v8/src/assembler-ia32.cc

2031 lines
45 KiB
C++
Raw Normal View History

// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include "v8.h"
#include "disassembler.h"
#include "macro-assembler.h"
#include "serialize.h"
namespace v8 { namespace internal {
// -----------------------------------------------------------------------------
// Implementation of Register
Register eax = { 0 };
Register ecx = { 1 };
Register edx = { 2 };
Register ebx = { 3 };
Register esp = { 4 };
Register ebp = { 5 };
Register esi = { 6 };
Register edi = { 7 };
Register no_reg = { -1 };
XMMRegister xmm0 = { 0 };
XMMRegister xmm1 = { 1 };
XMMRegister xmm2 = { 2 };
XMMRegister xmm3 = { 3 };
XMMRegister xmm4 = { 4 };
XMMRegister xmm5 = { 5 };
XMMRegister xmm6 = { 6 };
XMMRegister xmm7 = { 7 };
// -----------------------------------------------------------------------------
// Implementation of CpuFeatures
// Safe default is no features.
uint32_t CpuFeatures::supported_ = 0;
uint32_t CpuFeatures::enabled_ = 0;
typedef int (*F0)();
// The Probe method needs executable memory, so it uses Heap::CreateCode.
// Allocation failure is silent and leads to safe default.
void CpuFeatures::Probe() {
supported_ = 0;
if (Serializer::enabled()) return; // No features if we might serialize.
Assembler assm(NULL, 0);
Label done;
#define __ assm.
// Save old esp, since we are going to modify the stack.
__ push(ebp);
__ pushfd();
__ push(ecx);
__ push(edx);
__ push(ebx);
__ mov(ebp, Operand(esp));
// If we can modify bit 21 of the EFLAGS register, then CPUID is supported.
__ pushfd();
__ pop(eax);
__ mov(edx, Operand(eax));
__ xor_(eax, 0x200000); // Flip bit 21.
__ push(eax);
__ popfd();
__ pushfd();
__ pop(eax);
__ xor_(eax, Operand(edx)); // Different if CPUID is supported.
__ j(zero, &done);
// Invoke CPUID with 1 in eax to get feature information in edx.
__ mov(eax, 1);
// Temporarily force CPUID support, since we know it is safe here.
supported_ = (1 << CPUID);
{ Scope fscope(CPUID);
__ cpuid();
}
supported_ = 0;
// Return result in eax.
__ mov(eax, Operand(edx));
__ bind(&done);
__ mov(esp, Operand(ebp));
__ pop(ebx);
__ pop(edx);
__ pop(ecx);
__ popfd();
__ pop(ebp);
__ ret(0);
#undef __
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB));
if (!code->IsCode()) return;
F0 f = FUNCTION_CAST<F0>(Code::cast(code)->entry());
uint32_t res = f();
supported_ = (res | (1 << CPUID));
}
// -----------------------------------------------------------------------------
// Implementation of Displacement
void Displacement::init(Label* L, Type type) {
ASSERT(!L->is_bound());
int next = 0;
if (L->is_linked()) {
next = L->pos();
ASSERT(next > 0); // Displacements must be at positions > 0
}
// Ensure that we _never_ overflow the next field.
ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize));
data_ = NextField::encode(next) | TypeField::encode(type);
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask =
RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE;
void RelocInfo::patch_code(byte* instructions, int instruction_count) {
// Patch the code at the current address with the supplied instructions.
for (int i = 0; i < instruction_count; i++) {
*(pc_ + i) = *(instructions + i);
}
}
// Patch the code at the current PC with a call to the target address.
// Additional guard int3 instructions can be added if required.
void RelocInfo::patch_code_with_call(Address target, int guard_bytes) {
// Call instruction takes up 5 bytes and int3 takes up one byte.
int code_size = 5 + guard_bytes;
// Patch the code.
