v8/src/hydrogen.h

2938 lines
97 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HYDROGEN_H_
#define V8_HYDROGEN_H_
#include "src/v8.h"
#include "src/accessors.h"
#include "src/allocation.h"
#include "src/ast.h"
#include "src/compiler.h"
#include "src/hydrogen-instructions.h"
#include "src/scopes.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class BitVector;
class FunctionState;
class HEnvironment;
class HGraph;
class HLoopInformation;
class HOsrBuilder;
class HTracer;
class LAllocator;
class LChunk;
class LiveRange;
class HBasicBlock FINAL : public ZoneObject {
public:
explicit HBasicBlock(HGraph* graph);
~HBasicBlock() { }
// Simple accessors.
int block_id() const { return block_id_; }
void set_block_id(int id) { block_id_ = id; }
HGraph* graph() const { return graph_; }
Isolate* isolate() const;
const ZoneList<HPhi*>* phis() const { return &phis_; }
HInstruction* first() const { return first_; }
HInstruction* last() const { return last_; }
void set_last(HInstruction* instr) { last_ = instr; }
HControlInstruction* end() const { return end_; }
HLoopInformation* loop_information() const { return loop_information_; }
HLoopInformation* current_loop() const {
return IsLoopHeader() ? loop_information()
: (parent_loop_header() != NULL
? parent_loop_header()->loop_information() : NULL);
}
const ZoneList<HBasicBlock*>* predecessors() const { return &predecessors_; }
bool HasPredecessor() const { return predecessors_.length() > 0; }
const ZoneList<HBasicBlock*>* dominated_blocks() const {
return &dominated_blocks_;
}
const ZoneList<int>* deleted_phis() const {
return &deleted_phis_;
}
void RecordDeletedPhi(int merge_index) {
deleted_phis_.Add(merge_index, zone());
}
HBasicBlock* dominator() const { return dominator_; }
HEnvironment* last_environment() const { return last_environment_; }
int argument_count() const { return argument_count_; }
void set_argument_count(int count) { argument_count_ = count; }
int first_instruction_index() const { return first_instruction_index_; }
void set_first_instruction_index(int index) {
first_instruction_index_ = index;
}
int last_instruction_index() const { return last_instruction_index_; }
void set_last_instruction_index(int index) {
last_instruction_index_ = index;
}
bool is_osr_entry() { return is_osr_entry_; }
void set_osr_entry() { is_osr_entry_ = true; }
void AttachLoopInformation();
void DetachLoopInformation();
bool IsLoopHeader() const { return loop_information() != NULL; }
bool IsStartBlock() const { return block_id() == 0; }
void PostProcessLoopHeader(IterationStatement* stmt);
bool IsFinished() const { return end_ != NULL; }
void AddPhi(HPhi* phi);
void RemovePhi(HPhi* phi);
void AddInstruction(HInstruction* instr, HSourcePosition position);
bool Dominates(HBasicBlock* other) const;
bool EqualToOrDominates(HBasicBlock* other) const;
int LoopNestingDepth() const;
void SetInitialEnvironment(HEnvironment* env);
void ClearEnvironment() {
DCHECK(IsFinished());
DCHECK(end()->SuccessorCount() == 0);
last_environment_ = NULL;
}
bool HasEnvironment() const { return last_environment_ != NULL; }
void UpdateEnvironment(HEnvironment* env);
HBasicBlock* parent_loop_header() const { return parent_loop_header_; }
void set_parent_loop_header(HBasicBlock* block) {
DCHECK(parent_loop_header_ == NULL);
parent_loop_header_ = block;
}
bool HasParentLoopHeader() const { return parent_loop_header_ != NULL; }
void SetJoinId(BailoutId ast_id);
int PredecessorIndexOf(HBasicBlock* predecessor) const;
HPhi* AddNewPhi(int merged_index);
HSimulate* AddNewSimulate(BailoutId ast_id,
HSourcePosition position,
RemovableSimulate removable = FIXED_SIMULATE) {
HSimulate* instr = CreateSimulate(ast_id, removable);
AddInstruction(instr, position);
return instr;
}
void AssignCommonDominator(HBasicBlock* other);
void AssignLoopSuccessorDominators();
// If a target block is tagged as an inline function return, all
// predecessors should contain the inlined exit sequence:
//
// LeaveInlined
// Simulate (caller's environment)
// Goto (target block)
bool IsInlineReturnTarget() const { return is_inline_return_target_; }
void MarkAsInlineReturnTarget(HBasicBlock* inlined_entry_block) {
is_inline_return_target_ = true;
inlined_entry_block_ = inlined_entry_block;
}
HBasicBlock* inlined_entry_block() { return inlined_entry_block_; }
bool IsDeoptimizing() const {
return end() != NULL && end()->IsDeoptimize();
}
void MarkUnreachable();
bool IsUnreachable() const { return !is_reachable_; }
bool IsReachable() const { return is_reachable_; }
bool IsLoopSuccessorDominator() const {
return dominates_loop_successors_;
}
void MarkAsLoopSuccessorDominator() {
dominates_loop_successors_ = true;
}
bool IsOrdered() const { return is_ordered_; }
void MarkAsOrdered() { is_ordered_ = true; }
void MarkSuccEdgeUnreachable(int succ);
inline Zone* zone() const;
#ifdef DEBUG
void Verify();
#endif
protected:
friend class HGraphBuilder;
HSimulate* CreateSimulate(BailoutId ast_id, RemovableSimulate removable);
void Finish(HControlInstruction* last, HSourcePosition position);
void FinishExit(HControlInstruction* instruction, HSourcePosition position);
void Goto(HBasicBlock* block,
HSourcePosition position,
FunctionState* state = NULL,
bool add_simulate = true);
void GotoNoSimulate(HBasicBlock* block, HSourcePosition position) {
Goto(block, position, NULL, false);
}
// Add the inlined function exit sequence, adding an HLeaveInlined
// instruction and updating the bailout environment.
void AddLeaveInlined(HValue* return_value,
FunctionState* state,
HSourcePosition position);
private:
void RegisterPredecessor(HBasicBlock* pred);
void AddDominatedBlock(HBasicBlock* block);
int block_id_;
HGraph* graph_;
ZoneList<HPhi*> phis_;
HInstruction* first_;
HInstruction* last_;
HControlInstruction* end_;
HLoopInformation* loop_information_;
ZoneList<HBasicBlock*> predecessors_;
HBasicBlock* dominator_;
ZoneList<HBasicBlock*> dominated_blocks_;
HEnvironment* last_environment_;
// Outgoing parameter count at block exit, set during lithium translation.
int argument_count_;
// Instruction indices into the lithium code stream.
int first_instruction_index_;
int last_instruction_index_;
ZoneList<int> deleted_phis_;
HBasicBlock* parent_loop_header_;
// For blocks marked as inline return target: the block with HEnterInlined.
HBasicBlock* inlined_entry_block_;
bool is_inline_return_target_ : 1;
bool is_reachable_ : 1;
bool dominates_loop_successors_ : 1;
bool is_osr_entry_ : 1;
bool is_ordered_ : 1;
};
OStream& operator<<(OStream& os, const HBasicBlock& b);
class HPredecessorIterator FINAL BASE_EMBEDDED {
public:
explicit HPredecessorIterator(HBasicBlock* block)
: predecessor_list_(block->predecessors()), current_(0) { }
bool Done() { return current_ >= predecessor_list_->length(); }
HBasicBlock* Current() { return predecessor_list_->at(current_); }
void Advance() { current_++; }
private:
const ZoneList<HBasicBlock*>* predecessor_list_;
int current_;
};
class HInstructionIterator FINAL BASE_EMBEDDED {
public:
explicit HInstructionIterator(HBasicBlock* block)
: instr_(block->first()) {
next_ = Done() ? NULL : instr_->next();
}
inline bool Done() const { return instr_ == NULL; }
inline HInstruction* Current() { return instr_; }
inline void Advance() {
instr_ = next_;
next_ = Done() ? NULL : instr_->next();
}
private:
HInstruction* instr_;
HInstruction* next_;
};
class HLoopInformation FINAL : public ZoneObject {
public:
HLoopInformation(HBasicBlock* loop_header, Zone* zone)
: back_edges_(4, zone),
loop_header_(loop_header),
blocks_(8, zone),
stack_check_(NULL) {
blocks_.Add(loop_header, zone);
}
~HLoopInformation() {}
const ZoneList<HBasicBlock*>* back_edges() const { return &back_edges_; }
const ZoneList<HBasicBlock*>* blocks() const { return &blocks_; }
HBasicBlock* loop_header() const { return loop_header_; }
HBasicBlock* GetLastBackEdge() const;
void RegisterBackEdge(HBasicBlock* block);
HStackCheck* stack_check() const { return stack_check_; }
void set_stack_check(HStackCheck* stack_check) {
stack_check_ = stack_check;
}
bool IsNestedInThisLoop(HLoopInformation* other) {
while (other != NULL) {
if (other == this) {
return true;
}
other = other->parent_loop();
}
return false;
}
HLoopInformation* parent_loop() {
HBasicBlock* parent_header = loop_header()->parent_loop_header();
return parent_header != NULL ? parent_header->loop_information() : NULL;
}
private:
void AddBlock(HBasicBlock* block);
ZoneList<HBasicBlock*> back_edges_;
HBasicBlock* loop_header_;
ZoneList<HBasicBlock*> blocks_;
HStackCheck* stack_check_;
};
class BoundsCheckTable;
class InductionVariableBlocksTable;
class HGraph FINAL : public ZoneObject {
public:
explicit HGraph(CompilationInfo* info);
Isolate* isolate() const { return isolate_; }
Zone* zone() const { return zone_; }
CompilationInfo* info() const { return info_; }
const ZoneList<HBasicBlock*>* blocks() const { return &blocks_; }
const ZoneList<HPhi*>* phi_list() const { return phi_list_; }
HBasicBlock* entry_block() const { return entry_block_; }
HEnvironment* start_environment() const { return start_environment_; }
void FinalizeUniqueness();
bool ProcessArgumentsObject();
void OrderBlocks();
void AssignDominators();
void RestoreActualValues();
// Returns false if there are phi-uses of the arguments-object
// which are not supported by the optimizing compiler.
bool CheckArgumentsPhiUses();
// Returns false if there are phi-uses of an uninitialized const
// which are not supported by the optimizing compiler.
