI32Clz, 3, 0x10000003);
TestInt32Unop(kExprI32Clz, 4, 0x08050000);
TestInt32Unop(kExprI32Clz, 5, 0x04006000);
TestInt32Unop(kExprI32Clz, 6, 0x02000000);
TestInt32Unop(kExprI32Clz, 7, 0x010000a0);
TestInt32Unop(kExprI32Clz, 8, 0x00800c00);
TestInt32Unop(kExprI32Clz, 9, 0x00400000);
TestInt32Unop(kExprI32Clz, 10, 0x0020000d);
TestInt32Unop(kExprI32Clz, 11, 0x00100f00);
TestInt32Unop(kExprI32Clz, 12, 0x00080000);
TestInt32Unop(kExprI32Clz, 13, 0x00041000);
TestInt32Unop(kExprI32Clz, 14, 0x00020020);
TestInt32Unop(kExprI32Clz, 15, 0x00010300);
TestInt32Unop(kExprI32Clz, 16, 0x00008040);
TestInt32Unop(kExprI32Clz, 17, 0x00004005);
TestInt32Unop(kExprI32Clz, 18, 0x00002050);
TestInt32Unop(kExprI32Clz, 19, 0x00001700);
TestInt32Unop(kExprI32Clz, 20, 0x00000870);
TestInt32Unop(kExprI32Clz, 21, 0x00000405);
TestInt32Unop(kExprI32Clz, 22, 0x00000203);
TestInt32Unop(kExprI32Clz, 23, 0x00000101);
TestInt32Unop(kExprI32Clz, 24, 0x00000089);
TestInt32Unop(kExprI32Clz, 25, 0x00000041);
TestInt32Unop(kExprI32Clz, 26, 0x00000022);
TestInt32Unop(kExprI32Clz, 27, 0x00000013);
TestInt32Unop(kExprI32Clz, 28, 0x00000008);
TestInt32Unop(kExprI32Clz, 29, 0x00000004);
TestInt32Unop(kExprI32Clz, 30, 0x00000002);
TestInt32Unop(kExprI32Clz, 31, 0x00000001);
TestInt32Unop(kExprI32Clz, 32, 0x00000000);
}
TEST(Run_WasmInt32Ctz) {
TestInt32Unop(kExprI32Ctz, 32, 0x00000000);
TestInt32Unop(kExprI32Ctz, 31, 0x80000000);
TestInt32Unop(kExprI32Ctz, 30, 0x40000000);
TestInt32Unop(kExprI32Ctz, 29, 0x20000000);
TestInt32Unop(kExprI32Ctz, 28, 0x10000000);
TestInt32Unop(kExprI32Ctz, 27, 0xa8000000);
TestInt32Unop(kExprI32Ctz, 26, 0xf4000000);
TestInt32Unop(kExprI32Ctz, 25, 0x62000000);
TestInt32Unop(kExprI32Ctz, 24, 0x91000000);
TestInt32Unop(kExprI32Ctz, 23, 0xcd800000);
TestInt32Unop(kExprI32Ctz, 22, 0x09400000);
TestInt32Unop(kExprI32Ctz, 21, 0xaf200000);
TestInt32Unop(kExprI32Ctz, 20, 0xac100000);
TestInt32Unop(kExprI32Ctz, 19, 0xe0b80000);
TestInt32Unop(kExprI32Ctz, 18, 0x9ce40000);
TestInt32Unop(kExprI32Ctz, 17, 0xc7920000);
TestInt32Unop(kExprI32Ctz, 16, 0xb8f10000);
TestInt32Unop(kExprI32Ctz, 15, 0x3b9f8000);
TestInt32Unop(kExprI32Ctz, 14, 0xdb4c4000);
TestInt32Unop(kExprI32Ctz, 13, 0xe9a32000);
TestInt32Unop(kExprI32Ctz, 12, 0xfca61000);
TestInt32Unop(kExprI32Ctz, 11, 0x6c8a7800);
TestInt32Unop(kExprI32Ctz, 10, 0x8ce5a400);
TestInt32Unop(kExprI32Ctz, 9, 0xcb7d0200);
TestInt32Unop(kExprI32Ctz, 8, 0xcb4dc100);
TestInt32Unop(kExprI32Ctz, 7, 0xdfbec580);
TestInt32Unop(kExprI32Ctz, 6, 0x27a9db40);
TestInt32Unop(kExprI32Ctz, 5, 0xde3bcb20);
TestInt32Unop(kExprI32Ctz, 4, 0xd7e8a610);
TestInt32Unop(kExprI32Ctz, 3, 0x9afdbc88);
TestInt32Unop(kExprI32Ctz, 2, 0x9afdbc84);
TestInt32Unop(kExprI32Ctz, 1, 0x9afdbc82);
TestInt32Unop(kExprI32Ctz, 0, 0x9afdbc81);
}
TEST(Run_WasmInt32Popcnt) {
TestInt32Unop(kExprI32Popcnt, 32, 0xffffffff);
TestInt32Unop(kExprI32Popcnt, 0, 0x00000000);
TestInt32Unop(kExprI32Popcnt, 1, 0x00008000);
TestInt32Unop(kExprI32Popcnt, 13, 0x12345678);
TestInt32Unop(kExprI32Popcnt, 19, 0xfedcba09);
}
#if WASM_64
void TestInt64Binop(WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) {
if (!WasmOpcodes::IsSupported(opcode)) return;
{
WasmRunner<int64_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64(a), WASM_I64(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestInt64Cmp(WasmOpcode opcode, int64_t expected, int64_t a, int64_t b) {
if (!WasmOpcodes::IsSupported(opcode)) return;
{
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64(a), WASM_I64(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int64(), MachineType::Int64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
TEST(Run_WasmInt64Binops) {
// TODO(titzer): real 64-bit numbers
TestInt64Binop(kExprI64Add, 8888888888888LL, 3333333333333LL,
5555555555555LL);
TestInt64Binop(kExprI64Sub, -111111111111LL, 777777777777LL, 888888888888LL);
TestInt64Binop(kExprI64Mul, 65130756, 88734, 734);
TestInt64Binop(kExprI64DivS, -66, -4777344, 72384);
TestInt64Binop(kExprI64DivU, 805306368, 0xF0000000, 5);
TestInt64Binop(kExprI64RemS, -3, -3003, 1000);
TestInt64Binop(kExprI64RemU, 4, 4004, 1000);
TestInt64Binop(kExprI64And, 0xEE, 0xFFEE, 0xFF0000FF);
TestInt64Binop(kExprI64Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011);
TestInt64Binop(kExprI64Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE);
TestInt64Binop(kExprI64Shl, 0xA0000000, 0xA, 28);
TestInt64Binop(kExprI64ShrU, 0x0700001000123456LL, 0x7000010001234567LL, 4);
TestInt64Binop(kExprI64ShrS, 0xFF00000000000000LL, 0x8000000000000000LL, 7);
TestInt64Cmp(kExprI64Eq, 1, -9999, -9999);
TestInt64Cmp(kExprI64Ne, 1, -9199, -9999);
TestInt64Cmp(kExprI64LtS, 1, -4, 4);
TestInt64Cmp(kExprI64LeS, 0, -2, -3);
TestInt64Cmp(kExprI64LtU, 1, 0, -6);
TestInt64Cmp(kExprI64LeU, 1, 98978, 0xF0000000);
}
TEST(Run_WasmInt64Clz) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{0, 0x8000100000000000}, {1, 0x4000050000000000},
{2, 0x2000030000000000}, {3, 0x1000000300000000},
{4, 0x0805000000000000}, {5, 0x0400600000000000},
{6, 0x0200000000000000}, {7, 0x010000a000000000},
{8, 0x00800c0000000000}, {9, 0x0040000000000000},
{10, 0x0020000d00000000}, {11, 0x00100f0000000000},
{12, 0x0008000000000000}, {13, 0x0004100000000000},
{14, 0x0002002000000000}, {15, 0x0001030000000000},
{16, 0x0000804000000000}, {17, 0x0000400500000000},
{18, 0x0000205000000000}, {19, 0x0000170000000000},
{20, 0x0000087000000000}, {21, 0x0000040500000000},
{22, 0x0000020300000000}, {23, 0x0000010100000000},
{24, 0x0000008900000000}, {25, 0x0000004100000000},
{26, 0x0000002200000000}, {27, 0x0000001300000000},
{28, 0x0000000800000000}, {29, 0x0000000400000000},
{30, 0x0000000200000000}, {31, 0x0000000100000000},
{32, 0x0000000080001000}, {33, 0x0000000040000500},
{34, 0x0000000020000300}, {35, 0x0000000010000003},
{36, 0x0000000008050000}, {37, 0x0000000004006000},
{38, 0x0000000002000000}, {39, 0x00000000010000a0},
{40, 0x0000000000800c00}, {41, 0x0000000000400000},
{42, 0x000000000020000d}, {43, 0x0000000000100f00},
{44, 0x0000000000080000}, {45, 0x0000000000041000},
{46, 0x0000000000020020}, {47, 0x0000000000010300},
{48, 0x0000000000008040}, {49, 0x0000000000004005},
{50, 0x0000000000002050}, {51, 0x0000000000001700},
{52, 0x0000000000000870}, {53, 0x0000000000000405},
{54, 0x0000000000000203}, {55, 0x0000000000000101},
{56, 0x0000000000000089}, {57, 0x0000000000000041},
{58, 0x0000000000000022}, {59, 0x0000000000000013},
{60, 0x0000000000000008}, {61, 0x0000000000000004},
{62, 0x0000000000000002}, {63, 0x0000000000000001},
{64, 0x0000000000000000}};
WasmRunner<int64_t> r(MachineType::Uint64());
BUILD(r, WASM_I64_CLZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
TEST(Run_WasmInt64Ctz) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0x0000000000000000}, {63, 0x8000000000000000},