CodePatcher patcher(pc_, code_size);
patcher.masm()->call(target, RelocInfo::NONE);
// Add the requested number of int3 instructions after the call.
for (int i = 0; i < guard_bytes; i++) {
patcher.masm()->int3();
}
}
// -----------------------------------------------------------------------------
// Implementation of Operand
Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
// [base + disp/r]
if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
// [base]
set_modrm(0, base);
if (base.is(esp)) set_sib(times_1, esp, base);
} else if (is_int8(disp) && rmode == RelocInfo::NONE) {
// [base + disp8]
set_modrm(1, base);
if (base.is(esp)) set_sib(times_1, esp, base);
set_disp8(disp);
} else {
// [base + disp/r]
set_modrm(2, base);
if (base.is(esp)) set_sib(times_1, esp, base);
set_dispr(disp, rmode);
}
}
Operand::Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode) {
ASSERT(!index.is(esp)); // illegal addressing mode
// [base + index*scale + disp/r]
if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
// [base + index*scale]
set_modrm(0, esp);
set_sib(scale, index, base);
} else if (is_int8(disp) && rmode == RelocInfo::NONE) {
// [base + index*scale + disp8]
set_modrm(1, esp);
set_sib(scale, index, base);
set_disp8(disp);
} else {
// [base + index*scale + disp/r]
set_modrm(2, esp);
set_sib(scale, index, base);
set_dispr(disp, rmode);
}
}
Operand::Operand(Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode) {
ASSERT(!index.is(esp)); // illegal addressing mode
// [index*scale + disp/r]
set_modrm(0, esp);
set_sib(scale, index, ebp);
set_dispr(disp, rmode);
}
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
ASSERT(len_ == 1);
ASSERT((scale & -4) == 0);
buf_[1] = scale << 6 | index.code() << 3 | base.code();
len_ = 2;
}
void Operand::set_disp8(int8_t disp) {
ASSERT(len_ == 1 || len_ == 2);
*reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
}
void Operand::set_reg(Register reg) const {
ASSERT(len_ > 0);
buf_[0] = (buf_[0] & ~0x38) | static_cast<byte>(reg.code() << 3);
}
bool Operand::is_reg(Register reg) const {
return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
&& ((buf_[0] & 0x07) == reg.code()); // register codes match.
}
// -----------------------------------------------------------------------------
// Implementation of Assembler
// Emit a single byte. Must always be inlined.
#define EMIT(x) \
*pc_++ = (x)
// spare_buffer_
static byte* spare_buffer_ = NULL;
Assembler::Assembler(void* buffer, int buffer_size) {
if (buffer == NULL) {
// do our own buffer management
if (buffer_size <= kMinimalBufferSize) {
buffer_size = kMinimalBufferSize;
if (spare_buffer_ != NULL) {
buffer = spare_buffer_;
spare_buffer_ = NULL;
}
}
if (buffer == NULL) {
buffer_ = NewArray<byte>(buffer_size);
} else {
buffer_ = static_cast<byte*>(buffer);
}
buffer_size_ = buffer_size;
own_buffer_ = true;
} else {
// use externally provided buffer instead
ASSERT(buffer_size > 0);
buffer_ = static_cast<byte*>(buffer);
buffer_size_ = buffer_size;
own_buffer_ = false;
}
// Clear the buffer in debug mode unless it was provided by the
// caller in which case we can't be sure it's okay to overwrite
// existing code in it; see CodePatcher::CodePatcher(...).