bool CheckConstPhiUses();
void CollectPhis();
HConstant* GetConstantUndefined();
HConstant* GetConstant0();
HConstant* GetConstant1();
HConstant* GetConstantMinus1();
HConstant* GetConstantTrue();
HConstant* GetConstantFalse();
HConstant* GetConstantHole();
HConstant* GetConstantNull();
HConstant* GetInvalidContext();
bool IsConstantUndefined(HConstant* constant);
bool IsConstant0(HConstant* constant);
bool IsConstant1(HConstant* constant);
bool IsConstantMinus1(HConstant* constant);
bool IsConstantTrue(HConstant* constant);
bool IsConstantFalse(HConstant* constant);
bool IsConstantHole(HConstant* constant);
bool IsConstantNull(HConstant* constant);
bool IsStandardConstant(HConstant* constant);
HBasicBlock* CreateBasicBlock();
HArgumentsObject* GetArgumentsObject() const {
return arguments_object_.get();
}
void SetArgumentsObject(HArgumentsObject* object) {
arguments_object_.set(object);
}
int GetMaximumValueID() const { return values_.length(); }
int GetNextBlockID() { return next_block_id_++; }
int GetNextValueID(HValue* value) {
DCHECK(!disallow_adding_new_values_);
values_.Add(value, zone());
return values_.length() - 1;
}
HValue* LookupValue(int id) const {
if (id >= 0 && id < values_.length()) return values_[id];
return NULL;
}
void DisallowAddingNewValues() {
disallow_adding_new_values_ = true;
}
bool Optimize(BailoutReason* bailout_reason);
#ifdef DEBUG
void Verify(bool do_full_verify) const;
#endif
bool has_osr() {
return osr_ != NULL;
}
void set_osr(HOsrBuilder* osr) {
osr_ = osr;
}
HOsrBuilder* osr() {
return osr_;
}
int update_type_change_checksum(int delta) {
type_change_checksum_ += delta;
return type_change_checksum_;
}
void update_maximum_environment_size(int environment_size) {
if (environment_size > maximum_environment_size_) {
maximum_environment_size_ = environment_size;
}
}
int maximum_environment_size() { return maximum_environment_size_; }
bool use_optimistic_licm() {
return use_optimistic_licm_;
}
void set_use_optimistic_licm(bool value) {
use_optimistic_licm_ = value;
}
void MarkRecursive() {
is_recursive_ = true;
}
bool is_recursive() const {
return is_recursive_;
}
void MarkDependsOnEmptyArrayProtoElements() {
// Add map dependency if not already added.
if (depends_on_empty_array_proto_elements_) return;
Map::AddDependentCompilationInfo(
handle(isolate()->initial_object_prototype()->map()),
DependentCode::kElementsCantBeAddedGroup, info());
Map::AddDependentCompilationInfo(
handle(isolate()->initial_array_prototype()->map()),
DependentCode::kElementsCantBeAddedGroup, info());
depends_on_empty_array_proto_elements_ = true;
}
bool depends_on_empty_array_proto_elements() {
return depends_on_empty_array_proto_elements_;
}
bool has_uint32_instructions() {
DCHECK(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
return uint32_instructions_ != NULL;
}
ZoneList<HInstruction*>* uint32_instructions() {
DCHECK(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
return uint32_instructions_;
}
void RecordUint32Instruction(HInstruction* instr) {
DCHECK(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
if (uint32_instructions_ == NULL) {
uint32_instructions_ = new(zone()) ZoneList<HInstruction*>(4, zone());
}
uint32_instructions_->Add(instr, zone());
}
void IncrementInNoSideEffectsScope() { no_side_effects_scope_count_++; }
void DecrementInNoSideEffectsScope() { no_side_effects_scope_count_--; }
bool IsInsideNoSideEffectsScope() { return no_side_effects_scope_count_ > 0; }
// If we are tracking source positions then this function assigns a unique
// identifier to each inlining and dumps function source if it was inlined
// for the first time during the current optimization.
int TraceInlinedFunction(Handle<SharedFunctionInfo> shared,
HSourcePosition position);
// Converts given HSourcePosition to the absolute offset from the start of
// the corresponding script.
int SourcePositionToScriptPosition(HSourcePosition position);
private:
HConstant* ReinsertConstantIfNecessary(HConstant* constant);
HConstant* GetConstant(SetOncePointer<HConstant>* pointer,
int32_t integer_value);
template<class Phase>
void Run() {
Phase phase(this);
phase.Run();
}
void EliminateRedundantBoundsChecksUsingInductionVariables();
Isolate* isolate_;
int next_block_id_;
HBasicBlock* entry_block_;
HEnvironment* start_environment_;
ZoneList<HBasicBlock*> blocks_;
ZoneList<HValue*> values_;
ZoneList<HPhi*>* phi_list_;
ZoneList<HInstruction*>* uint32_instructions_;
SetOncePointer<HConstant> constant_undefined_;
SetOncePointer<HConstant> constant_0_;
SetOncePointer<HConstant> constant_1_;
SetOncePointer<HConstant> constant_minus1_;
SetOncePointer<HConstant> constant_true_;
SetOncePointer<HConstant> constant_false_;
SetOncePointer<HConstant> constant_the_hole_;
SetOncePointer<HConstant> constant_null_;
SetOncePointer<HConstant> constant_invalid_context_;
SetOncePointer<HArgumentsObject> arguments_object_;
HOsrBuilder* osr_;
CompilationInfo* info_;
Zone* zone_;
bool is_recursive_;
bool use_optimistic_licm_;
bool depends_on_empty_array_proto_elements_;
int type_change_checksum_;
int maximum_environment_size_;
int no_side_effects_scope_count_;
bool disallow_adding_new_values_;
class InlinedFunctionInfo {
public:
explicit InlinedFunctionInfo(Handle<SharedFunctionInfo> shared)
: shared_(shared), start_position_(shared->start_position()) {
}
Handle<SharedFunctionInfo> shared() const { return shared_; }
int start_position() const { return start_position_; }
private:
Handle<SharedFunctionInfo> shared_;
int start_position_;
};
int next_inline_id_;
ZoneList<InlinedFunctionInfo> inlined_functions_;
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
Zone* HBasicBlock::zone() const { return graph_->zone(); }
// Type of stack frame an environment might refer to.
enum FrameType {
JS_FUNCTION,
JS_CONSTRUCT,
JS_GETTER,
JS_SETTER,
ARGUMENTS_ADAPTOR,
STUB
};
class HEnvironment FINAL : public ZoneObject {
public:
HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure,
Zone* zone);
HEnvironment(Zone* zone, int parameter_count);
HEnvironment* arguments_environment() {
return outer()->frame_type() == ARGUMENTS_ADAPTOR ? outer() : this;
}
// Simple accessors.
Handle<JSFunction> closure() const { return closure_; }
const ZoneList<HValue*>* values() const { return &values_; }
const GrowableBitVector* assigned_variables() const {
return &assigned_variables_;
}
FrameType frame_type() const { return frame_type_; }
int parameter_count() const { return parameter_count_; }
int specials_count() const { return specials_count_; }
int local_count() const { return local_count_; }
HEnvironment* outer() const { return outer_; }
int pop_count() const { return pop_count_; }
int push_count() const { return push_count_; }
BailoutId ast_id() const { return ast_id_; }
void set_ast_id(BailoutId id) { ast_id_ = id; }
HEnterInlined* entry() const { return entry_; }
void set_entry(HEnterInlined* entry) { entry_ = entry; }
int length() const { return values_.length(); }
int first_expression_index() const {
return parameter_count() + specials_count() + local_count();
}
int first_local_index() const {
return parameter_count() + specials_count();
}
void Bind(Variable* variable, HValue* value) {
Bind(IndexFor(variable), value);
}
void Bind(int index, HValue* value);
void BindContext(HValue* value) {
Bind(parameter_count(), value);
}
HValue* Lookup(Variable* variable) const {
return Lookup(IndexFor(variable));
}
HValue* Lookup(int index) const {
HValue* result = values_[index];
DCHECK(result != NULL);
return result;
}
HValue* context() const {
// Return first special.
return Lookup(parameter_count());
}
void Push(HValue* value) {
DCHECK(value != NULL);
++push_count_;
values_.Add(value, zone());
}
HValue* Pop() {
DCHECK(!ExpressionStackIsEmpty());
if (push_count_ > 0) {
--push_count_;
} else {
++pop_count_;
}
return values_.RemoveLast();
}
void Drop(int count);
HValue* Top() const { return ExpressionStackAt(0); }
bool ExpressionStackIsEmpty() const;
HValue* ExpressionStackAt(int index_from_top) const {
int index = length() - index_from_top - 1;
DCHECK(HasExpressionAt(index));
return values_[index];
}
void SetExpressionStackAt(int index_from_top, HValue* value);
HEnvironment* Copy() const;
HEnvironment* CopyWithoutHistory() const;
HEnvironment* CopyAsLoopHeader(HBasicBlock* block) const;
// Create an "inlined version" of this environment, where the original
// environment is the outer environment but the top expression stack
// elements are moved to an inner environment as parameters.
HEnvironment* CopyForInlining(Handle<JSFunction> target,
int arguments,
FunctionLiteral* function,
HConstant* undefined,
InliningKind inlining_kind) const;
HEnvironment* DiscardInlined(bool drop_extra) {
HEnvironment* outer = outer_;
while (outer->frame_type() != JS_FUNCTION) outer = outer->outer_;
if (drop_extra) outer->Drop(1);
return outer;
}
void AddIncomingEdge(HBasicBlock* block, HEnvironment* other);
void ClearHistory() {
pop_count_ = 0;
push_count_ = 0;
assigned_variables_.Clear();
}
void SetValueAt(int index, HValue* value) {
DCHECK(index < length());
values_[index] = value;
}
// Map a variable to an environment index. Parameter indices are shifted
// by 1 (receiver is parameter index -1 but environment index 0).
// Stack-allocated local indices are shifted by the number of parameters.
int IndexFor(Variable* variable) const {
DCHECK(variable->IsStackAllocated());
int shift = variable->IsParameter()
? 1
: parameter_count_ + specials_count_;
return variable->index() + shift;
}
bool is_local_index(int i) const {
return i >= first_local_index() && i < first_expression_index();
}
bool is_parameter_index(int i) const {
return i >= 0 && i < parameter_count();
}
bool is_special_index(int i) const {
return i >= parameter_count() && i < parameter_count() + specials_count();
}
Zone* zone() const { return zone_; }
private:
HEnvironment(const HEnvironment* other, Zone* zone);
HEnvironment(HEnvironment* outer,
Handle<JSFunction> closure,
FrameType frame_type,
int arguments,
Zone* zone);
// Create an artificial stub environment (e.g. for argument adaptor or
// constructor stub).