{62, 0x4000000000000000}, {61, 0x2000000000000000},
{60, 0x1000000000000000}, {59, 0xa800000000000000},
{58, 0xf400000000000000}, {57, 0x6200000000000000},
{56, 0x9100000000000000}, {55, 0xcd80000000000000},
{54, 0x0940000000000000}, {53, 0xaf20000000000000},
{52, 0xac10000000000000}, {51, 0xe0b8000000000000},
{50, 0x9ce4000000000000}, {49, 0xc792000000000000},
{48, 0xb8f1000000000000}, {47, 0x3b9f800000000000},
{46, 0xdb4c400000000000}, {45, 0xe9a3200000000000},
{44, 0xfca6100000000000}, {43, 0x6c8a780000000000},
{42, 0x8ce5a40000000000}, {41, 0xcb7d020000000000},
{40, 0xcb4dc10000000000}, {39, 0xdfbec58000000000},
{38, 0x27a9db4000000000}, {37, 0xde3bcb2000000000},
{36, 0xd7e8a61000000000}, {35, 0x9afdbc8800000000},
{34, 0x9afdbc8400000000}, {33, 0x9afdbc8200000000},
{32, 0x9afdbc8100000000}, {31, 0x0000000080000000},
{30, 0x0000000040000000}, {29, 0x0000000020000000},
{28, 0x0000000010000000}, {27, 0x00000000a8000000},
{26, 0x00000000f4000000}, {25, 0x0000000062000000},
{24, 0x0000000091000000}, {23, 0x00000000cd800000},
{22, 0x0000000009400000}, {21, 0x00000000af200000},
{20, 0x00000000ac100000}, {19, 0x00000000e0b80000},
{18, 0x000000009ce40000}, {17, 0x00000000c7920000},
{16, 0x00000000b8f10000}, {15, 0x000000003b9f8000},
{14, 0x00000000db4c4000}, {13, 0x00000000e9a32000},
{12, 0x00000000fca61000}, {11, 0x000000006c8a7800},
{10, 0x000000008ce5a400}, {9, 0x00000000cb7d0200},
{8, 0x00000000cb4dc100}, {7, 0x00000000dfbec580},
{6, 0x0000000027a9db40}, {5, 0x00000000de3bcb20},
{4, 0x00000000d7e8a610}, {3, 0x000000009afdbc88},
{2, 0x000000009afdbc84}, {1, 0x000000009afdbc82},
{0, 0x000000009afdbc81}};
WasmRunner<int64_t> r(MachineType::Uint64());
BUILD(r, WASM_I64_CTZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
TEST(Run_WasmInt64Popcnt) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0xffffffffffffffff},
{0, 0x0000000000000000},
{2, 0x0000080000008000},
{26, 0x1123456782345678},
{38, 0xffedcba09edcba09}};
WasmRunner<int64_t> r(MachineType::Uint64());
BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
#endif
TEST(Run_WASM_Int32DivS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(std::numeric_limits<int32_t>::min(), -1));
CHECK_TRAP(r.Call(std::numeric_limits<int32_t>::min(), 0));
}
TEST(Run_WASM_Int32RemS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(std::numeric_limits<int32_t>::min(), -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(std::numeric_limits<int32_t>::min(), 0));
}
TEST(Run_WASM_Int32DivU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(std::numeric_limits<int32_t>::min(), -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(std::numeric_limits<int32_t>::min(), 0));
}
TEST(Run_WASM_Int32RemU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(217, 100));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(std::numeric_limits<int32_t>::min(), 0));
CHECK_EQ(std::numeric_limits<int32_t>::min(),
r.Call(std::numeric_limits<int32_t>::min(), -1));
}
TEST(Run_WASM_Int32DivS_byzero_const) {
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(denom)));
for (int32_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivU_byzero_const) {
for (uint32_t denom = 0xfffffffe; denom < 8; denom++) {
WasmRunner<uint32_t> r(MachineType::Uint32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32(denom)));
for (uint32_t val = 0xfffffff0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivS_trap_effect) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
TestingModule module;
module.AddMemoryElems<int32_t>(8);
r.env()->module = &module;
BUILD(r,
WASM_IF_ELSE(WASM_GET_LOCAL(0),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1)),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1))));
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(8, 0));
CHECK_TRAP(r.Call(4, 0));
CHECK_TRAP(r.Call(0, 0));
}
#if WASM_64
#define as64(x) static_cast<int64_t>(x)
TEST(Run_WASM_Int64DivS_trap) {
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(as64(0), as64(100)));
CHECK_TRAP64(r.Call(as64(100), as64(0)));
CHECK_TRAP64(r.Call(as64(-1001), as64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), as64(-1)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), as64(0)));
}
TEST(Run_WASM_Int64RemS_trap) {
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(33, r.Call(as64(133), as64(100)));
CHECK_EQ(0, r.Call(std::numeric_limits<int64_t>::min(), as64(-1)));
CHECK_TRAP64(r.Call(as64(100), as64(0)));
CHECK_TRAP64(r.Call(as64(-1001), as64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), as64(0)));
}
TEST(Run_WASM_Int64DivU_trap) {
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(as64(0), as64(100)));
CHECK_EQ(0, r.Call(std::numeric_limits<int64_t>::min(), as64(-1)));
CHECK_TRAP64(r.Call(as64(100), as64(0)));
CHECK_TRAP64(r.Call(as64(-1001), as64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), as64(0)));
}
TEST(Run_WASM_Int64RemU_trap) {
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(as64(217), as64(100)));
CHECK_TRAP64(r.Call(as64(100), as64(0)));
CHECK_TRAP64(r.Call(as64(-1001), as64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), as64(0)));
CHECK_EQ(std::numeric_limits<int64_t>::min(),
r.Call(std::numeric_limits<int64_t>::min(), as64(-1)));
}
TEST(Run_WASM_Int64DivS_byzero_const) {
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int64_t> r(MachineType::Int64());
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64(denom)));
for (int64_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int64DivU_byzero_const) {
for (uint64_t denom = 0xfffffffffffffffe; denom < 8; denom++) {
WasmRunner<uint64_t> r(MachineType::Uint64());
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64(denom)));
for (uint64_t val = 0xfffffffffffffff0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
#endif
void TestFloat32Binop(WasmOpcode opcode, int32_t expected, float a, float b) {
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test float parameters
}
void TestFloat32BinopWithConvert(WasmOpcode opcode, int32_t expected, float a,
float b) {
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r, WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test float parameters
}
void TestFloat32UnopWithConvert(WasmOpcode opcode, int32_t expected, float a) {
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a))));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test float parameters
}
void TestFloat64Binop(WasmOpcode opcode, int32_t expected, double a, double b) {
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test double parameters
}
void TestFloat64BinopWithConvert(WasmOpcode opcode, int32_t expected, double a,
double b) {
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test double parameters
}