if (kDebug && own_buffer_) {
memset(buffer_, 0xCC, buffer_size); // int3
}
// setup buffer pointers
ASSERT(buffer_ != NULL);
pc_ = buffer_;
reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
last_pc_ = NULL;
last_position_ = RelocInfo::kNoPosition;
last_statement_position_ = RelocInfo::kNoPosition;
}
Assembler::~Assembler() {
if (own_buffer_) {
if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
spare_buffer_ = buffer_;
} else {
DeleteArray(buffer_);
}
}
}
void Assembler::GetCode(CodeDesc* desc) {
// finalize code
// (at this point overflow() may be true, but the gap ensures that
// we are still not overlapping instructions and relocation info)
ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap
// setup desc
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
Counters::reloc_info_size.Increment(desc->reloc_size);
}
void Assembler::Align(int m) {
ASSERT(IsPowerOf2(m));
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::cpuid() {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CPUID));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xA2);
}
void Assembler::pushad() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x60);
}
void Assembler::popad() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x61);
}
void Assembler::pushfd() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x9C);
}
void Assembler::popfd() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x9D);
}
void Assembler::push(const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (x.is_int8()) {
EMIT(0x6a);
EMIT(x.x_);
} else {
EMIT(0x68);
emit(x);
}
}
void Assembler::push(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x50 | src.code());
}
void Assembler::push(const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFF);
emit_operand(esi, src);
}
void Assembler::pop(Register dst) {
ASSERT(reloc_info_writer.last_pc() != NULL);
if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) {
// (last_pc_ != NULL) is rolled into the above check
// If a last_pc_ is set, we need to make sure that there has not been any
// relocation information generated between the last instruction and this
// pop instruction.
byte instr = last_pc_[0];
if (instr == (0x50 | dst.code())) {
pc_ = last_pc_;
last_pc_ = NULL;
if (FLAG_print_push_pop_elimination) {
PrintF("%d push/pop (same reg) eliminated\n", pc_offset());
}
return;
} else if (instr == 0xff) { // push of an operand, convert to a move
byte op1 = last_pc_[1];
// Check if the operation is really a push
if ((op1 & 0x38) == (6 << 3)) {
op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3);
last_pc_[0] = 0x8b;
last_pc_[1] = op1;
last_pc_ = NULL;
if (FLAG_print_push_pop_elimination) {
PrintF("%d push/pop (op->reg) eliminated\n", pc_offset());
}
return;
}
} else if ((instr == 0x89) &&
(last_pc_[1] == 0x04) &&
(last_pc_[2] == 0x24)) {
// 0x71283c 396 890424 mov [esp],eax
// 0x71283f 399 58 pop eax
if (dst.is(eax)) {
// change to
// 0x710fac 216 83c404 add esp,0x4
last_pc_[0] = 0x83;
last_pc_[1] = 0xc4;
last_pc_[2] = 0x04;
last_pc_ = NULL;
if (FLAG_print_push_pop_elimination) {
PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset());
}
return;
}
} else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit
byte imm8 = last_pc_[1];
if (imm8 == 0) {
// 6a00 push 0x0
// 58 pop eax
last_pc_[0] = 0x31;
last_pc_[1] = 0xc0;
// change to
// 31c0 xor eax,eax
last_pc_ = NULL;
return;
} else {
// 6a00 push 0xXX
// 58 pop eax
last_pc_[0] = 0xb8;
EnsureSpace ensure_space(this);
if ((imm8 & 0x80) != 0) {
EMIT(0xff);
EMIT(0xff);
EMIT(0xff);
// change to
// b8XXffffff mov eax,0xffffffXX
} else {
EMIT(0x00);
EMIT(0x00);
EMIT(0x00);
// change to
// b8XX000000 mov eax,0x000000XX
}
last_pc_ = NULL;
return;
}
} else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit
// 68XXXXXXXX push 0xXXXXXXXX
// 58 pop eax
last_pc_[0] = 0xb8;
last_pc_ = NULL;
// change to
// b8XXXXXXXX mov eax,0xXXXXXXXX
return;
}
// Other potential patterns for peephole:
// 0x712716 102 890424 mov [esp], eax
// 0x712719 105 8b1424 mov edx, [esp]
}
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x58 | dst.code());
}
void Assembler::pop(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x8F);
emit_operand(eax, dst);
}
void Assembler::mov_b(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x8A);
emit_operand(dst, src);
}
void Assembler::mov_b(const Operand& dst, int8_t imm8) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xC6);
emit_operand(eax, dst);
EMIT(imm8);
}
void Assembler::mov_b(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x88);
emit_operand(src, dst);
}
void Assembler::mov_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x66);
EMIT(0x8B);
emit_operand(dst, src);
}
void Assembler::mov_w(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x66);
EMIT(0x89);
emit_operand(src, dst);
}
void Assembler::mov(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xB8 | dst.code());
emit(imm32);
}
void Assembler::mov(Register dst, Handle<Object> handle) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xB8 | dst.code());
emit(handle);
}
void Assembler::mov(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x8B);
emit_operand(dst, src);
}
void Assembler::mov(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xC7);
emit_operand(eax, dst);
emit(x);
}
void Assembler::mov(const Operand& dst, Handle<Object> handle) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xC7);
emit_operand(eax, dst);
emit(handle);
}
void Assembler::mov(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x89);
emit_operand(src, dst);
}
void Assembler::movsx_b(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xBE);
emit_operand(dst, src);
}
void Assembler::movsx_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xBF);