HEnvironment* CreateStubEnvironment(HEnvironment* outer,
Handle<JSFunction> target,
FrameType frame_type,
int arguments) const;
// True if index is included in the expression stack part of the environment.
bool HasExpressionAt(int index) const;
void Initialize(int parameter_count, int local_count, int stack_height);
void Initialize(const HEnvironment* other);
Handle<JSFunction> closure_;
// Value array [parameters] [specials] [locals] [temporaries].
ZoneList<HValue*> values_;
GrowableBitVector assigned_variables_;
FrameType frame_type_;
int parameter_count_;
int specials_count_;
int local_count_;
HEnvironment* outer_;
HEnterInlined* entry_;
int pop_count_;
int push_count_;
BailoutId ast_id_;
Zone* zone_;
};
OStream& operator<<(OStream& os, const HEnvironment& env);
class HOptimizedGraphBuilder;
enum ArgumentsAllowedFlag {
ARGUMENTS_NOT_ALLOWED,
ARGUMENTS_ALLOWED
};
class HIfContinuation;
// This class is not BASE_EMBEDDED because our inlining implementation uses
// new and delete.
class AstContext {
public:
bool IsEffect() const { return kind_ == Expression::kEffect; }
bool IsValue() const { return kind_ == Expression::kValue; }
bool IsTest() const { return kind_ == Expression::kTest; }
// 'Fill' this context with a hydrogen value. The value is assumed to
// have already been inserted in the instruction stream (or not need to
// be, e.g., HPhi). Call this function in tail position in the Visit
// functions for expressions.
virtual void ReturnValue(HValue* value) = 0;
// Add a hydrogen instruction to the instruction stream (recording an
// environment simulation if necessary) and then fill this context with
// the instruction as value.
virtual void ReturnInstruction(HInstruction* instr, BailoutId ast_id) = 0;
// Finishes the current basic block and materialize a boolean for
// value context, nothing for effect, generate a branch for test context.
// Call this function in tail position in the Visit functions for
// expressions.
virtual void ReturnControl(HControlInstruction* instr, BailoutId ast_id) = 0;
// Finishes the current basic block and materialize a boolean for
// value context, nothing for effect, generate a branch for test context.
// Call this function in tail position in the Visit functions for
// expressions that use an IfBuilder.
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) = 0;
void set_for_typeof(bool for_typeof) { for_typeof_ = for_typeof; }
bool is_for_typeof() { return for_typeof_; }
protected:
AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind);
virtual ~AstContext();
HOptimizedGraphBuilder* owner() const { return owner_; }
inline Zone* zone() const;
// We want to be able to assert, in a context-specific way, that the stack
// height makes sense when the context is filled.
#ifdef DEBUG
int original_length_;
#endif
private:
HOptimizedGraphBuilder* owner_;
Expression::Context kind_;
AstContext* outer_;
bool for_typeof_;
};
class EffectContext FINAL : public AstContext {
public:
explicit EffectContext(HOptimizedGraphBuilder* owner)
: AstContext(owner, Expression::kEffect) {
}
virtual ~EffectContext();
virtual void ReturnValue(HValue* value) OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) OVERRIDE;
};
class ValueContext FINAL : public AstContext {
public:
ValueContext(HOptimizedGraphBuilder* owner, ArgumentsAllowedFlag flag)
: AstContext(owner, Expression::kValue), flag_(flag) {
}
virtual ~ValueContext();
virtual void ReturnValue(HValue* value) OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) OVERRIDE;
bool arguments_allowed() { return flag_ == ARGUMENTS_ALLOWED; }
private:
ArgumentsAllowedFlag flag_;
};
class TestContext FINAL : public AstContext {
public:
TestContext(HOptimizedGraphBuilder* owner,
Expression* condition,
HBasicBlock* if_true,
HBasicBlock* if_false)
: AstContext(owner, Expression::kTest),
condition_(condition),
if_true_(if_true),
if_false_(if_false) {
}
virtual void ReturnValue(HValue* value) OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) OVERRIDE;
static TestContext* cast(AstContext* context) {
DCHECK(context->IsTest());
return reinterpret_cast<TestContext*>(context);
}
Expression* condition() const { return condition_; }
HBasicBlock* if_true() const { return if_true_; }
HBasicBlock* if_false() const { return if_false_; }
private:
// Build the shared core part of the translation unpacking a value into
// control flow.
void BuildBranch(HValue* value);
Expression* condition_;
HBasicBlock* if_true_;
HBasicBlock* if_false_;
};
class FunctionState FINAL {
public:
FunctionState(HOptimizedGraphBuilder* owner,
CompilationInfo* info,
InliningKind inlining_kind,
int inlining_id);
~FunctionState();
CompilationInfo* compilation_info() { return compilation_info_; }
AstContext* call_context() { return call_context_; }
InliningKind inlining_kind() const { return inlining_kind_; }
HBasicBlock* function_return() { return function_return_; }
TestContext* test_context() { return test_context_; }
void ClearInlinedTestContext() {
delete test_context_;
test_context_ = NULL;
}
FunctionState* outer() { return outer_; }
HEnterInlined* entry() { return entry_; }
void set_entry(HEnterInlined* entry) { entry_ = entry; }
HArgumentsObject* arguments_object() { return arguments_object_; }
void set_arguments_object(HArgumentsObject* arguments_object) {
arguments_object_ = arguments_object;
}
HArgumentsElements* arguments_elements() { return arguments_elements_; }
void set_arguments_elements(HArgumentsElements* arguments_elements) {
arguments_elements_ = arguments_elements;
}
bool arguments_pushed() { return arguments_elements() != NULL; }
int inlining_id() const { return inlining_id_; }
private:
HOptimizedGraphBuilder* owner_;
CompilationInfo* compilation_info_;
// During function inlining, expression context of the call being
// inlined. NULL when not inlining.
AstContext* call_context_;
// The kind of call which is currently being inlined.
InliningKind inlining_kind_;
// When inlining in an effect or value context, this is the return block.
// It is NULL otherwise. When inlining in a test context, there are a
// pair of return blocks in the context. When not inlining, there is no
// local return point.
HBasicBlock* function_return_;
// When inlining a call in a test context, a context containing a pair of
// return blocks. NULL in all other cases.
TestContext* test_context_;
// When inlining HEnterInlined instruction corresponding to the function
// entry.
HEnterInlined* entry_;
HArgumentsObject* arguments_object_;
HArgumentsElements* arguments_elements_;
int inlining_id_;
HSourcePosition outer_source_position_;
FunctionState* outer_;
};
class HIfContinuation FINAL {
public:
HIfContinuation()
: continuation_captured_(false),
true_branch_(NULL),
false_branch_(NULL) {}
HIfContinuation(HBasicBlock* true_branch,
HBasicBlock* false_branch)
: continuation_captured_(true), true_branch_(true_branch),
false_branch_(false_branch) {}
~HIfContinuation() { DCHECK(!continuation_captured_); }
void Capture(HBasicBlock* true_branch,
HBasicBlock* false_branch) {
DCHECK(!continuation_captured_);
true_branch_ = true_branch;
false_branch_ = false_branch;
continuation_captured_ = true;
}
void Continue(HBasicBlock** true_branch,
HBasicBlock** false_branch) {
DCHECK(continuation_captured_);
*true_branch = true_branch_;
*false_branch = false_branch_;
continuation_captured_ = false;
}
bool IsTrueReachable() { return true_branch_ != NULL; }
bool IsFalseReachable() { return false_branch_ != NULL; }
bool TrueAndFalseReachable() {
return IsTrueReachable() || IsFalseReachable();
}
HBasicBlock* true_branch() const { return true_branch_; }
HBasicBlock* false_branch() const { return false_branch_; }
private:
bool continuation_captured_;
HBasicBlock* true_branch_;
HBasicBlock* false_branch_;
};
class HAllocationMode FINAL BASE_EMBEDDED {
public:
explicit HAllocationMode(Handle<AllocationSite> feedback_site)
: current_site_(NULL), feedback_site_(feedback_site),
pretenure_flag_(NOT_TENURED) {}
explicit HAllocationMode(HValue* current_site)
: current_site_(current_site), pretenure_flag_(NOT_TENURED) {}
explicit HAllocationMode(PretenureFlag pretenure_flag)
: current_site_(NULL), pretenure_flag_(pretenure_flag) {}
HAllocationMode()
: current_site_(NULL), pretenure_flag_(NOT_TENURED) {}
HValue* current_site() const { return current_site_; }
Handle<AllocationSite> feedback_site() const { return feedback_site_; }
bool CreateAllocationMementos() const WARN_UNUSED_RESULT {
return current_site() != NULL;
}
PretenureFlag GetPretenureMode() const WARN_UNUSED_RESULT {
if (!feedback_site().is_null()) return feedback_site()->GetPretenureMode();
return pretenure_flag_;
}
private:
HValue* current_site_;
Handle<AllocationSite> feedback_site_;
PretenureFlag pretenure_flag_;
};
class HGraphBuilder {
public:
explicit HGraphBuilder(CompilationInfo* info)
: info_(info),
graph_(NULL),
current_block_(NULL),
scope_(info->scope()),
position_(HSourcePosition::Unknown()),
start_position_(0) {}
virtual ~HGraphBuilder() {}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
HBasicBlock* current_block() const { return current_block_; }
void set_current_block(HBasicBlock* block) { current_block_ = block; }
HEnvironment* environment() const {
return current_block()->last_environment();
}
Zone* zone() const { return info_->zone(); }
HGraph* graph() const { return graph_; }
Isolate* isolate() const { return graph_->isolate(); }
CompilationInfo* top_info() { return info_; }
HGraph* CreateGraph();
// Bailout environment manipulation.
void Push(HValue* value) { environment()->Push(value); }
HValue* Pop() { return environment()->Pop(); }
virtual HValue* context() = 0;
// Adding instructions.