void TestFloat64UnopWithConvert(WasmOpcode opcode, int32_t expected, double a) {
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a))));
CHECK_EQ(expected, r.Call());
// TODO(titzer): test float parameters
}
TEST(Run_WasmFloat32Binops) {
TestFloat32Binop(kExprF32Eq, 1, 8.125f, 8.125f);
TestFloat32Binop(kExprF32Ne, 1, 8.125f, 8.127f);
TestFloat32Binop(kExprF32Lt, 1, -9.5f, -9.0f);
TestFloat32Binop(kExprF32Le, 1, -1111.0f, -1111.0f);
TestFloat32Binop(kExprF32Gt, 1, -9.0f, -9.5f);
TestFloat32Binop(kExprF32Ge, 1, -1111.0f, -1111.0f);
TestFloat32BinopWithConvert(kExprF32Add, 10, 3.5f, 6.5f);
TestFloat32BinopWithConvert(kExprF32Sub, 2, 44.5f, 42.5f);
TestFloat32BinopWithConvert(kExprF32Mul, -66, -132.1f, 0.5f);
TestFloat32BinopWithConvert(kExprF32Div, 11, 22.1f, 2.0f);
}
TEST(Run_WasmFloat32Unops) {
TestFloat32UnopWithConvert(kExprF32Abs, 8, 8.125f);
TestFloat32UnopWithConvert(kExprF32Abs, 9, -9.125f);
TestFloat32UnopWithConvert(kExprF32Neg, -213, 213.125f);
TestFloat32UnopWithConvert(kExprF32Sqrt, 12, 144.4f);
}
TEST(Run_WasmFloat64Binops) {
TestFloat64Binop(kExprF64Eq, 1, 16.25, 16.25);
TestFloat64Binop(kExprF64Ne, 1, 16.25, 16.15);
TestFloat64Binop(kExprF64Lt, 1, -32.4, 11.7);
TestFloat64Binop(kExprF64Le, 1, -88.9, -88.9);
TestFloat64Binop(kExprF64Gt, 1, 11.7, -32.4);
TestFloat64Binop(kExprF64Ge, 1, -88.9, -88.9);
TestFloat64BinopWithConvert(kExprF64Add, 100, 43.5, 56.5);
TestFloat64BinopWithConvert(kExprF64Sub, 200, 12200.1, 12000.1);
TestFloat64BinopWithConvert(kExprF64Mul, -33, 134, -0.25);
TestFloat64BinopWithConvert(kExprF64Div, -1111, -2222.3, 2);
}
TEST(Run_WasmFloat64Unops) {
TestFloat64UnopWithConvert(kExprF64Abs, 108, 108.125);
TestFloat64UnopWithConvert(kExprF64Abs, 209, -209.125);
TestFloat64UnopWithConvert(kExprF64Neg, -209, 209.125);
TestFloat64UnopWithConvert(kExprF64Sqrt, 13, 169.4);
}
TEST(Run_WasmFloat32Neg) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
CHECK_EQ(0x80000000,
bit_cast<uint32_t>(*i) ^ bit_cast<uint32_t>(r.Call(*i)));
}
}
TEST(Run_WasmFloat64Neg) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_EQ(0x8000000000000000,
bit_cast<uint64_t>(*i) ^ bit_cast<uint64_t>(r.Call(*i)));
}
}
TEST(Run_Wasm_IfElse_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 11; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_IfElse_Unreachable1) {
WasmRunner<int32_t> r;
// if (0) unreachable; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_ZERO, // --
WASM_UNREACHABLE, // --
WASM_I8(27))); // --
CHECK_EQ(27, r.Call());
}
TEST(Run_Wasm_Return12) {
WasmRunner<int32_t> r;
BUILD(r, WASM_RETURN(WASM_I8(12)));
CHECK_EQ(12, r.Call());
}
TEST(Run_Wasm_Return17) {
WasmRunner<int32_t> r;
BUILD(r, WASM_BLOCK(1, WASM_RETURN(WASM_I8(17))));
CHECK_EQ(17, r.Call());
}
TEST(Run_Wasm_Return_I32) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
#if WASM_64
TEST(Run_Wasm_Return_I64) {
WasmRunner<int64_t> r(MachineType::Int64());
BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
#endif
TEST(Run_Wasm_Return_F32) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
float expect = *i;
float result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Return_F64) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_RETURN(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
double expect = *i;
double result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Select) {
WasmRunner<int32_t> r(MachineType::Int32());
// return select(a, 11, 22);
BUILD(r, WASM_SELECT(WASM_GET_LOCAL(0), WASM_I8(11), WASM_I8(22)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Select_strict1) {
WasmRunner<int32_t> r(MachineType::Int32());
// select(a, a = 11, 22); return a
BUILD(r,
WASM_BLOCK(2, WASM_SELECT(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I8(11)), WASM_I8(22)),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(11, r.Call(*i)); }
}
TEST(Run_Wasm_Select_strict2) {
WasmRunner<int32_t> r(MachineType::Int32());
// select(a, 11, a = 22); return a;
BUILD(r, WASM_BLOCK(2, WASM_SELECT(WASM_GET_LOCAL(0), WASM_I8(11),
WASM_SET_LOCAL(0, WASM_I8(22))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(22, r.Call(*i)); }
}
TEST(Run_Wasm_BrIf_strict) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_BLOCK(1, WASM_BRV_IF(0, WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I8(99)))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(99, r.Call(*i)); }
}
TEST(Run_Wasm_TableSwitch1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_TABLESWITCH_OP(1, 1, WASM_CASE(0)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(93))));
FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(*i)); }
}
TEST(Run_Wasm_TableSwitch_br) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_TABLESWITCH_OP(1, 2, WASM_CASE_BR(0), WASM_CASE(0)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(91))),
WASM_I8(99));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(91, r.Call(1));
CHECK_EQ(91, r.Call(2));
CHECK_EQ(91, r.Call(3));
}
TEST(Run_Wasm_TableSwitch_br2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_BLOCK(2, WASM_TABLESWITCH_OP(
1, 4, WASM_CASE_BR(0), WASM_CASE_BR(1),
WASM_CASE_BR(2), WASM_CASE(0)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0),
WASM_RETURN(WASM_I8(85))),
WASM_RETURN(WASM_I8(86))),
WASM_RETURN(WASM_I8(87))),
WASM_I8(88));
CHECK_EQ(86, r.Call(0));
CHECK_EQ(87, r.Call(1));
CHECK_EQ(88, r.Call(2));
CHECK_EQ(85, r.Call(3));
CHECK_EQ(85, r.Call(4));
CHECK_EQ(85, r.Call(5));
}
TEST(Run_Wasm_TableSwitch2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_TABLESWITCH_OP(2, 2, WASM_CASE(0), WASM_CASE(1)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(91)),
WASM_RETURN(WASM_I8(92))));
FOR_INT32_INPUTS(i) {
int32_t expected = *i == 0 ? 91 : 92;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_TableSwitch2b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_TABLESWITCH_OP(2, 2, WASM_CASE(1), WASM_CASE(0)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(81)),
WASM_RETURN(WASM_I8(82))));
FOR_INT32_INPUTS(i) {
int32_t expected = *i == 0 ? 82 : 81;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_TableSwitch4) {
for (int i = 0; i < 4; i++) {
const uint16_t br = 0x8000u;
uint16_t c = 0;
uint16_t cases[] = {i == 0 ? br : c++, i == 1 ? br : c++, i == 2 ? br : c++,
i == 3 ? br : c++};
byte code[] = {
WASM_BLOCK(1, WASM_TABLESWITCH_OP(
3, 4, WASM_CASE(cases[0]), WASM_CASE(cases[1]),
WASM_CASE(cases[2]), WASM_CASE(cases[3])),
WASM_TABLESWITCH_BODY(
WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(71)),
WASM_RETURN(WASM_I8(72)), WASM_RETURN(WASM_I8(73)))),
WASM_RETURN(WASM_I8(74))};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
FOR_INT32_INPUTS(i) {
int index = (*i < 0 || *i > 3) ? 3 : *i;
int32_t expected = 71 + cases[index];
if (expected >= 0x8000) expected = 74;
CHECK_EQ(expected, r.Call(*i));