emit_operand(dst, src);
}
void Assembler::movzx_b(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xB6);
emit_operand(dst, src);
}
void Assembler::movzx_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xB7);
emit_operand(dst, src);
}
void Assembler::cmov(Condition cc, Register dst, int32_t imm32) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
UNIMPLEMENTED();
USE(cc);
USE(dst);
USE(imm32);
}
void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
UNIMPLEMENTED();
USE(cc);
USE(dst);
USE(handle);
}
void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
UNIMPLEMENTED();
USE(cc);
USE(dst);
USE(src);
}
void Assembler::adc(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(2, Operand(dst), Immediate(imm32));
}
void Assembler::adc(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x13);
emit_operand(dst, src);
}
void Assembler::add(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x03);
emit_operand(dst, src);
}
void Assembler::add(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(0, dst, x);
}
void Assembler::and_(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(4, Operand(dst), Immediate(imm32));
}
void Assembler::and_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x23);
emit_operand(dst, src);
}
void Assembler::and_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(4, dst, x);
}
void Assembler::and_(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x21);
emit_operand(dst, src);
}
void Assembler::cmp(Register reg, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(7, Operand(reg), Immediate(imm32));
}
void Assembler::cmp(Register reg, Handle<Object> handle) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(7, Operand(reg), Immediate(handle));
}
void Assembler::cmp(Register reg, const Operand& op) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x3B);
emit_operand(reg, op);
}
void Assembler::cmp(const Operand& op, const Immediate& imm) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(7, op, imm);
}
void Assembler::dec_b(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFE);
EMIT(0xC8 | dst.code());
}
void Assembler::dec(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x48 | dst.code());
}
void Assembler::dec(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFF);
emit_operand(ecx, dst);
}
void Assembler::cdq() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x99);
}
void Assembler::idiv(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF7);
EMIT(0xF8 | src.code());
}
void Assembler::imul(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xAF);
emit_operand(dst, src);
}
void Assembler::imul(Register dst, Register src, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (is_int8(imm32)) {
EMIT(0x6B);
EMIT(0xC0 | dst.code() << 3 | src.code());
EMIT(imm32);
} else {
EMIT(0x69);
EMIT(0xC0 | dst.code() << 3 | src.code());
emit(imm32);
}
}
void Assembler::inc(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x40 | dst.code());
}
void Assembler::inc(const Operand& dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFF);
emit_operand(eax, dst);
}
void Assembler::lea(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x8D);
emit_operand(dst, src);
}
void Assembler::mul(Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF7);
EMIT(0xE0 | src.code());
}
void Assembler::neg(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF7);
EMIT(0xD8 | dst.code());
}
void Assembler::not_(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF7);
EMIT(0xD0 | dst.code());
}
void Assembler::or_(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(1, Operand(dst), Immediate(imm32));
}
void Assembler::or_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0B);
emit_operand(dst, src);
}
void Assembler::or_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(1, dst, x);
}
void Assembler::or_(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x09);
emit_operand(dst, src);
}
void Assembler::rcl(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
EMIT(0xD0 | dst.code());
} else {
EMIT(0xC1);
EMIT(0xD0 | dst.code());
EMIT(imm8);
}
}
void Assembler::sar(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
EMIT(0xF8 | dst.code());
} else {
EMIT(0xC1);
EMIT(0xF8 | dst.code());
EMIT(imm8);
}
}
void Assembler::sar(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD3);
EMIT(0xF8 | dst.code());
}
void Assembler::sbb(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x1B);
emit_operand(dst, src);
}
void Assembler::shld(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xA5);
emit_operand(dst, src);
}
void Assembler::shl(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
EMIT(0xE0 | dst.code());
} else {
EMIT(0xC1);
EMIT(0xE0 | dst.code());
EMIT(imm8);
}
}
void Assembler::shl(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD3);
EMIT(0xE0 | dst.code());
}
void Assembler::shrd(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xAD);
emit_operand(dst, src);
}
void Assembler::shr(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint5(imm8)); // illegal shift count
EMIT(0xC1);
EMIT(0xE8 | dst.code());
EMIT(imm8);
}
void Assembler::shr(Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD3);
EMIT(0xE8 | dst.code());
}
void Assembler::sub(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(5, dst, x);
}
void Assembler::sub(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x2B);
emit_operand(dst, src);
}
void Assembler::sub(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x29);
emit_operand(dst, src);
}
void Assembler::test(Register reg, const Immediate& imm) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
// Only use test against byte for registers that have a byte
// variant: eax, ebx, ecx, and edx.