HInstruction* AddInstruction(HInstruction* instr);
void FinishCurrentBlock(HControlInstruction* last);
void FinishExitCurrentBlock(HControlInstruction* instruction);
void Goto(HBasicBlock* from,
HBasicBlock* target,
FunctionState* state = NULL,
bool add_simulate = true) {
from->Goto(target, source_position(), state, add_simulate);
}
void Goto(HBasicBlock* target,
FunctionState* state = NULL,
bool add_simulate = true) {
Goto(current_block(), target, state, add_simulate);
}
void GotoNoSimulate(HBasicBlock* from, HBasicBlock* target) {
Goto(from, target, NULL, false);
}
void GotoNoSimulate(HBasicBlock* target) {
Goto(target, NULL, false);
}
void AddLeaveInlined(HBasicBlock* block,
HValue* return_value,
FunctionState* state) {
block->AddLeaveInlined(return_value, state, source_position());
}
void AddLeaveInlined(HValue* return_value, FunctionState* state) {
return AddLeaveInlined(current_block(), return_value, state);
}
template<class I>
HInstruction* NewUncasted() { return I::New(zone(), context()); }
template<class I>
I* New() { return I::New(zone(), context()); }
template<class I>
HInstruction* AddUncasted() { return AddInstruction(NewUncasted<I>());}
template<class I>
I* Add() { return AddInstructionTyped(New<I>());}
template<class I, class P1>
HInstruction* NewUncasted(P1 p1) {
return I::New(zone(), context(), p1);
}
template<class I, class P1>
I* New(P1 p1) { return I::New(zone(), context(), p1); }
template<class I, class P1>
HInstruction* AddUncasted(P1 p1) {
HInstruction* result = AddInstruction(NewUncasted<I>(p1));
// Specializations must have their parameters properly casted
// to avoid landing here.
DCHECK(!result->IsReturn() && !result->IsSimulate() &&
!result->IsDeoptimize());
return result;
}
template<class I, class P1>
I* Add(P1 p1) {
I* result = AddInstructionTyped(New<I>(p1));
// Specializations must have their parameters properly casted
// to avoid landing here.
DCHECK(!result->IsReturn() && !result->IsSimulate() &&
!result->IsDeoptimize());
return result;
}
template<class I, class P1, class P2>
HInstruction* NewUncasted(P1 p1, P2 p2) {
return I::New(zone(), context(), p1, p2);
}
template<class I, class P1, class P2>
I* New(P1 p1, P2 p2) {
return I::New(zone(), context(), p1, p2);
}
template<class I, class P1, class P2>
HInstruction* AddUncasted(P1 p1, P2 p2) {
HInstruction* result = AddInstruction(NewUncasted<I>(p1, p2));
// Specializations must have their parameters properly casted
// to avoid landing here.
DCHECK(!result->IsSimulate());
return result;
}
template<class I, class P1, class P2>
I* Add(P1 p1, P2 p2) {
I* result = AddInstructionTyped(New<I>(p1, p2));
// Specializations must have their parameters properly casted
// to avoid landing here.
DCHECK(!result->IsSimulate());
return result;
}
template<class I, class P1, class P2, class P3>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3) {
return I::New(zone(), context(), p1, p2, p3);
}
template<class I, class P1, class P2, class P3>
I* New(P1 p1, P2 p2, P3 p3) {
return I::New(zone(), context(), p1, p2, p3);
}
template<class I, class P1, class P2, class P3>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3) {
return AddInstruction(NewUncasted<I>(p1, p2, p3));
}
template<class I, class P1, class P2, class P3>
I* Add(P1 p1, P2 p2, P3 p3) {
return AddInstructionTyped(New<I>(p1, p2, p3));
}
template<class I, class P1, class P2, class P3, class P4>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4) {
return I::New(zone(), context(), p1, p2, p3, p4);
}
template<class I, class P1, class P2, class P3, class P4>
I* New(P1 p1, P2 p2, P3 p3, P4 p4) {
return I::New(zone(), context(), p1, p2, p3, p4);
}
template<class I, class P1, class P2, class P3, class P4>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4));
}
template<class I, class P1, class P2, class P3, class P4>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4));
}
template<class I, class P1, class P2, class P3, class P4, class P5>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return I::New(zone(), context(), p1, p2, p3, p4, p5);
}
template<class I, class P1, class P2, class P3, class P4, class P5>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return I::New(zone(), context(), p1, p2, p3, p4, p5);
}
template<class I, class P1, class P2, class P3, class P4, class P5>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5));
}
template<class I, class P1, class P2, class P3, class P4, class P5>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5));
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6);
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6);
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6));
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7);
}
template<class I, class P1, class P2, class P3,
class P4, class P5, class P6, class P7>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6, p7));
}
template<class I, class P1, class P2, class P3,
class P4, class P5, class P6, class P7>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6, p7));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4,
P5 p5, P6 p6, P7 p7, P8 p8) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7, p8);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7, p8);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4,
P5 p5, P6 p6, P7 p7, P8 p8) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6, p7, p8));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6, p7, p8));
}
void AddSimulate(BailoutId id, RemovableSimulate removable = FIXED_SIMULATE);
// When initializing arrays, we'll unfold the loop if the number of elements
// is known at compile time and is <= kElementLoopUnrollThreshold.
static const int kElementLoopUnrollThreshold = 8;
protected:
virtual bool BuildGraph() = 0;
HBasicBlock* CreateBasicBlock(HEnvironment* env);
HBasicBlock* CreateLoopHeaderBlock();
template <class BitFieldClass>
HValue* BuildDecodeField(HValue* encoded_field) {
HValue* mask_value = Add<HConstant>(static_cast<int>(BitFieldClass::kMask));
HValue* masked_field =
AddUncasted<HBitwise>(Token::BIT_AND, encoded_field, mask_value);
return AddUncasted<HShr>(masked_field,
Add<HConstant>(static_cast<int>(BitFieldClass::kShift)));
}
HValue* BuildGetElementsKind(HValue* object);
HValue* BuildCheckHeapObject(HValue* object);
HValue* BuildCheckString(HValue* string);
HValue* BuildWrapReceiver(HValue* object, HValue* function);
// Building common constructs
HValue* BuildCheckForCapacityGrow(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length,
HValue* key,
bool is_js_array,
PropertyAccessType access_type);
HValue* BuildCopyElementsOnWrite(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length);
void BuildTransitionElementsKind(HValue* object,
HValue* map,
ElementsKind from_kind,
ElementsKind to_kind,
bool is_jsarray);
HValue* BuildNumberToString(HValue* object, Type* type);
void BuildJSObjectCheck(HValue* receiver,
int bit_field_mask);
// Checks a key value that's being used for a keyed element access context. If
// the key is a index, i.e. a smi or a number in a unique string with a cached
// numeric value, the "true" of the continuation is joined. Otherwise,
// if the key is a name or a unique string, the "false" of the continuation is
// joined. Otherwise, a deoptimization is triggered. In both paths of the
// continuation, the key is pushed on the top of the environment.
void BuildKeyedIndexCheck(HValue* key,
HIfContinuation* join_continuation);
// Checks the properties of an object if they are in dictionary case, in which
// case "true" of continuation is taken, otherwise the "false"
void BuildTestForDictionaryProperties(HValue* object,
HIfContinuation* continuation);
void BuildNonGlobalObjectCheck(HValue* receiver);
HValue* BuildKeyedLookupCacheHash(HValue* object,
HValue* key);
HValue* BuildUncheckedDictionaryElementLoad(HValue* receiver,
HValue* elements,
HValue* key,
HValue* hash);
HValue* BuildRegExpConstructResult(HValue* length,
HValue* index,
HValue* input);
// Allocates a new object according with the given allocation properties.
HAllocate* BuildAllocate(HValue* object_size,
HType type,
InstanceType instance_type,
HAllocationMode allocation_mode);
// Computes the sum of two string lengths, taking care of overflow handling.
HValue* BuildAddStringLengths(HValue* left_length, HValue* right_length);
// Creates a cons string using the two input strings.
HValue* BuildCreateConsString(HValue* length,
HValue* left,
HValue* right,
HAllocationMode allocation_mode);
// Copies characters from one sequential string to another.
void BuildCopySeqStringChars(HValue* src,
HValue* src_offset,
String::Encoding src_encoding,
HValue* dst,
HValue* dst_offset,
String::Encoding dst_encoding,
HValue* length);
// Align an object size to object alignment boundary
HValue* BuildObjectSizeAlignment(HValue* unaligned_size, int header_size);
// Both operands are non-empty strings.
HValue* BuildUncheckedStringAdd(HValue* left,
HValue* right,
HAllocationMode allocation_mode);
// Add two strings using allocation mode, validating type feedback.
HValue* BuildStringAdd(HValue* left,
HValue* right,
HAllocationMode allocation_mode);
HInstruction* BuildUncheckedMonomorphicElementAccess(
HValue* checked_object,
HValue* key,
HValue* val,
bool is_js_array,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode,
KeyedAccessStoreMode store_mode);
HInstruction* AddElementAccess(
HValue* elements,
HValue* checked_key,
HValue* val,
HValue* dependency,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE);
HInstruction* AddLoadStringInstanceType(HValue* string);
HInstruction* AddLoadStringLength(HValue* string);
HStoreNamedField* AddStoreMapConstant(HValue* object, Handle<Map> map) {
return Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
Add<HConstant>(map));
}
HLoadNamedField* AddLoadMap(HValue* object,
HValue* dependency = NULL);
HLoadNamedField* AddLoadElements(HValue* object,
HValue* dependency = NULL);
bool MatchRotateRight(HValue* left,
HValue* right,
HValue** operand,
HValue** shift_amount);
HValue* BuildBinaryOperation(Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* result_type,
Maybe<int> fixed_right_arg,
HAllocationMode allocation_mode);
HLoadNamedField* AddLoadFixedArrayLength(HValue *object,
HValue *dependency = NULL);
HLoadNamedField* AddLoadArrayLength(HValue *object,
ElementsKind kind,
HValue *dependency = NULL);
HValue* AddLoadJSBuiltin(Builtins::JavaScript builtin);
HValue* EnforceNumberType(HValue* number, Type* expected);
HValue* TruncateToNumber(HValue* value, Type** expected);
void FinishExitWithHardDeoptimization(const char* reason);
void AddIncrementCounter(StatsCounter* counter);
class IfBuilder FINAL {
public:
// If using this constructor, Initialize() must be called explicitly!