}
}
}
TEST(Run_Wasm_TableSwitch4b) {
for (int a = 0; a < 2; a++) {
for (int b = 0; b < 2; b++) {
for (int c = 0; c < 2; c++) {
for (int d = 0; d < 2; d++) {
if (a + b + c + d == 0) continue;
if (a + b + c + d == 4) continue;
byte code[] = {
WASM_TABLESWITCH_OP(2, 4, WASM_CASE(a), WASM_CASE(b),
WASM_CASE(c), WASM_CASE(d)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_RETURN(WASM_I8(61)),
WASM_RETURN(WASM_I8(62)))};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
CHECK_EQ(61 + a, r.Call(0));
CHECK_EQ(61 + b, r.Call(1));
CHECK_EQ(61 + c, r.Call(2));
CHECK_EQ(61 + d, r.Call(3));
CHECK_EQ(61 + d, r.Call(4));
}
}
}
}
}
TEST(Run_Wasm_TableSwitch4_fallthru) {
byte code[] = {
WASM_TABLESWITCH_OP(4, 4, WASM_CASE(0), WASM_CASE(1), WASM_CASE(2),
WASM_CASE(3)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_INC_LOCAL_BY(1, 1),
WASM_INC_LOCAL_BY(1, 2), WASM_INC_LOCAL_BY(1, 4),
WASM_INC_LOCAL_BY(1, 8)),
WASM_GET_LOCAL(1)};
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
r.Build(code, code + arraysize(code));
CHECK_EQ(15, r.Call(0, 0));
CHECK_EQ(14, r.Call(1, 0));
CHECK_EQ(12, r.Call(2, 0));
CHECK_EQ(8, r.Call(3, 0));
CHECK_EQ(8, r.Call(4, 0));
CHECK_EQ(115, r.Call(0, 100));
CHECK_EQ(114, r.Call(1, 100));
CHECK_EQ(112, r.Call(2, 100));
CHECK_EQ(108, r.Call(3, 100));
CHECK_EQ(108, r.Call(4, 100));
}
TEST(Run_Wasm_TableSwitch4_fallthru_br) {
byte code[] = {
WASM_TABLESWITCH_OP(4, 4, WASM_CASE(0), WASM_CASE(1), WASM_CASE(2),
WASM_CASE(3)),
WASM_TABLESWITCH_BODY(WASM_GET_LOCAL(0), WASM_INC_LOCAL_BY(1, 1),
WASM_BRV(0, WASM_INC_LOCAL_BY(1, 2)),
WASM_INC_LOCAL_BY(1, 4),
WASM_BRV(0, WASM_INC_LOCAL_BY(1, 8))),
WASM_GET_LOCAL(1)};
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
r.Build(code, code + arraysize(code));
CHECK_EQ(3, r.Call(0, 0));
CHECK_EQ(2, r.Call(1, 0));
CHECK_EQ(12, r.Call(2, 0));
CHECK_EQ(8, r.Call(3, 0));
CHECK_EQ(8, r.Call(4, 0));
CHECK_EQ(203, r.Call(0, 200));
CHECK_EQ(202, r.Call(1, 200));
CHECK_EQ(212, r.Call(2, 200));
CHECK_EQ(208, r.Call(3, 200));
CHECK_EQ(208, r.Call(4, 200));
}
TEST(Run_Wasm_F32ReinterpretI32) {
WasmRunner<int32_t> r;
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
r.env()->module = &module;
BUILD(r, WASM_I32_REINTERPRET_F32(
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_I32ReinterpretF32) {
WasmRunner<int32_t> r(MachineType::Int32());
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
r.env()->module = &module;
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))),
WASM_I8(107)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
CHECK_EQ(107, r.Call(expected));
CHECK_EQ(expected, memory[0]);
}
}
TEST(Run_Wasm_ReturnStore) {
WasmRunner<int32_t> r;
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
r.env()->module = &module;
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_VoidReturn1) {
WasmRunner<void> r;
BUILD(r, kExprNop);
r.Call();
}
TEST(Run_Wasm_VoidReturn2) {
WasmRunner<void> r;
BUILD(r, WASM_RETURN0);
r.Call();
}
TEST(Run_Wasm_Block_If_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) return 51; return 52; }
BUILD(r, WASM_BLOCK(2, // --
WASM_IF(WASM_GET_LOCAL(0), // --
WASM_BRV(0, WASM_I8(51))), // --
WASM_I8(52))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_BrIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(51)),
WASM_I8(52)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 71; else p0 = 72; return p0; }
BUILD(r, WASM_BLOCK(2, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_SET_LOCAL(0, WASM_I8(71)), // --
WASM_SET_LOCAL(0, WASM_I8(72))), // --
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 71 : 72;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_return) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 81; else return 82;
BUILD(r, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_RETURN(WASM_I8(81)), // --
WASM_RETURN(WASM_I8(82)))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 81 : 82;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_If_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 61; p0; }
BUILD(r, WASM_BLOCK(
2, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(61))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 61 : *i;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_ExprIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_ExprIf_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_CountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(
1, WASM_IF(WASM_GET_LOCAL(0),
WASM_BRV(0, WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_CountDown_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAK(0)),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_WhileCountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_Loop_if_break1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_LOOP(2, WASM_BR_IF(1, WASM_GET_LOCAL(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(1, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)),
WASM_SET_LOCAL(0, WASM_I8(93)))),
WASM_GET_LOCAL(0));
CHECK_EQ(93, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10001, r.Call(10001));
CHECK_EQ(-22, r.Call(-22));
}
TEST(Run_Wasm_LoadMemI32) {
WasmRunner<int32_t> r(MachineType::Int32());
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
module.RandomizeMemory(1111);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(0)));
memory[0] = 99999999;
CHECK_EQ(99999999, r.Call(0));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0));
memory[0] = 77777777;
CHECK_EQ(77777777, r.Call(0));
}
TEST(Run_Wasm_LoadMemI32_oob) {
WasmRunner<int32_t> r(MachineType::Uint32());
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
module.RandomizeMemory(1111);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0u));
for (uint32_t offset = 29; offset < 40; offset++) {
CHECK_TRAP(r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_TRAP(r.Call(offset));
}
}
TEST(Run_Wasm_LoadMemI32_oob_asm) {
WasmRunner<int32_t> r(MachineType::Uint32());
TestingModule module;
module.asm_js = true;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
module.RandomizeMemory(1112);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 999999;
CHECK_EQ(999999, r.Call(0u));
// TODO(titzer): offset 29-31 should also be OOB.
for (uint32_t offset = 32; offset < 40; offset++) {
CHECK_EQ(0, r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_EQ(0, r.Call(offset));
}
}
TEST(Run_Wasm_LoadMem_offset_oob) {
TestingModule module;
module.AddMemoryElems<int32_t>(8);
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1116 + static_cast<int>(m));
WasmRunner<int32_t> r(MachineType::Uint32());
r.env()->module = &module;
uint32_t boundary = 24 - WasmOpcodes::MemSize(machineTypes[m]);
BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0)),
WASM_ZERO);
CHECK_EQ(0, r.Call(boundary)); // in bounds.