if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) {
uint8_t imm8 = imm.x_;
if (reg.is(eax)) {
EMIT(0xA8);
EMIT(imm8);
} else {
emit_arith_b(0xF6, 0xC0, reg, imm8);
}
} else {
// This is not using emit_arith because test doesn't support
// sign-extension of 8-bit operands.
if (reg.is(eax)) {
EMIT(0xA9);
} else {
EMIT(0xF7);
EMIT(0xC0 | reg.code());
}
emit(imm);
}
}
void Assembler::test(Register reg, const Operand& op) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x85);
emit_operand(reg, op);
}
void Assembler::test(const Operand& op, const Immediate& imm) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF7);
emit_operand(eax, op);
emit(imm);
}
void Assembler::xor_(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(6, Operand(dst), Immediate(imm32));
}
void Assembler::xor_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x33);
emit_operand(dst, src);
}
void Assembler::xor_(const Operand& src, Register dst) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x31);
emit_operand(dst, src);
}
void Assembler::xor_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_arith(6, dst, x);
}
void Assembler::bts(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0xAB);
emit_operand(src, dst);
}
void Assembler::hlt() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF4);
}
void Assembler::int3() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xCC);
}
void Assembler::nop() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x90);
}
void Assembler::rdtsc() {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::RDTSC));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x0F);
EMIT(0x31);
}
void Assembler::ret(int imm16) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(is_uint16(imm16));
if (imm16 == 0) {
EMIT(0xC3);
} else {
EMIT(0xC2);
EMIT(imm16 & 0xFF);
EMIT((imm16 >> 8) & 0xFF);
}
}
void Assembler::leave() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xC9);
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the 32bit
// Displacement of the last instruction using the label.
void Assembler::print(Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l = *L;
PrintF("unbound label");
while (l.is_linked()) {
Displacement disp = disp_at(&l);
PrintF("@ %d ", l.pos());
disp.print();
PrintF("\n");
disp.next(&l);
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
EnsureSpace ensure_space(this);
last_pc_ = NULL;
ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
while (L->is_linked()) {
Displacement disp = disp_at(L);
int fixup_pos = L->pos();
if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
}
// relative address, relative to point after address
int imm32 = pos - (fixup_pos + sizeof(int32_t));
long_at_put(fixup_pos, imm32);
disp.next(L);
}
L->bind_to(pos);
}
void Assembler::link_to(Label* L, Label* appendix) {
EnsureSpace ensure_space(this);
last_pc_ = NULL;
if (appendix->is_linked()) {
if (L->is_linked()) {
// append appendix to L's list
Label p;
Label q = *L;
do {
p = q;
Displacement disp = disp_at(&q);
disp.next(&q);
} while (q.is_linked());
Displacement disp = disp_at(&p);
disp.link_to(appendix);
disp_at_put(&p, disp);
p.Unuse(); // to avoid assertion failure in ~Label
} else {
// L is empty, simply use appendix
*L = *appendix;
}
}
appendix->Unuse(); // appendix should not be used anymore
}
void Assembler::bind(Label* L) {
EnsureSpace ensure_space(this);
last_pc_ = NULL;
ASSERT(!L->is_bound()); // label can only be bound once
bind_to(L, pc_offset());
}
void Assembler::call(Label* L) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (L->is_bound()) {
const int long_size = 5;
int offs = L->pos() - pc_offset();
ASSERT(offs <= 0);
// 1110 1000 #32-bit disp
EMIT(0xE8);
emit(offs - long_size);
} else {
// 1110 1000 #32-bit disp
EMIT(0xE8);
emit_disp(L, Displacement::OTHER);
}
}
void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(!RelocInfo::IsCodeTarget(rmode));
EMIT(0xE8);
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
void Assembler::call(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFF);
emit_operand(edx, adr);
}
void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
WriteRecordedPositions();
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(RelocInfo::IsCodeTarget(rmode));
EMIT(0xE8);
emit(reinterpret_cast<intptr_t>(code.location()), rmode);
}
void Assembler::jmp(Label* L) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 5;
int offs = L->pos() - pc_offset();
ASSERT(offs <= 0);
if (is_int8(offs - short_size)) {
// 1110 1011 #8-bit disp
EMIT(0xEB);
EMIT((offs - short_size) & 0xFF);
} else {
// 1110 1001 #32-bit disp
EMIT(0xE9);
emit(offs - long_size);
}
} else {
// 1110 1001 #32-bit disp
EMIT(0xE9);
emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
}
}
void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(!RelocInfo::IsCodeTarget(rmode));
EMIT(0xE9);
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
void Assembler::jmp(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xFF);