IfBuilder();
explicit IfBuilder(HGraphBuilder* builder);
IfBuilder(HGraphBuilder* builder,
HIfContinuation* continuation);
~IfBuilder() {
if (!finished_) End();
}
void Initialize(HGraphBuilder* builder);
template<class Condition>
Condition* If(HValue *p) {
Condition* compare = builder()->New<Condition>(p);
AddCompare(compare);
return compare;
}
template<class Condition, class P2>
Condition* If(HValue* p1, P2 p2) {
Condition* compare = builder()->New<Condition>(p1, p2);
AddCompare(compare);
return compare;
}
template<class Condition, class P2, class P3>
Condition* If(HValue* p1, P2 p2, P3 p3) {
Condition* compare = builder()->New<Condition>(p1, p2, p3);
AddCompare(compare);
return compare;
}
template<class Condition>
Condition* IfNot(HValue* p) {
Condition* compare = If<Condition>(p);
compare->Not();
return compare;
}
template<class Condition, class P2>
Condition* IfNot(HValue* p1, P2 p2) {
Condition* compare = If<Condition>(p1, p2);
compare->Not();
return compare;
}
template<class Condition, class P2, class P3>
Condition* IfNot(HValue* p1, P2 p2, P3 p3) {
Condition* compare = If<Condition>(p1, p2, p3);
compare->Not();
return compare;
}
template<class Condition>
Condition* OrIf(HValue *p) {
Or();
return If<Condition>(p);
}
template<class Condition, class P2>
Condition* OrIf(HValue* p1, P2 p2) {
Or();
return If<Condition>(p1, p2);
}
template<class Condition, class P2, class P3>
Condition* OrIf(HValue* p1, P2 p2, P3 p3) {
Or();
return If<Condition>(p1, p2, p3);
}
template<class Condition>
Condition* AndIf(HValue *p) {
And();
return If<Condition>(p);
}
template<class Condition, class P2>
Condition* AndIf(HValue* p1, P2 p2) {
And();
return If<Condition>(p1, p2);
}
template<class Condition, class P2, class P3>
Condition* AndIf(HValue* p1, P2 p2, P3 p3) {
And();
return If<Condition>(p1, p2, p3);
}
void Or();
void And();
// Captures the current state of this IfBuilder in the specified
// continuation and ends this IfBuilder.
void CaptureContinuation(HIfContinuation* continuation);
// Joins the specified continuation from this IfBuilder and ends this
// IfBuilder. This appends a Goto instruction from the true branch of
// this IfBuilder to the true branch of the continuation unless the
// true branch of this IfBuilder is already finished. And vice versa
// for the false branch.
//
// The basic idea is as follows: You have several nested IfBuilder's
// that you want to join based on two possible outcomes (i.e. success
// and failure, or whatever). You can do this easily using this method
// now, for example:
//
// HIfContinuation cont(graph()->CreateBasicBlock(),
// graph()->CreateBasicBlock());
// ...
// IfBuilder if_whatever(this);
// if_whatever.If<Condition>(arg);
// if_whatever.Then();
// ...
// if_whatever.Else();
// ...
// if_whatever.JoinContinuation(&cont);
// ...
// IfBuilder if_something(this);
// if_something.If<Condition>(arg1, arg2);
// if_something.Then();
// ...
// if_something.Else();
// ...
// if_something.JoinContinuation(&cont);
// ...
// IfBuilder if_finally(this, &cont);
// if_finally.Then();
// // continues after then code of if_whatever or if_something.
// ...
// if_finally.Else();
// // continues after else code of if_whatever or if_something.
// ...
// if_finally.End();
void JoinContinuation(HIfContinuation* continuation);
void Then();
void Else();
void End();
void Deopt(const char* reason);
void ThenDeopt(const char* reason) {
Then();
Deopt(reason);
}
void ElseDeopt(const char* reason) {
Else();
Deopt(reason);
}
void Return(HValue* value);
private:
void InitializeDontCreateBlocks(HGraphBuilder* builder);
HControlInstruction* AddCompare(HControlInstruction* compare);
HGraphBuilder* builder() const {
DCHECK(builder_ != NULL); // Have you called "Initialize"?
return builder_;
}
void AddMergeAtJoinBlock(bool deopt);
void Finish();
void Finish(HBasicBlock** then_continuation,
HBasicBlock** else_continuation);
class MergeAtJoinBlock : public ZoneObject {
public:
MergeAtJoinBlock(HBasicBlock* block,
bool deopt,
MergeAtJoinBlock* next)
: block_(block),
deopt_(deopt),
next_(next) {}
HBasicBlock* block_;
bool deopt_;
MergeAtJoinBlock* next_;
};
HGraphBuilder* builder_;
bool finished_ : 1;
bool did_then_ : 1;
bool did_else_ : 1;
bool did_else_if_ : 1;
bool did_and_ : 1;
bool did_or_ : 1;
bool captured_ : 1;
bool needs_compare_ : 1;
bool pending_merge_block_ : 1;
HBasicBlock* first_true_block_;
HBasicBlock* first_false_block_;
HBasicBlock* split_edge_merge_block_;
MergeAtJoinBlock* merge_at_join_blocks_;
int normal_merge_at_join_block_count_;
int deopt_merge_at_join_block_count_;
};
class LoopBuilder FINAL {
public:
enum Direction {
kPreIncrement,
kPostIncrement,
kPreDecrement,
kPostDecrement,
kWhileTrue
};
explicit LoopBuilder(HGraphBuilder* builder); // while (true) {...}
LoopBuilder(HGraphBuilder* builder,
HValue* context,
Direction direction);
LoopBuilder(HGraphBuilder* builder,
HValue* context,
Direction direction,
HValue* increment_amount);
~LoopBuilder() {
DCHECK(finished_);
}
HValue* BeginBody(
HValue* initial,
HValue* terminating,
Token::Value token);
void BeginBody(int drop_count);
void Break();
void EndBody();
private:
void Initialize(HGraphBuilder* builder, HValue* context,
Direction direction, HValue* increment_amount);
Zone* zone() { return builder_->zone(); }
HGraphBuilder* builder_;
HValue* context_;
HValue* increment_amount_;
HInstruction* increment_;
HPhi* phi_;
HBasicBlock* header_block_;
HBasicBlock* body_block_;
HBasicBlock* exit_block_;
HBasicBlock* exit_trampoline_block_;
Direction direction_;
bool finished_;
};
template <class A, class P1>
void DeoptimizeIf(P1 p1, char* const reason) {
IfBuilder builder(this);
builder.If<A>(p1);
builder.ThenDeopt(reason);
}
template <class A, class P1, class P2>
void DeoptimizeIf(P1 p1, P2 p2, const char* reason) {
IfBuilder builder(this);
builder.If<A>(p1, p2);
builder.ThenDeopt(reason);
}
template <class A, class P1, class P2, class P3>
void DeoptimizeIf(P1 p1, P2 p2, P3 p3, const char* reason) {
IfBuilder builder(this);
builder.If<A>(p1, p2, p3);
builder.ThenDeopt(reason);
}
HValue* BuildNewElementsCapacity(HValue* old_capacity);
class JSArrayBuilder FINAL {
public:
JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* allocation_site_payload,
HValue* constructor_function,
AllocationSiteOverrideMode override_mode);
JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* constructor_function = NULL);
enum FillMode {
DONT_FILL_WITH_HOLE,
FILL_WITH_HOLE
};
ElementsKind kind() { return kind_; }
HAllocate* elements_location() { return elements_location_; }
HAllocate* AllocateEmptyArray();
HAllocate* AllocateArray(HValue* capacity,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
// Use these allocators when capacity could be unknown at compile time
// but its limit is known. For constant |capacity| the value of
// |capacity_upper_bound| is ignored and the actual |capacity|
// value is used as an upper bound.
HAllocate* AllocateArray(HValue* capacity,
int capacity_upper_bound,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
HAllocate* AllocateArray(HValue* capacity,
HConstant* capacity_upper_bound,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
HValue* GetElementsLocation() { return elements_location_; }
HValue* EmitMapCode();
private:
Zone* zone() const { return builder_->zone(); }
int elements_size() const {
return IsFastDoubleElementsKind(kind_) ? kDoubleSize : kPointerSize;
}
HGraphBuilder* builder() { return builder_; }
HGraph* graph() { return builder_->graph(); }
int initial_capacity() {
STATIC_ASSERT(JSArray::kPreallocatedArrayElements > 0);
return JSArray::kPreallocatedArrayElements;
}
HValue* EmitInternalMapCode();
HGraphBuilder* builder_;
ElementsKind kind_;
AllocationSiteMode mode_;
HValue* allocation_site_payload_;
HValue* constructor_function_;
HAllocate* elements_location_;
};
HValue* BuildAllocateArrayFromLength(JSArrayBuilder* array_builder,
HValue* length_argument);
HValue* BuildCalculateElementsSize(ElementsKind kind,
HValue* capacity);
HAllocate* AllocateJSArrayObject(AllocationSiteMode mode);
HConstant* EstablishElementsAllocationSize(ElementsKind kind, int capacity);
HAllocate* BuildAllocateElements(ElementsKind kind, HValue* size_in_bytes);
void BuildInitializeElementsHeader(HValue* elements,
ElementsKind kind,
HValue* capacity);
HValue* BuildAllocateElementsAndInitializeElementsHeader(ElementsKind kind,
HValue* capacity);
// |array| must have been allocated with enough room for
// 1) the JSArray and 2) an AllocationMemento if mode requires it.
// If the |elements| value provided is NULL then the array elements storage
// is initialized with empty array.
void BuildJSArrayHeader(HValue* array,
HValue* array_map,
HValue* elements,
AllocationSiteMode mode,
ElementsKind elements_kind,
HValue* allocation_site_payload,
HValue* length_field);
HValue* BuildGrowElementsCapacity(HValue* object,
HValue* elements,
ElementsKind kind,
ElementsKind new_kind,
HValue* length,
HValue* new_capacity);
void BuildFillElementsWithValue(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to,
HValue* value);
void BuildFillElementsWithHole(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to);
void BuildCopyElements(HValue* from_elements,
ElementsKind from_elements_kind,
HValue* to_elements,
ElementsKind to_elements_kind,
HValue* length,
HValue* capacity);
HValue* BuildCloneShallowArrayCow(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind);
HValue* BuildCloneShallowArrayEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode);
HValue* BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind);
HValue* BuildElementIndexHash(HValue* index);
void BuildCompareNil(
HValue* value,
Type* type,
HIfContinuation* continuation);
void BuildCreateAllocationMemento(HValue* previous_object,
HValue* previous_object_size,
HValue* payload);
HInstruction* BuildConstantMapCheck(Handle<JSObject> constant);
HInstruction* BuildCheckPrototypeMaps(Handle<JSObject> prototype,
Handle<JSObject> holder);
HInstruction* BuildGetNativeContext(HValue* closure);
HInstruction* BuildGetNativeContext();
HInstruction* BuildGetArrayFunction();
protected:
void SetSourcePosition(int position) {
DCHECK(position != RelocInfo::kNoPosition);
position_.set_position(position - start_position_);
}
void EnterInlinedSource(int start_position, int id) {
if (FLAG_hydrogen_track_positions) {
start_position_ = start_position;
position_.set_inlining_id(id);
}
}
// Convert the given absolute offset from the start of the script to
// the HSourcePosition assuming that this position corresponds to the
// same function as current position_.