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
TEST(Run_Wasm_LoadMemI32_offset) {
WasmRunner<int32_t> r(MachineType::Int32());
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
module.RandomizeMemory(1111);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0)));
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(77777777, r.Call(0));
CHECK_EQ(88888888, r.Call(4));
CHECK_EQ(99999999, r.Call(8));
memory[0] = 11111111;
memory[1] = 22222222;
memory[2] = 33333333;
memory[3] = 44444444;
CHECK_EQ(22222222, r.Call(0));
CHECK_EQ(33333333, r.Call(4));
CHECK_EQ(44444444, r.Call(8));
}
TEST(Run_Wasm_LoadMemI32_const_oob) {
TestingModule module;
const int kMemSize = 12;
module.AddMemoryElems<byte>(kMemSize);
for (int offset = 0; offset < kMemSize + 5; offset++) {
for (int index = 0; index < kMemSize + 5; index++) {
WasmRunner<int32_t> r;
r.env()->module = &module;
module.RandomizeMemory();
BUILD(r,
WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index)));
if ((offset + index) <= (kMemSize - sizeof(int32_t))) {
CHECK_EQ(module.raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
TEST(Run_Wasm_StoreMemI32_offset) {
WasmRunner<int32_t> r(MachineType::Int32());
const int32_t kWritten = 0xaabbccdd;
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
r.env()->module = &module;
BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0),
WASM_I32(kWritten)));
for (int i = 0; i < 2; i++) {
module.RandomizeMemory(1111);
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(kWritten, r.Call(i * 4));
CHECK_EQ(66666666, memory[0]);
CHECK_EQ(i == 0 ? kWritten : 77777777, memory[1]);
CHECK_EQ(i == 1 ? kWritten : 88888888, memory[2]);
CHECK_EQ(i == 2 ? kWritten : 99999999, memory[3]);
}
}
#if WASM_64
// TODO(titzer): Figure out why this fails on 32-bit architectures.
TEST(Run_Wasm_StoreMem_offset_oob) {
TestingModule module;
byte* memory = module.AddMemoryElems<byte>(32);
#if WASM_64
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
#else
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Float32(), MachineType::Float64()};
#endif
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1119 + static_cast<int>(m));
WasmRunner<int32_t> r(MachineType::Uint32());
r.env()->module = &module;
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = WasmOpcodes::MemSize(machineTypes[m]);
uint32_t boundary = 24 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
#endif
#if WASM_64
TEST(Run_Wasm_F64ReinterpretI64) {
WasmRunner<int64_t> r;
TestingModule module;
int64_t* memory = module.AddMemoryElems<int64_t>(8);
r.env()->module = &module;
BUILD(r, WASM_I64_REINTERPRET_F64(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int64_t expected = static_cast<int64_t>(*i) * 0x300010001;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_I64ReinterpretF64) {
WasmRunner<int64_t> r(MachineType::Int64());
TestingModule module;
int64_t* memory = module.AddMemoryElems<int64_t>(8);
r.env()->module = &module;
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(MachineType::Float64(), WASM_ZERO,
WASM_F64_REINTERPRET_I64(WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int64_t expected = static_cast<int64_t>(*i) * 0x300010001;
CHECK_EQ(expected, r.Call(expected));
CHECK_EQ(expected, memory[0]);
}
}
TEST(Run_Wasm_LoadMemI64) {
WasmRunner<int64_t> r;
TestingModule module;
int64_t* memory = module.AddMemoryElems<int64_t>(8);
module.RandomizeMemory(1111);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int64(), WASM_I8(0)));
memory[0] = 0xaabbccdd00112233LL;
CHECK_EQ(0xaabbccdd00112233LL, r.Call());
memory[0] = 0x33aabbccdd001122LL;
CHECK_EQ(0x33aabbccdd001122LL, r.Call());
memory[0] = 77777777;
CHECK_EQ(77777777, r.Call());
}
#endif
TEST(Run_Wasm_LoadMemI32_P) {
const int kNumElems = 8;
WasmRunner<int32_t> r(MachineType::Int32());
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(kNumElems);
module.RandomizeMemory(2222);
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(i * 4));
}
}
TEST(Run_Wasm_MemI32_Sum) {
WasmRunner<uint32_t> r(MachineType::Int32());
const int kNumElems = 20;
const byte kSum = r.AllocateLocal(kAstI32);
TestingModule module;
uint32_t* memory = module.AddMemoryElems<uint32_t>(kNumElems);
r.env()->module = &module;
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_I32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_GET_LOCAL(1)));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
module.RandomizeMemory(i * 33);
uint32_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += memory[j];
}
uint32_t result = r.Call(static_cast<int>(4 * (kNumElems - 1)));
CHECK_EQ(expected, result);
}
}
TEST(Run_Wasm_CheckMachIntsZero) {
WasmRunner<uint32_t> r(MachineType::Int32());
const int kNumElems = 55;
TestingModule module;
module.AddMemoryElems<uint32_t>(kNumElems);
r.env()->module = &module;
BUILD(r, kExprBlock, 2, kExprLoop, 1, kExprIf, kExprGetLocal, 0, kExprBr, 0,
kExprIfElse, kExprI32LoadMem, 0, kExprGetLocal, 0, kExprBr, 2,
kExprI8Const, 255, kExprSetLocal, 0, kExprI32Sub, kExprGetLocal, 0,
kExprI8Const, 4, kExprI8Const, 0);
module.BlankMemory();
CHECK_EQ(0, r.Call((kNumElems - 1) * 4));
}
TEST(Run_Wasm_MemF32_Sum) {
WasmRunner<int32_t> r(MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstF32);
ModuleEnv module;
const int kSize = 5;
float buffer[kSize] = {-99.25, -888.25, -77.25, 66666.25, 5555.25};
module.mem_start = reinterpret_cast<uintptr_t>(&buffer);
module.mem_end = reinterpret_cast<uintptr_t>(&buffer[kSize]);
r.env()->module = &module;
BUILD(r, WASM_BLOCK(
3, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_F32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Float32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_GET_LOCAL(kSum)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(4 * (kSize - 1)));
CHECK_NE(-99.25, buffer[0]);
CHECK_EQ(71256.0f, buffer[0]);
}
#if WASM_64
TEST(Run_Wasm_MemI64_Sum) {
WasmRunner<uint64_t> r(MachineType::Int32());
const int kNumElems = 20;
const byte kSum = r.AllocateLocal(kAstI64);
TestingModule module;
uint64_t* memory = module.AddMemoryElems<uint64_t>(kNumElems);
r.env()->module = &module;
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_I64_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int64(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(8))))),
WASM_GET_LOCAL(1)));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
module.RandomizeMemory(i * 33);
uint64_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += memory[j];
}
uint64_t result = r.Call(8 * (kNumElems - 1));
CHECK_EQ(expected, result);
}
}
#endif
template <typename T>
void GenerateAndRunFold(WasmOpcode binop, T* buffer, size_t size,
LocalType astType, MachineType memType) {
WasmRunner<int32_t> r(MachineType::Int32());
const byte kAccum = r.AllocateLocal(astType);
ModuleEnv module;
module.mem_start = reinterpret_cast<uintptr_t>(buffer);
module.mem_end = reinterpret_cast<uintptr_t>(buffer + size);
r.env()->module = &module;
BUILD(
r,
WASM_BLOCK(
4, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)),
WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kAccum,
WASM_BINOP(binop, WASM_GET_LOCAL(kAccum),
WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(sizeof(T)))))),
WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)),
WASM_GET_LOCAL(0)));
r.Call(static_cast<int>(sizeof(T) * (size - 1)));
}
TEST(Run_Wasm_MemF64_Mul) {
const size_t kSize = 6;
double buffer[kSize] = {1, 2, 2, 2, 2, 2};
GenerateAndRunFold<double>(kExprF64Mul, buffer, kSize, kAstF64,
MachineType::Float64());
CHECK_EQ(32, buffer[0]);
}
TEST(Build_Wasm_Infinite_Loop) {
WasmRunner<int32_t> r(MachineType::Int32());
// Only build the graph and compile, don't run.