emit_operand(esp, adr);
}
void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(RelocInfo::IsCodeTarget(rmode));
EMIT(0xE9);
emit(reinterpret_cast<intptr_t>(code.location()), rmode);
}
void Assembler::j(Condition cc, Label* L, Hint hint) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT(0 <= cc && cc < 16);
if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 6;
int offs = L->pos() - pc_offset();
ASSERT(offs <= 0);
if (is_int8(offs - short_size)) {
// 0111 tttn #8-bit disp
EMIT(0x70 | cc);
EMIT((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
EMIT(0x0F);
EMIT(0x80 | cc);
emit(offs - long_size);
}
} else {
// 0000 1111 1000 tttn #32-bit disp
// Note: could eliminate cond. jumps to this jump if condition
// is the same however, seems to be rather unlikely case.
EMIT(0x0F);
EMIT(0x80 | cc);
emit_disp(L, Displacement::OTHER);
}
}
void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
ASSERT((0 <= cc) && (cc < 16));
if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
// 0000 1111 1000 tttn #32-bit disp
EMIT(0x0F);
EMIT(0x80 | cc);
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
void Assembler::j(Condition cc, Handle<Code> code, Hint hint) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
// 0000 1111 1000 tttn #32-bit disp
EMIT(0x0F);
EMIT(0x80 | cc);
emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET);
}
// FPU instructions
void Assembler::fld(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xD9, 0xC0, i);
}
void Assembler::fld1() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xE8);
}
void Assembler::fldz() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xEE);
}
void Assembler::fld_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
emit_operand(eax, adr);
}
void Assembler::fld_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDD);
emit_operand(eax, adr);
}
void Assembler::fstp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
emit_operand(ebx, adr);
}
void Assembler::fstp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDD);
emit_operand(ebx, adr);
}
void Assembler::fild_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDB);
emit_operand(eax, adr);
}
void Assembler::fild_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDF);
emit_operand(ebp, adr);
}
void Assembler::fistp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDB);
emit_operand(ebx, adr);
}
void Assembler::fist_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDB);
emit_operand(edx, adr);
}
void Assembler::fistp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDF);
emit_operand(edi, adr);
}
void Assembler::fabs() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xE1);
}
void Assembler::fchs() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xE0);
}
void Assembler::fadd(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xC0, i);
}
void Assembler::fsub(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fisub_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDA);
emit_operand(esp, adr);
}
void Assembler::fmul(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fdiv(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDC, 0xF8, i);
}
void Assembler::faddp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fsubp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xE8, i);
}
void Assembler::fsubrp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xE0, i);
}
void Assembler::fmulp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fdivp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDE, 0xF8, i);
}
void Assembler::fprem() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xF8);
}
void Assembler::fprem1() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xF5);
}
void Assembler::fxch(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fincstp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xF7);
}
void Assembler::ffree(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xC0, i);
}
void Assembler::ftst() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xE4);
}
void Assembler::fucomp(int i) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xE8, i);
}
void Assembler::fucompp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDA);
EMIT(0xE9);
}
void Assembler::fcompp() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xDE);
EMIT(0xD9);
}
void Assembler::fnstsw_ax() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xdF);
EMIT(0xE0);
}
void Assembler::fwait() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x9B);
}
void Assembler::frndint() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xD9);
EMIT(0xFC);
}
void Assembler::sahf() {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0x9E);
}
void Assembler::cvttss2si(Register dst, const Operand& src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x2C);
emit_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, const Operand& src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x2C);