HSourcePosition ScriptPositionToSourcePosition(int position) {
HSourcePosition pos = position_;
pos.set_position(position - start_position_);
return pos;
}
HSourcePosition source_position() { return position_; }
void set_source_position(HSourcePosition position) {
position_ = position;
}
template <typename ViewClass>
void BuildArrayBufferViewInitialization(HValue* obj,
HValue* buffer,
HValue* byte_offset,
HValue* byte_length);
private:
HGraphBuilder();
template <class I>
I* AddInstructionTyped(I* instr) {
return I::cast(AddInstruction(instr));
}
CompilationInfo* info_;
HGraph* graph_;
HBasicBlock* current_block_;
Scope* scope_;
HSourcePosition position_;
int start_position_;
};
template<>
inline HDeoptimize* HGraphBuilder::Add<HDeoptimize>(
const char* reason, Deoptimizer::BailoutType type) {
if (type == Deoptimizer::SOFT) {
isolate()->counters()->soft_deopts_requested()->Increment();
if (FLAG_always_opt) return NULL;
}
if (current_block()->IsDeoptimizing()) return NULL;
HBasicBlock* after_deopt_block = CreateBasicBlock(
current_block()->last_environment());
HDeoptimize* instr = New<HDeoptimize>(reason, type, after_deopt_block);
if (type == Deoptimizer::SOFT) {
isolate()->counters()->soft_deopts_inserted()->Increment();
}
FinishCurrentBlock(instr);
set_current_block(after_deopt_block);
return instr;
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HDeoptimize>(
const char* reason, Deoptimizer::BailoutType type) {
return Add<HDeoptimize>(reason, type);
}
template<>
inline HSimulate* HGraphBuilder::Add<HSimulate>(
BailoutId id,
RemovableSimulate removable) {
HSimulate* instr = current_block()->CreateSimulate(id, removable);
AddInstruction(instr);
return instr;
}
template<>
inline HSimulate* HGraphBuilder::Add<HSimulate>(
BailoutId id) {
return Add<HSimulate>(id, FIXED_SIMULATE);
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HSimulate>(BailoutId id) {
return Add<HSimulate>(id, FIXED_SIMULATE);
}
template<>
inline HReturn* HGraphBuilder::Add<HReturn>(HValue* value) {
int num_parameters = graph()->info()->num_parameters();
HValue* params = AddUncasted<HConstant>(num_parameters);
HReturn* return_instruction = New<HReturn>(value, params);
FinishExitCurrentBlock(return_instruction);
return return_instruction;
}
template<>
inline HReturn* HGraphBuilder::Add<HReturn>(HConstant* value) {
return Add<HReturn>(static_cast<HValue*>(value));
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HReturn>(HValue* value) {
return Add<HReturn>(value);
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HReturn>(HConstant* value) {
return Add<HReturn>(value);
}
template<>
inline HCallRuntime* HGraphBuilder::Add<HCallRuntime>(
Handle<String> name,
const Runtime::Function* c_function,
int argument_count) {
HCallRuntime* instr = New<HCallRuntime>(name, c_function, argument_count);
if (graph()->info()->IsStub()) {
// When compiling code stubs, we don't want to save all double registers
// upon entry to the stub, but instead have the call runtime instruction
// save the double registers only on-demand (in the fallback case).
instr->set_save_doubles(kSaveFPRegs);
}
AddInstruction(instr);
return instr;
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HCallRuntime>(
Handle<String> name,
const Runtime::Function* c_function,
int argument_count) {
return Add<HCallRuntime>(name, c_function, argument_count);
}
template<>
inline HContext* HGraphBuilder::New<HContext>() {
return HContext::New(zone());
}
template<>
inline HInstruction* HGraphBuilder::NewUncasted<HContext>() {
return New<HContext>();
}
class HOptimizedGraphBuilder : public HGraphBuilder, public AstVisitor {
public:
// A class encapsulating (lazily-allocated) break and continue blocks for
// a breakable statement. Separated from BreakAndContinueScope so that it
// can have a separate lifetime.
class BreakAndContinueInfo FINAL BASE_EMBEDDED {
public:
explicit BreakAndContinueInfo(BreakableStatement* target,
Scope* scope,
int drop_extra = 0)
: target_(target),
break_block_(NULL),
continue_block_(NULL),
scope_(scope),
drop_extra_(drop_extra) {
}
BreakableStatement* target() { return target_; }
HBasicBlock* break_block() { return break_block_; }
void set_break_block(HBasicBlock* block) { break_block_ = block; }
HBasicBlock* continue_block() { return continue_block_; }
void set_continue_block(HBasicBlock* block) { continue_block_ = block; }
Scope* scope() { return scope_; }
int drop_extra() { return drop_extra_; }
private:
BreakableStatement* target_;
HBasicBlock* break_block_;
HBasicBlock* continue_block_;
Scope* scope_;
int drop_extra_;
};
// A helper class to maintain a stack of current BreakAndContinueInfo
// structures mirroring BreakableStatement nesting.
class BreakAndContinueScope FINAL BASE_EMBEDDED {
public:
BreakAndContinueScope(BreakAndContinueInfo* info,
HOptimizedGraphBuilder* owner)
: info_(info), owner_(owner), next_(owner->break_scope()) {
owner->set_break_scope(this);
}
~BreakAndContinueScope() { owner_->set_break_scope(next_); }
BreakAndContinueInfo* info() { return info_; }
HOptimizedGraphBuilder* owner() { return owner_; }
BreakAndContinueScope* next() { return next_; }
// Search the break stack for a break or continue target.
enum BreakType { BREAK, CONTINUE };
HBasicBlock* Get(BreakableStatement* stmt, BreakType type,
Scope** scope, int* drop_extra);
private:
BreakAndContinueInfo* info_;
HOptimizedGraphBuilder* owner_;
BreakAndContinueScope* next_;
};
explicit HOptimizedGraphBuilder(CompilationInfo* info);
virtual bool BuildGraph() OVERRIDE;
// Simple accessors.
BreakAndContinueScope* break_scope() const { return break_scope_; }
void set_break_scope(BreakAndContinueScope* head) { break_scope_ = head; }
bool inline_bailout() { return inline_bailout_; }
HValue* context() { return environment()->context(); }
HOsrBuilder* osr() const { return osr_; }
void Bailout(BailoutReason reason);
HBasicBlock* CreateJoin(HBasicBlock* first,
HBasicBlock* second,
BailoutId join_id);
FunctionState* function_state() const { return function_state_; }
void VisitDeclarations(ZoneList<Declaration*>* declarations);
void* operator new(size_t size, Zone* zone) {
return zone->New(static_cast<int>(size));
}
void operator delete(void* pointer, Zone* zone) { }
void operator delete(void* pointer) { }
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
protected:
// Type of a member function that generates inline code for a native function.
typedef void (HOptimizedGraphBuilder::*InlineFunctionGenerator)
(CallRuntime* call);
// Forward declarations for inner scope classes.
class SubgraphScope;
static const InlineFunctionGenerator kInlineFunctionGenerators[];
static const int kMaxCallPolymorphism = 4;
static const int kMaxLoadPolymorphism = 4;
static const int kMaxStorePolymorphism = 4;
// Even in the 'unlimited' case we have to have some limit in order not to
// overflow the stack.
static const int kUnlimitedMaxInlinedSourceSize = 100000;
static const int kUnlimitedMaxInlinedNodes = 10000;
static const int kUnlimitedMaxInlinedNodesCumulative = 10000;
// Maximum depth and total number of elements and properties for literal
// graphs to be considered for fast deep-copying.
static const int kMaxFastLiteralDepth = 3;
static const int kMaxFastLiteralProperties = 8;
// Simple accessors.
void set_function_state(FunctionState* state) { function_state_ = state; }
AstContext* ast_context() const { return ast_context_; }
void set_ast_context(AstContext* context) { ast_context_ = context; }
// Accessors forwarded to the function state.
CompilationInfo* current_info() const {
return function_state()->compilation_info();
}
AstContext* call_context() const {
return function_state()->call_context();
}
HBasicBlock* function_return() const {
return function_state()->function_return();
}
TestContext* inlined_test_context() const {
return function_state()->test_context();
}
void ClearInlinedTestContext() {
function_state()->ClearInlinedTestContext();
}
StrictMode function_strict_mode() {
return function_state()->compilation_info()->strict_mode();
}
// Generators for inline runtime functions.
#define INLINE_FUNCTION_GENERATOR_DECLARATION(Name, argc, ressize) \
void Generate##Name(CallRuntime* call);
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_DECLARATION)
INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_DECLARATION)
#undef INLINE_FUNCTION_GENERATOR_DECLARATION
void VisitDelete(UnaryOperation* expr);
void VisitVoid(UnaryOperation* expr);
void VisitTypeof(UnaryOperation* expr);
void VisitNot(UnaryOperation* expr);
void VisitComma(BinaryOperation* expr);
void VisitLogicalExpression(BinaryOperation* expr);
void VisitArithmeticExpression(BinaryOperation* expr);
bool PreProcessOsrEntry(IterationStatement* statement);
void VisitLoopBody(IterationStatement* stmt,
HBasicBlock* loop_entry);
// Create a back edge in the flow graph. body_exit is the predecessor
// block and loop_entry is the successor block. loop_successor is the
// block where control flow exits the loop normally (e.g., via failure of
// the condition) and break_block is the block where control flow breaks
// from the loop. All blocks except loop_entry can be NULL. The return
// value is the new successor block which is the join of loop_successor
// and break_block, or NULL.