BUILD(r, WASM_INFINITE_LOOP);
}
TEST(Build_Wasm_Infinite_Loop_effect) {
WasmRunner<int32_t> r(MachineType::Int32());
TestingModule module;
module.AddMemoryElems<int8_t>(16);
r.env()->module = &module;
// Only build the graph and compile, don't run.
BUILD(r, WASM_LOOP(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
}
TEST(Run_Wasm_Unreachable0a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(2, WASM_BRV(0, WASM_I8(9)), WASM_RETURN(WASM_GET_LOCAL(0))));
CHECK_EQ(9, r.Call(0));
CHECK_EQ(9, r.Call(1));
}
TEST(Run_Wasm_Unreachable0b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV(0, WASM_I8(7)), WASM_UNREACHABLE));
CHECK_EQ(7, r.Call(0));
CHECK_EQ(7, r.Call(1));
}
TEST(Build_Wasm_Unreachable1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable3) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_UnreachableIf1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
}
TEST(Build_Wasm_UnreachableIf2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE,
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE));
}
TEST(Run_Wasm_Unreachable_Load) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV(0, WASM_GET_LOCAL(0)),
WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))));
CHECK_EQ(11, r.Call(11));
CHECK_EQ(21, r.Call(21));
}
TEST(Run_Wasm_Infinite_Loop_not_taken1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP),
WASM_I8(45)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(0));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(1, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(45)),
WASM_INFINITE_LOOP)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(45)),
WASM_INFINITE_LOOP));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
static void TestBuildGraphForUnop(WasmOpcode opcode, FunctionSig* sig) {
WasmRunner<int32_t> r(MachineType::Int32());
init_env(r.env(), sig);
BUILD(r, static_cast<byte>(opcode), kExprGetLocal, 0);
}
static void TestBuildGraphForBinop(WasmOpcode opcode, FunctionSig* sig) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
init_env(r.env(), sig);
BUILD(r, static_cast<byte>(opcode), kExprGetLocal, 0, kExprGetLocal, 1);
}
TEST(Build_Wasm_SimpleExprs) {
// Test that the decoder can build a graph for all supported simple expressions.
#define GRAPH_BUILD_TEST(name, opcode, sig) \
if (WasmOpcodes::IsSupported(kExpr##name)) { \
FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \
printf("expression: " #name "\n"); \
if (sig->parameter_count() == 1) { \
TestBuildGraphForUnop(kExpr##name, sig); \
} else { \
TestBuildGraphForBinop(kExpr##name, sig); \
} \
}
FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST);
#undef GRAPH_BUILD_TEST
}
TEST(Run_Wasm_Int32LoadInt8_signext) {
TestingModule module;
const int kNumElems = 16;
int8_t* memory = module.AddMemoryElems<int8_t>(kNumElems);
module.RandomizeMemory();
memory[0] = -1;
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt8_zeroext) {
TestingModule module;
const int kNumElems = 16;
byte* memory = module.AddMemory(kNumElems);
module.RandomizeMemory(77);
memory[0] = 255;
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_signext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(888);
memory[1] = 200;
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (static_cast<int8_t>(memory[i + 1]) << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_zeroext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(9999);
memory[1] = 204;
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (memory[i + 1] << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_WasmInt32Global) {
TestingModule module;
int32_t* global = module.AddGlobal<int32_t>(MachineType::Int32());
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
// global = global + p0
BUILD(r, WASM_STORE_GLOBAL(
0, WASM_I32_ADD(WASM_LOAD_GLOBAL(0), WASM_GET_LOCAL(0))));
*global = 116;
for (int i = 9; i < 444444; i += 111111) {
int32_t expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmInt32Globals_DontAlias) {
const int kNumGlobals = 3;
TestingModule module;
int32_t* globals[] = {module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32())};
for (int g = 0; g < kNumGlobals; g++) {
// global = global + p0
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_STORE_GLOBAL(
g, WASM_I32_ADD(WASM_LOAD_GLOBAL(g), WASM_GET_LOCAL(0))));
// Check that reading/writing global number {g} doesn't alter the others.
*globals[g] = 116 * g;
int32_t before[kNumGlobals];
for (int i = 9; i < 444444; i += 111113) {
int32_t sum = *globals[g] + i;
for (int j = 0; j < kNumGlobals; j++) before[j] = *globals[j];
r.Call(i);
for (int j = 0; j < kNumGlobals; j++) {
int32_t expected = j == g ? sum : before[j];
CHECK_EQ(expected, *globals[j]);
}
}
}
}
#if WASM_64
TEST(Run_WasmInt64Global) {
TestingModule module;
int64_t* global = module.AddGlobal<int64_t>(MachineType::Int64());
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
// global = global + p0
BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL(
0, WASM_I64_ADD(
WASM_LOAD_GLOBAL(0),
WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 0xFFFFFFFFFFFFFFFFLL;
for (int i = 9; i < 444444; i += 111111) {
int64_t expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
#endif
TEST(Run_WasmFloat32Global) {
TestingModule module;
float* global = module.AddGlobal<float>(MachineType::Float32());
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
// global = global + p0
BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL(
0, WASM_F32_ADD(
WASM_LOAD_GLOBAL(0),
WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile float expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmFloat64Global) {
TestingModule module;
double* global = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
// global = global + p0
BUILD(r, WASM_BLOCK(2, WASM_STORE_GLOBAL(
0, WASM_F64_ADD(
WASM_LOAD_GLOBAL(0),
WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile double expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmMixedGlobals) {
TestingModule module;
int32_t* unused = module.AddGlobal<int32_t>(MachineType::Int32());
byte* memory = module.AddMemory(32);
int8_t* var_int8 = module.AddGlobal<int8_t>(MachineType::Int8());
uint8_t* var_uint8 = module.AddGlobal<uint8_t>(MachineType::Uint8());
int16_t* var_int16 = module.AddGlobal<int16_t>(MachineType::Int16());
uint16_t* var_uint16 = module.AddGlobal<uint16_t>(MachineType::Uint16());
int32_t* var_int32 = module.AddGlobal<int32_t>(MachineType::Int32());
uint32_t* var_uint32 = module.AddGlobal<uint32_t>(MachineType::Uint32());
float* var_float = module.AddGlobal<float>(MachineType::Float32());
double* var_double = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(MachineType::Int32());
r.env()->module = &module;
BUILD(
r,
WASM_BLOCK(
9,
WASM_STORE_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int8(), WASM_ZERO)),
WASM_STORE_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint8(), WASM_ZERO)),
WASM_STORE_GLOBAL(3, WASM_LOAD_MEM(MachineType::Int16(), WASM_ZERO)),
WASM_STORE_GLOBAL(4, WASM_LOAD_MEM(MachineType::Uint16(), WASM_ZERO)),
WASM_STORE_GLOBAL(5, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_STORE_GLOBAL(6, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)),
WASM_STORE_GLOBAL(7,
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)),
WASM_STORE_GLOBAL(8,
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)),
WASM_ZERO));
memory[0] = 0xaa;
memory[1] = 0xcc;
memory[2] = 0x55;
memory[3] = 0xee;
memory[4] = 0x33;
memory[5] = 0x22;
memory[6] = 0x11;
memory[7] = 0x99;
r.Call(1);
CHECK(static_cast<int8_t>(0xaa) == *var_int8);
CHECK(static_cast<uint8_t>(0xaa) == *var_uint8);
CHECK(static_cast<int16_t>(0xccaa) == *var_int16);
CHECK(static_cast<uint16_t>(0xccaa) == *var_uint16);
CHECK(static_cast<int32_t>(0xee55ccaa) == *var_int32);
CHECK(static_cast<uint32_t>(0xee55ccaa) == *var_uint32);
CHECK(bit_cast<float>(0xee55ccaa) == *var_float);
CHECK(bit_cast<double>(0x99112233ee55ccaaULL) == *var_double);
USE(unused);
}
#if WASM_64
// Test the WasmRunner with an Int64 return value and different numbers of
// Int64 parameters.