emit_operand(dst, src);
}
void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::addsd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x58);
emit_sse_operand(dst, src);
}
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x59);
emit_sse_operand(dst, src);
}
void Assembler::subsd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5C);
emit_sse_operand(dst, src);
}
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5E);
emit_sse_operand(dst, src);
}
void Assembler::movdbl(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
movsd(dst, src);
}
void Assembler::movdbl(const Operand& dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
movsd(dst, src);
}
void Assembler::movsd(const Operand& dst, XMMRegister src ) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2); // double
EMIT(0x0F);
EMIT(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd(XMMRegister dst, const Operand& src) {
ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
EMIT(0xF2); // double
EMIT(0x0F);
EMIT(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
Register ireg = { reg.code() };
emit_operand(ireg, adr);
}
void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
EMIT(0xC0 | dst.code() << 3 | src.code());
}
void Assembler::Print() {
Disassembler::Decode(stdout, buffer_, pc_);
}
void Assembler::RecordJSReturn() {
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
WriteRecordedPositions();
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::JS_RETURN);
}
void Assembler::RecordComment(const char* msg) {
if (FLAG_debug_code) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
}
}
void Assembler::RecordPosition(int pos) {
if (pos == RelocInfo::kNoPosition) return;
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
ASSERT(pos >= 0);
last_position_ = pos;
}
void Assembler::RecordStatementPosition(int pos) {
if (pos == RelocInfo::kNoPosition) return;
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
ASSERT(pos >= 0);
last_statement_position_ = pos;
}
void Assembler::WriteRecordedPositions() {
if (last_statement_position_ != RelocInfo::kNoPosition) {
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::STATEMENT_POSITION, last_statement_position_);
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
}
if ((last_position_ != RelocInfo::kNoPosition) &&
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
(last_position_ != last_statement_position_)) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::POSITION, last_position_);
Defer the writing of the source position data to the relocation information until a possible debug break location is reached. Currently this is call sites with calls to code objects and JS return. Source position information in the code therefore no longer refers to the "first" instruction generated for a given source position (which was not the case defered code anyway) but to the first break location after that source position was passed (again defered code always start with source position information). This doesn't make a difference for the debugger as it will always be stopped only at debug break locations. However, this makes the life of the peep-hole optimizer much easier as many oportunities for posh/pop eliminations where previosly blocked by relocation information already written to the code object. Two types of source positions are still collected. Statement positions indicate the position of the start of the statement leading to this code and (plain) positions indicate other places typically call sites to help indicate current position in backtraces. The two different types of positions are also used to distinguish between step next and step in. Runs all the tests (including debugger tests) as before. Moved the checking for the FLAG_debug_info to one place. I will do the same changes to the ARM codegenerator in a seperate changelist. Review URL: http://codereview.chromium.org/2957 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@335 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-09-18 08:51:43 +00:00
}
last_statement_position_ = RelocInfo::kNoPosition;
last_position_ = RelocInfo::kNoPosition;
}
void Assembler::GrowBuffer() {
ASSERT(overflow()); // should not call this otherwise
if (!own_buffer_) FATAL("external code buffer is too small");
// compute new buffer size
CodeDesc desc; // the new buffer
if (buffer_size_ < 4*KB) {
desc.buffer_size = 4*KB;
} else {
desc.buffer_size = 2*buffer_size_;
}
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if ((desc.buffer_size > kMaximalBufferSize) ||
(desc.buffer_size > Heap::OldGenerationSize())) {
V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
}
// setup new buffer
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.instr_size = pc_offset();
desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
// Clear the buffer in debug mode. Use 'int3' instructions to make
// sure to get into problems if we ever run uninitialized code.