HBasicBlock* CreateLoop(IterationStatement* statement,
HBasicBlock* loop_entry,
HBasicBlock* body_exit,
HBasicBlock* loop_successor,
HBasicBlock* break_block);
// Build a loop entry
HBasicBlock* BuildLoopEntry();
// Builds a loop entry respectful of OSR requirements
HBasicBlock* BuildLoopEntry(IterationStatement* statement);
HBasicBlock* JoinContinue(IterationStatement* statement,
HBasicBlock* exit_block,
HBasicBlock* continue_block);
HValue* Top() const { return environment()->Top(); }
void Drop(int n) { environment()->Drop(n); }
void Bind(Variable* var, HValue* value) { environment()->Bind(var, value); }
bool IsEligibleForEnvironmentLivenessAnalysis(Variable* var,
int index,
HValue* value,
HEnvironment* env) {
if (!FLAG_analyze_environment_liveness) return false;
// |this| and |arguments| are always live; zapping parameters isn't
// safe because function.arguments can inspect them at any time.
return !var->is_this() &&
!var->is_arguments() &&
!value->IsArgumentsObject() &&
env->is_local_index(index);
}
void BindIfLive(Variable* var, HValue* value) {
HEnvironment* env = environment();
int index = env->IndexFor(var);
env->Bind(index, value);
if (IsEligibleForEnvironmentLivenessAnalysis(var, index, value, env)) {
HEnvironmentMarker* bind =
Add<HEnvironmentMarker>(HEnvironmentMarker::BIND, index);
USE(bind);
#ifdef DEBUG
bind->set_closure(env->closure());
#endif
}
}
HValue* LookupAndMakeLive(Variable* var) {
HEnvironment* env = environment();
int index = env->IndexFor(var);
HValue* value = env->Lookup(index);
if (IsEligibleForEnvironmentLivenessAnalysis(var, index, value, env)) {
HEnvironmentMarker* lookup =
Add<HEnvironmentMarker>(HEnvironmentMarker::LOOKUP, index);
USE(lookup);
#ifdef DEBUG
lookup->set_closure(env->closure());
#endif
}
return value;
}
// The value of the arguments object is allowed in some but not most value
// contexts. (It's allowed in all effect contexts and disallowed in all
// test contexts.)
void VisitForValue(Expression* expr,
ArgumentsAllowedFlag flag = ARGUMENTS_NOT_ALLOWED);
void VisitForTypeOf(Expression* expr);
void VisitForEffect(Expression* expr);
void VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block);
// Visit a list of expressions from left to right, each in a value context.
void VisitExpressions(ZoneList<Expression*>* exprs);
// Remove the arguments from the bailout environment and emit instructions
// to push them as outgoing parameters.
template <class Instruction> HInstruction* PreProcessCall(Instruction* call);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
void PushArgumentsFromEnvironment(int count);
void SetUpScope(Scope* scope);
virtual void VisitStatements(ZoneList<Statement*>* statements) OVERRIDE;
#define DECLARE_VISIT(type) virtual void Visit##type(type* node) OVERRIDE;
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
Type* ToType(Handle<Map> map) { return IC::MapToType<Type>(map, zone()); }
private:
// Helpers for flow graph construction.
enum GlobalPropertyAccess {
kUseCell,
kUseGeneric
};
GlobalPropertyAccess LookupGlobalProperty(Variable* var, LookupIterator* it,
PropertyAccessType access_type);
void EnsureArgumentsArePushedForAccess();
bool TryArgumentsAccess(Property* expr);
// Try to optimize fun.apply(receiver, arguments) pattern.
bool TryCallApply(Call* expr);
bool TryHandleArrayCall(Call* expr, HValue* function);
bool TryHandleArrayCallNew(CallNew* expr, HValue* function);
void BuildArrayCall(Expression* expr, int arguments_count, HValue* function,
Handle<AllocationSite> cell);
enum ArrayIndexOfMode { kFirstIndexOf, kLastIndexOf };
HValue* BuildArrayIndexOf(HValue* receiver,
HValue* search_element,
ElementsKind kind,
ArrayIndexOfMode mode);
HValue* ImplicitReceiverFor(HValue* function,
Handle<JSFunction> target);
int InliningAstSize(Handle<JSFunction> target);
bool TryInline(Handle<JSFunction> target,
int arguments_count,
HValue* implicit_return_value,
BailoutId ast_id,
BailoutId return_id,
InliningKind inlining_kind,
HSourcePosition position);
bool TryInlineCall(Call* expr);
bool TryInlineConstruct(CallNew* expr, HValue* implicit_return_value);
bool TryInlineGetter(Handle<JSFunction> getter,
Handle<Map> receiver_map,
BailoutId ast_id,
BailoutId return_id);
bool TryInlineSetter(Handle<JSFunction> setter,
Handle<Map> receiver_map,
BailoutId id,
BailoutId assignment_id,
HValue* implicit_return_value);
bool TryInlineApply(Handle<JSFunction> function,
Call* expr,
int arguments_count);
bool TryInlineBuiltinMethodCall(Call* expr,
HValue* receiver,
Handle<Map> receiver_map);
bool TryInlineBuiltinFunctionCall(Call* expr);
enum ApiCallType {
kCallApiFunction,
kCallApiMethod,
kCallApiGetter,
kCallApiSetter
};
bool TryInlineApiMethodCall(Call* expr,
HValue* receiver,
SmallMapList* receiver_types);
bool TryInlineApiFunctionCall(Call* expr, HValue* receiver);
bool TryInlineApiGetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id);
bool TryInlineApiSetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id);
bool TryInlineApiCall(Handle<JSFunction> function,
HValue* receiver,
SmallMapList* receiver_maps,
int argc,
BailoutId ast_id,
ApiCallType call_type);
// If --trace-inlining, print a line of the inlining trace. Inlining
// succeeded if the reason string is NULL and failed if there is a
// non-NULL reason string.
void TraceInline(Handle<JSFunction> target,
Handle<JSFunction> caller,
const char* failure_reason);
void HandleGlobalVariableAssignment(Variable* var,
HValue* value,
BailoutId ast_id);
void HandlePropertyAssignment(Assignment* expr);
void HandleCompoundAssignment(Assignment* expr);
void HandlePolymorphicNamedFieldAccess(PropertyAccessType access_type,
Expression* expr,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* value,
SmallMapList* types,
Handle<String> name);
HValue* BuildAllocateExternalElements(
ExternalArrayType array_type,
bool is_zero_byte_offset,
HValue* buffer, HValue* byte_offset, HValue* length);
HValue* BuildAllocateFixedTypedArray(
ExternalArrayType array_type, size_t element_size,
ElementsKind fixed_elements_kind,
HValue* byte_length, HValue* length);
Handle<JSFunction> array_function() {
return handle(isolate()->native_context()->array_function());
}
bool IsCallArrayInlineable(int argument_count, Handle<AllocationSite> site);
void BuildInlinedCallArray(Expression* expression, int argument_count,
Handle<AllocationSite> site);
class PropertyAccessInfo {
public:
PropertyAccessInfo(HOptimizedGraphBuilder* builder,
PropertyAccessType access_type,
Type* type,
Handle<String> name)
: lookup_(builder->isolate()),
builder_(builder),
access_type_(access_type),
type_(type),
name_(name),
field_type_(HType::Tagged()),
access_(HObjectAccess::ForMap()) { }
// Checkes whether this PropertyAccessInfo can be handled as a monomorphic
// load named. It additionally fills in the fields necessary to generate the
// lookup code.
bool CanAccessMonomorphic();
// Checks whether all types behave uniform when loading name. If all maps
// behave the same, a single monomorphic load instruction can be emitted,
// guarded by a single map-checks instruction that whether the receiver is
// an instance of any of the types.
// This method skips the first type in types, assuming that this
// PropertyAccessInfo is built for types->first().
bool CanAccessAsMonomorphic(SmallMapList* types);
Handle<Map> map();
Type* type() const { return type_; }
Handle<String> name() const { return name_; }
bool IsJSObjectFieldAccessor() {
int offset; // unused
return Accessors::IsJSObjectFieldAccessor<Type>(type_, name_, &offset);
}
bool GetJSObjectFieldAccess(HObjectAccess* access) {
int offset;
if (Accessors::IsJSObjectFieldAccessor<Type>(type_, name_, &offset)) {
if (type_->Is(Type::String())) {
DCHECK(String::Equals(isolate()->factory()->length_string(), name_));
*access = HObjectAccess::ForStringLength();
} else if (type_->Is(Type::Array())) {
DCHECK(String::Equals(isolate()->factory()->length_string(), name_));
*access = HObjectAccess::ForArrayLength(map()->elements_kind());
} else {
*access = HObjectAccess::ForMapAndOffset(map(), offset);
}
return true;
}
return false;
}
bool has_holder() { return !holder_.is_null(); }
bool IsLoad() const { return access_type_ == LOAD; }
Handle<JSObject> holder() { return holder_; }
Handle<JSFunction> accessor() { return accessor_; }
Handle<Object> constant() { return constant_; }
Handle<Map> transition() { return handle(lookup_.GetTransitionTarget()); }
SmallMapList* field_maps() { return &field_maps_; }
HType field_type() const { return field_type_; }
HObjectAccess access() { return access_; }
bool IsFound() const { return lookup_.IsFound(); }
bool IsProperty() const { return lookup_.IsProperty(); }
bool IsField() const { return lookup_.IsField(); }
bool IsConstant() const { return lookup_.IsConstant(); }
bool IsAccessor() const { return lookup_.IsPropertyCallbacks(); }
bool IsTransition() const { return lookup_.IsTransition(); }
bool IsConfigurable() const { return lookup_.IsConfigurable(); }
bool IsReadOnly() const { return lookup_.IsReadOnly(); }
private:
Handle<Object> GetAccessorsFromMap(Handle<Map> map) const {
return handle(lookup_.GetValueFromMap(*map), isolate());
}
Handle<Object> GetConstantFromMap(Handle<Map> map) const {
return handle(lookup_.GetConstantFromMap(*map), isolate());
}
Handle<HeapType> GetFieldTypeFromMap(Handle<Map> map) const {
return handle(lookup_.GetFieldTypeFromMap(*map), isolate());
}
Handle<Map> GetFieldOwnerFromMap(Handle<Map> map) const {
return handle(lookup_.GetFieldOwnerFromMap(*map));
}
int GetLocalFieldIndexFromMap(Handle<Map> map) const {
return lookup_.GetLocalFieldIndexFromMap(*map);
}
Representation representation() const { return lookup_.representation(); }
Type* ToType(Handle<Map> map) { return builder_->ToType(map); }
Zone* zone() { return builder_->zone(); }
Isolate* isolate() const { return lookup_.isolate(); }
CompilationInfo* top_info() { return builder_->top_info(); }
CompilationInfo* current_info() { return builder_->current_info(); }
bool LoadResult(Handle<Map> map);