TEST(Run_TestI64WasmRunner) {
{
FOR_INT64_INPUTS(i) {
WasmRunner<int64_t> r;
BUILD(r, WASM_I64(*i));
CHECK_EQ(*i, r.Call());
}
}
{
WasmRunner<int64_t> r(MachineType::Int64());
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j, r.Call(*i, *j)); }
}
}
{
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0),
WASM_I64_ADD(WASM_GET_LOCAL(1), WASM_GET_LOCAL(2))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(*i + *j + *j, r.Call(*i, *j, *j));
CHECK_EQ(*j + *i + *j, r.Call(*j, *i, *j));
CHECK_EQ(*j + *j + *i, r.Call(*j, *j, *i));
}
}
}
{
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64(),
MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0),
WASM_I64_ADD(WASM_GET_LOCAL(1),
WASM_I64_ADD(WASM_GET_LOCAL(2),
WASM_GET_LOCAL(3)))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(*i + *j + *j + *j, r.Call(*i, *j, *j, *j));
CHECK_EQ(*j + *i + *j + *j, r.Call(*j, *i, *j, *j));
CHECK_EQ(*j + *j + *i + *j, r.Call(*j, *j, *i, *j));
CHECK_EQ(*j + *j + *j + *i, r.Call(*j, *j, *j, *i));
}
}
}
}
#endif
TEST(Run_WasmCallEmpty) {
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_v());
BUILD(t, WASM_I32(kExpected));
uint32_t index = t.CompileAndAdd(&module);
// Build the calling function.
WasmRunner<int32_t> r;
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION0(index));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_WasmCallF32StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF32;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd(&module);
// Build the calling function.
WasmRunner<float> r;
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION(
index, WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f),
WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f),
WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f),
WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f),
WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f),
WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f)));
float result = r.Call();
CHECK_EQ(256.5f, result);
}
TEST(Run_WasmCallF64StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF64;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd(&module);
// Build the calling function.
WasmRunner<double> r;
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION(index, WASM_F64(1.0), WASM_F64(2.0),
WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0),
WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0),
WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5),
WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5),
WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5),
WASM_F64(256.5), WASM_F64(512.5)));
float result = r.Call();
CHECK_EQ(256.5, result);
}
TEST(Run_WasmCallVoid) {
const byte kMemOffset = 8;
const int32_t kElemNum = kMemOffset / sizeof(int32_t);
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
module.AddMemory(16);
module.RandomizeMemory();
WasmFunctionCompiler t(sigs.v_v());
t.env.module = &module;
BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I8(kMemOffset),
WASM_I32(kExpected)));
uint32_t index = t.CompileAndAdd(&module);
// Build the calling function.
WasmRunner<int32_t> r;
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION0(index),
WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(kMemOffset)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
CHECK_EQ(kExpected, module.raw_mem_start<int32_t>()[kElemNum]);
}
TEST(Run_WasmCall_Int32Add) {
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_ii());
BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd(&module);
// Build the caller function.
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
#if WASM_64
TEST(Run_WasmCall_Int64Sub) {
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.l_ll());
BUILD(t, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd(&module);
// Build the caller function.
WasmRunner<int64_t> r(MachineType::Int64(), MachineType::Int64());
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int64_t a = static_cast<int64_t>(*i) << 32 |
(static_cast<int64_t>(*j) | 0xFFFFFFFF);
int64_t b = static_cast<int64_t>(*j) << 32 |
(static_cast<int64_t>(*i) | 0xFFFFFFFF);
int64_t expected = static_cast<int64_t>(static_cast<uint64_t>(a) -
static_cast<uint64_t>(b));
CHECK_EQ(expected, r.Call(a, b));
}
}
}
#endif
TEST(Run_WasmCall_Float32Sub) {
TestSignatures sigs;
WasmFunctionCompiler t(sigs.f_ff());
// Build the target function.
TestingModule module;
BUILD(t, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd(&module);
// Builder the caller function.
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
r.env()->module = &module;
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CheckFloatEq(*i - *j, r.Call(*i, *j)); }
}
}
TEST(Run_WasmCall_Float64Sub) {
WasmRunner<int32_t> r;
TestingModule module;
double* memory = module.AddMemoryElems<double>(16);
r.env()->module = &module;
// TODO(titzer): convert to a binop test.
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(
MachineType::Float64(), WASM_ZERO,
WASM_F64_SUB(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO),
WASM_LOAD_MEM(MachineType::Float64(), WASM_I8(8)))),
WASM_I8(107)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
memory[0] = *i;
memory[1] = *j;
double expected = *i - *j;
CHECK_EQ(107, r.Call());
if (expected != expected) {
CHECK(memory[0] != memory[0]);
} else {
CHECK_EQ(expected, memory[0]);
}
}
}
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \
} while (false)
void Run_WasmMixedCall_N(int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
#if WASM_64
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Int64(),
MachineType::Float64(), MachineType::Float32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Float64(), MachineType::Float32(),
MachineType::Float64(), MachineType::Int32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Int32()};
#else
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Int32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Float64(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32()};
#endif
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; which++) {
Zone zone;
TestingModule module;
module.AddMemory(1024);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
uint32_t index;
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(WasmOpcodes::LocalTypeFor(result));
for (int i = 0; i < num_params; i++) {
b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i]));
}
WasmFunctionCompiler t(b.Build());
t.env.module = &module;
BUILD(t, WASM_GET_LOCAL(which));
index = t.CompileAndAdd(&module);
// =========================================================================
// Build the calling function.