if (kDebug) {
memset(desc.buffer, 0xCC, desc.buffer_size);
}
// copy the data
int pc_delta = desc.buffer - buffer_;
int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
memmove(desc.buffer, buffer_, desc.instr_size);
memmove(rc_delta + reloc_info_writer.pos(),
reloc_info_writer.pos(), desc.reloc_size);
// switch buffers
if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
spare_buffer_ = buffer_;
} else {
DeleteArray(buffer_);
}
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
if (last_pc_ != NULL) {
last_pc_ += pc_delta;
}
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// relocate runtime entries
for (RelocIterator it(desc); !it.done(); it.next()) {
RelocInfo::Mode rmode = it.rinfo()->rmode();
if (rmode == RelocInfo::RUNTIME_ENTRY) {
int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
*p -= pc_delta; // relocate entry
} else if (rmode == RelocInfo::INTERNAL_REFERENCE) {
int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
if (*p != 0) { // 0 means uninitialized.
*p += pc_delta;
}
}
}
ASSERT(!overflow());
}
void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode
ASSERT(is_uint8(imm8));
ASSERT((op1 & 0x01) == 0); // should be 8bit operation
EMIT(op1);
EMIT(op2 | dst.code());
EMIT(imm8);
}
void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
ASSERT((0 <= sel) && (sel <= 7));
Register ireg = { sel };
if (x.is_int8()) {
EMIT(0x83); // using a sign-extended 8-bit immediate.
emit_operand(ireg, dst);
EMIT(x.x_ & 0xFF);
} else if (dst.is_reg(eax)) {
EMIT((sel << 3) | 0x05); // short form if the destination is eax.
emit(x);
} else {
EMIT(0x81); // using a literal 32-bit immediate.
emit_operand(ireg, dst);
emit(x);
}
}
void Assembler::emit_operand(Register reg, const Operand& adr) {
adr.set_reg(reg);
memmove(pc_, adr.buf_, adr.len_);
pc_ += adr.len_;
if (adr.len_ >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) {
pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
RecordRelocInfo(adr.rmode_);
pc_ += sizeof(int32_t);
}
}
void Assembler::emit_operand(const Operand& adr, Register reg) {
adr.set_reg(reg);
memmove(pc_, adr.buf_, adr.len_);
pc_ += adr.len_;
if (adr.len_ >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) {
pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
RecordRelocInfo(adr.rmode_);
pc_ += sizeof(int32_t);
}
}
void Assembler::emit_farith(int b1, int b2, int i) {
ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode
ASSERT(0 <= i && i < 8); // illegal stack offset
EMIT(b1);
EMIT(b2 + i);
}
void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) {
EnsureSpace ensure_space(this);
emit(data, reloc_info);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
ASSERT(rmode != RelocInfo::NONE);
// Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
!Serializer::enabled() &&
!FLAG_debug_code) {
return;
}
RelocInfo rinfo(pc_, rmode, data);
reloc_info_writer.Write(&rinfo);
}
void Assembler::WriteInternalReference(int position, const Label& bound_label) {
ASSERT(bound_label.is_bound());
ASSERT(0 <= position);
ASSERT(position + static_cast<int>(sizeof(uint32_t)) <= pc_offset());
ASSERT(long_at(position) == 0); // only initialize once!
uint32_t label_loc = reinterpret_cast<uint32_t>(addr_at(bound_label.pos()));
long_at_put(position, label_loc);
}
} } // namespace v8::internal