// =========================================================================
WasmRunner<int32_t> r;
r.env()->module = &module;
{
std::vector<byte> code;
ADD_CODE(code,
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(result, true)),
WasmOpcodes::LoadStoreAccessOf(false));
ADD_CODE(code, WASM_ZERO);
ADD_CODE(code, kExprCallFunction, static_cast<byte>(index));
for (int i = 0; i < num_params; i++) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset)));
}
ADD_CODE(code, WASM_I32(kExpected));
size_t end = code.size();
code.push_back(0);
r.Build(&code[0], &code[end]);
}
// Run the code.
for (int t = 0; t < 10; t++) {
module.RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = WasmOpcodes::MemSize(result);
for (int i = 0; i < size; i++) {
int base = (which + 1) * kElemSize;
byte expected = module.raw_mem_at<byte>(base + i);
byte result = module.raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
TEST(Run_WasmMixedCall_0) { Run_WasmMixedCall_N(0); }
TEST(Run_WasmMixedCall_1) { Run_WasmMixedCall_N(1); }
TEST(Run_WasmMixedCall_2) { Run_WasmMixedCall_N(2); }
TEST(Run_WasmMixedCall_3) { Run_WasmMixedCall_N(3); }
TEST(Run_Wasm_CountDown_expr) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_LOOP(
3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)),
WASM_BREAKV(0, WASM_GET_LOCAL(0))),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_ExprBlock2a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))),
WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))),
WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2c) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2d) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(6, WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_BRV(0, WASM_I8(11))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)),
WASM_BRV(0, WASM_I8(13))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)),
WASM_BRV(0, WASM_I8(14))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)),
WASM_BRV(0, WASM_I8(15))),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(6, WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_I8(11)),
WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)),
WASM_I8(12)),
WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)),
WASM_I8(13)),
WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)),
WASM_I8(14)),
WASM_BRV_IF(0, WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)),
WASM_I8(15)),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprBlock_if) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(1, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(14)))));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(14, r.Call(0));
}
TEST(Run_Wasm_ExprBlock_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_BLOCK(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(13)),
WASM_BRV(0, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprLoop_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_LOOP(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(11)),
WASM_BRV(1, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(13)),
WASM_BRV(1, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
#if WASM_64
TEST(Run_Wasm_LoadStoreI64_sx) {
byte loads[] = {kExprI64LoadMem8S, kExprI64LoadMem16S, kExprI64LoadMem32S,
kExprI64LoadMem};
for (size_t m = 0; m < arraysize(loads); m++) {
WasmRunner<int64_t> r;
TestingModule module;
byte* memory = module.AddMemoryElems<byte>(16);
r.env()->module = &module;
byte code[] = {kExprI64StoreMem, 0, kExprI8Const, 8,
loads[m], 0, kExprI8Const, 0};
r.Build(code, code + arraysize(code));
// Try a bunch of different negative values.
for (int i = -1; i >= -128; i -= 11) {
int size = 1 << m;
module.BlankMemory();
memory[size - 1] = static_cast<byte>(i); // set the high order byte.
int64_t expected = static_cast<int64_t>(i) << ((size - 1) * 8);
CHECK_EQ(expected, r.Call());
CHECK_EQ(static_cast<byte>(i), memory[8 + size - 1]);
for (int j = size; j < 8; j++) {
CHECK_EQ(255, memory[8 + j]);
}
}
}
}
#endif
TEST(Run_Wasm_SimpleCallIndirect) {
Isolate* isolate = CcTest::InitIsolateOnce();
WasmRunner<int32_t> r(MachineType::Int32());
TestSignatures sigs;
TestingModule module;
r.env()->module = &module;
WasmFunctionCompiler t1(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(&module);
WasmFunctionCompiler t2(sigs.i_ii());
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(&module);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table_size = 2;
module.module->function_table = new std::vector<uint16_t>;
module.module->function_table->push_back(0);
module.module->function_table->push_back(1);
// Function table.
Handle<FixedArray> fixed = isolate->factory()->NewFixedArray(2 * table_size);
fixed->set(0, Smi::FromInt(1));
fixed->set(1, Smi::FromInt(1));
fixed->set(2, *module.function_code->at(0));
fixed->set(3, *module.function_code->at(1));
module.function_table = fixed;
// Builder the caller function.
BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22)));
CHECK_EQ(88, r.Call(0));
CHECK_EQ(44, r.Call(1));
CHECK_TRAP(r.Call(2));
}
TEST(Run_Wasm_MultipleCallIndirect) {
Isolate* isolate = CcTest::InitIsolateOnce();
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
TestSignatures sigs;
TestingModule module;
r.env()->module = &module;
WasmFunctionCompiler t1(sigs.i_ii());
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(&module);
WasmFunctionCompiler t2(sigs.i_ii());
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(&module);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table_size = 2;
module.module->function_table = new std::vector<uint16_t>;
module.module->function_table->push_back(0);
module.module->function_table->push_back(1);
// Function table.
Handle<FixedArray> fixed = isolate->factory()->NewFixedArray(2 * table_size);
fixed->set(0, Smi::FromInt(1));
fixed->set(1, Smi::FromInt(1));
fixed->set(2, *module.function_code->at(0));
fixed->set(3, *module.function_code->at(1));
module.function_table = fixed;
// Builder the caller function.
BUILD(r,
WASM_I32_ADD(WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(0))));
CHECK_EQ(5, r.Call(0, 1, 2));
CHECK_EQ(19, r.Call(0, 1, 9));
CHECK_EQ(1, r.Call(1, 0, 2));
CHECK_EQ(1, r.Call(1, 0, 9));
CHECK_TRAP(r.Call(0, 2, 1));
CHECK_TRAP(r.Call(1, 2, 0));
CHECK_TRAP(r.Call(2, 0, 1));
CHECK_TRAP(r.Call(2, 1, 0));
}
TEST(Run_Wasm_F32Floor) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CheckFloatEq(floor(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Ceil) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CheckFloatEq(ceil(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Trunc) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CheckFloatEq(trunc(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32NearestInt) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CheckFloatEq(nearbyint(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Floor) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(floor(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Ceil) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(ceil(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Trunc) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(trunc(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64NearestInt) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(nearbyint(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Min) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CheckFloatEq(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Min) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CheckDoubleEq(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F32Max) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CheckFloatEq(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Max) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CheckDoubleEq(expected, r.Call(*i, *j));
}
}
}
#if WASM_64
TEST(Run_Wasm_F32SConvertI64) {
WasmRunner<float> r(MachineType::Int64());
BUILD(r, WASM_F32_SCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<float>(*i), r.Call(*i)); }
}
#if !defined(_WIN64)
// TODO(ahaas): Fix this failure.
TEST(Run_Wasm_F32UConvertI64) {
WasmRunner<float> r(MachineType::Uint64());
BUILD(r, WASM_F32_UCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(static_cast<float>(*i), r.Call(*i)); }
}
#endif
TEST(Run_Wasm_F64SConvertI64) {
WasmRunner<double> r(MachineType::Int64());
BUILD(r, WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<double>(*i), r.Call(*i)); }
}
#if !defined(_WIN64)
// TODO(ahaas): Fix this failure.
TEST(Run_Wasm_F64UConvertI64) {
WasmRunner<double> r(MachineType::Uint64());
BUILD(r, WASM_F64_UCONVERT_I64(WASM_GET_LOCAL(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(static_cast<double>(*i), r.Call(*i)); }
}
#endif
TEST(Run_Wasm_I64SConvertF32) {
WasmRunner<int64_t> r(MachineType::Float32());
BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT64_MAX) &&
*i >= static_cast<float>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
TEST(Run_Wasm_I64SConvertF64) {
WasmRunner<int64_t> r(MachineType::Float64());
BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<double>(INT64_MAX) &&
*i >= static_cast<double>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
TEST(Run_Wasm_I64UConvertF32) {
WasmRunner<uint64_t> r(MachineType::Float32());
BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(UINT64_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
TEST(Run_Wasm_I64UConvertF64) {
WasmRunner<uint64_t> r(MachineType::Float64());
BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<float>(UINT64_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
#endif
TEST(Run_Wasm_I32SConvertF32) {
WasmRunner<int32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT32_MAX) &&
*i >= static_cast<float>(INT32_MIN)) {
CHECK_EQ(static_cast<int32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32SConvertF64) {
WasmRunner<int32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<double>(INT32_MAX) &&
*i >= static_cast<double>(INT32_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF32) {
WasmRunner<uint32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(UINT32_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF64) {
WasmRunner<uint32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<float>(UINT32_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_F64CopySign) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CheckDoubleEq(copysign(*i, *j), r.Call(*i, *j)); }
}
}
TEST(Run_Wasm_F32CopySign) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CheckFloatEq(copysign(*i, *j), r.Call(*i, *j)); }
}
}