void LoadFieldMaps(Handle<Map> map);
bool LookupDescriptor();
bool LookupInPrototypes();
bool IsCompatible(PropertyAccessInfo* other);
void GeneralizeRepresentation(Representation r) {
access_ = access_.WithRepresentation(
access_.representation().generalize(r));
}
LookupResult lookup_;
HOptimizedGraphBuilder* builder_;
PropertyAccessType access_type_;
Type* type_;
Handle<String> name_;
Handle<JSObject> holder_;
Handle<JSFunction> accessor_;
Handle<JSObject> api_holder_;
Handle<Object> constant_;
SmallMapList field_maps_;
HType field_type_;
HObjectAccess access_;
};
HInstruction* BuildMonomorphicAccess(PropertyAccessInfo* info,
HValue* object,
HValue* checked_object,
HValue* value,
BailoutId ast_id,
BailoutId return_id,
bool can_inline_accessor = true);
HInstruction* BuildNamedAccess(PropertyAccessType access,
BailoutId ast_id,
BailoutId reutrn_id,
Expression* expr,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized = false);
void HandlePolymorphicCallNamed(Call* expr,
HValue* receiver,
SmallMapList* types,
Handle<String> name);
2011-09-19 14:50:33 +00:00
void HandleLiteralCompareTypeof(CompareOperation* expr,
Expression* sub_expr,
Handle<String> check);
2011-09-19 14:50:33 +00:00
void HandleLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
2011-09-19 14:50:33 +00:00
NilValue nil);
enum PushBeforeSimulateBehavior {
PUSH_BEFORE_SIMULATE,
NO_PUSH_BEFORE_SIMULATE
};
HControlInstruction* BuildCompareInstruction(
Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* combined_type,
HSourcePosition left_position,
HSourcePosition right_position,
PushBeforeSimulateBehavior push_sim_result,
BailoutId bailout_id);
HInstruction* BuildStringCharCodeAt(HValue* string,
HValue* index);
HValue* BuildBinaryOperation(
BinaryOperation* expr,
HValue* left,
HValue* right,
PushBeforeSimulateBehavior push_sim_result);
HInstruction* BuildIncrement(bool returns_original_input,
CountOperation* expr);
HInstruction* BuildKeyedGeneric(PropertyAccessType access_type,
Expression* expr,
HValue* object,
HValue* key,
HValue* value);
HInstruction* TryBuildConsolidatedElementLoad(HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps);
LoadKeyedHoleMode BuildKeyedHoleMode(Handle<Map> map);
HInstruction* BuildMonomorphicElementAccess(HValue* object,
HValue* key,
HValue* val,
HValue* dependency,
Handle<Map> map,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode);
HValue* HandlePolymorphicElementAccess(Expression* expr,
HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode,
bool* has_side_effects);
HValue* HandleKeyedElementAccess(HValue* obj,
HValue* key,
HValue* val,
Expression* expr,
PropertyAccessType access_type,
bool* has_side_effects);
HInstruction* BuildNamedGeneric(PropertyAccessType access,
Expression* expr,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized = false);
HCheckMaps* AddCheckMap(HValue* object, Handle<Map> map);
void BuildLoad(Property* property,
BailoutId ast_id);
void PushLoad(Property* property,
HValue* object,
HValue* key);
void BuildStoreForEffect(Expression* expression,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* key,
HValue* value);
void BuildStore(Expression* expression,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
bool is_uninitialized = false);
HInstruction* BuildLoadNamedField(PropertyAccessInfo* info,
HValue* checked_object);
HInstruction* BuildStoreNamedField(PropertyAccessInfo* info,
HValue* checked_object,
HValue* value);
HValue* BuildContextChainWalk(Variable* var);
HInstruction* BuildThisFunction();
HInstruction* BuildFastLiteral(Handle<JSObject> boilerplate_object,
AllocationSiteUsageContext* site_context);
void BuildEmitObjectHeader(Handle<JSObject> boilerplate_object,
HInstruction* object);
void BuildInitElementsInObjectHeader(Handle<JSObject> boilerplate_object,
HInstruction* object,
HInstruction* object_elements);
void BuildEmitInObjectProperties(Handle<JSObject> boilerplate_object,
HInstruction* object,
AllocationSiteUsageContext* site_context,
PretenureFlag pretenure_flag);
void BuildEmitElements(Handle<JSObject> boilerplate_object,
Handle<FixedArrayBase> elements,
HValue* object_elements,
AllocationSiteUsageContext* site_context);
void BuildEmitFixedDoubleArray(Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements);
void BuildEmitFixedArray(Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements,
AllocationSiteUsageContext* site_context);
void AddCheckPrototypeMaps(Handle<JSObject> holder,
Handle<Map> receiver_map);
This is a preview of a first step towards unification of the hydrogen call machinery. The change replaces CallNamed, CallKeyed, CallConstantFunction and CallKnownGlobal hydrogen instructions with two new instructions with a more lower level semantics: 1. CallJSFunction for direct calls of JSFunction objects (no argument adaptation) 2. CallWithDescriptor for calls of a given Code object according to the supplied calling convention. Details: CallJSFunction should be straightforward, the main difference from the existing InvokeFunction instruction is the absence of argument adaptor handling. (As a next step, we will replace InvokeFunction with an equivalent hydrogen code.) For CallWithDescriptor, the calling conventions are represented by a tweaked version of CallStubInterfaceDescriptor. In addition to the parameter-register mapping, we also define parameter-representation mapping there. The CallWithDescriptor instruction has variable number of parameters now - this required some simple tweaks in Lithium, which assumed fixed number of arguments in some places. The calling conventions used in the calls are initialized in the CallDescriptors class (code-stubs.h, <arch>/code-stubs-<arch>.cc), and they live in a new table in the Isolate class. I should say I am not quite sure about Representation::Integer32() representation for some of the params of ArgumentAdaptorCall - it is not clear to me wether the params could not end up on the stack and thus confuse the GC. The change also includes an earlier small change to argument adaptor (https://codereview.chromium.org/98463007) that avoids passing a naked pointer to the code entry as a parameter. I am sorry for packaging that with an already biggish change. Performance implications: Locally, I see a small regression (.2% or so). It is hard to say where exactly it comes from, but I do see inefficient call sequences to the adaptor trampoline. For example: ;;; <@78,#24> constant-t bf85aa515a mov edi,0x5a51aa85 ;; debug: position 29 ;;; <@72,#53> load-named-field 8b7717 mov esi,[edi+0x17] ;; debug: position 195 ;;; <@80,#51> constant-s b902000000 mov ecx,0x2 ;; debug: position 195 ;;; <@81,#51> gap 894df0 mov [ebp+0xf0],ecx ;;; <@82,#103> constant-i bb01000000 mov ebx,0x1 ;;; <@84,#102> constant-i b902000000 mov ecx,0x2 ;;; <@85,#102> gap 89d8 mov eax,ebx 89cb mov ebx,ecx 8b4df0 mov ecx,[ebp+0xf0] ;;; <@86,#58> call-with-descriptor e8ef57fcff call ArgumentsAdaptorTrampoline (0x2d80e6e0) ;; code: BUILTIN Note the silly handling of ecx; the hydrogen for this code is: 0 4 s27 Constant 1 range:1_1 <|@ 0 3 t30 Constant 0x5bc1aa85 <JS Function xyz (SharedFunctionInfo 0x5bc1a919)> type:object <|@ 0 1 t36 LoadNamedField t30.[in-object]@24 <|@ 0 1 t38 Constant 0x2300e6a1 <Code> <|@ 0 1 i102 Constant 2 range:2_2 <|@ 0 1 i103 Constant 1 range:1_1 <|@ 0 2 t41 CallWithDescriptor t38 t30 t36 s27 i103 i102 #2 changes[*] <|@ BUG= R=verwaest@chromium.org, danno@chromium.org Review URL: https://codereview.chromium.org/104663004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18626 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-15 17:00:35 +00:00
HInstruction* NewPlainFunctionCall(HValue* fun,
int argument_count,
bool pass_argument_count);
HInstruction* NewArgumentAdaptorCall(HValue* fun, HValue* context,
int argument_count,
HValue* expected_param_count);
HInstruction* BuildCallConstantFunction(Handle<JSFunction> target,
int argument_count);
// The translation state of the currently-being-translated function.
FunctionState* function_state_;
// The base of the function state stack.
FunctionState initial_function_state_;
// Expression context of the currently visited subexpression. NULL when
// visiting statements.
AstContext* ast_context_;
// A stack of breakable statements entered.
BreakAndContinueScope* break_scope_;
int inlined_count_;
ZoneList<Handle<Object> > globals_;
bool inline_bailout_;
HOsrBuilder* osr_;
friend class FunctionState; // Pushes and pops the state stack.
friend class AstContext; // Pushes and pops the AST context stack.
friend class KeyedLoadFastElementStub;
friend class HOsrBuilder;
DISALLOW_COPY_AND_ASSIGN(HOptimizedGraphBuilder);
};
Zone* AstContext::zone() const { return owner_->zone(); }
class HStatistics FINAL: public Malloced {
public:
HStatistics()
: times_(5),
names_(5),
sizes_(5),
total_size_(0),
source_size_(0) { }
void Initialize(CompilationInfo* info);
void Print(const char* stats_name);
void SaveTiming(const char* name, base::TimeDelta time, unsigned size);
void IncrementFullCodeGen(base::TimeDelta full_code_gen) {
full_code_gen_ += full_code_gen;
}
void IncrementCreateGraph(base::TimeDelta delta) { create_graph_ += delta; }
void IncrementOptimizeGraph(base::TimeDelta delta) {
optimize_graph_ += delta;
}
void IncrementGenerateCode(base::TimeDelta delta) { generate_code_ += delta; }
void IncrementSubtotals(base::TimeDelta create_graph,
base::TimeDelta optimize_graph,
base::TimeDelta generate_code) {
IncrementCreateGraph(create_graph);
IncrementOptimizeGraph(optimize_graph);
IncrementGenerateCode(generate_code);
}
private:
List<base::TimeDelta> times_;
List<const char*> names_;
List<unsigned> sizes_;
base::TimeDelta create_graph_;
base::TimeDelta optimize_graph_;
base::TimeDelta generate_code_;
unsigned total_size_;
base::TimeDelta full_code_gen_;
double source_size_;
};
class HPhase : public CompilationPhase {
public:
HPhase(const char* name, HGraph* graph)
: CompilationPhase(name, graph->info()),
graph_(graph) { }
~HPhase();
protected:
HGraph* graph() const { return graph_; }
private:
HGraph* graph_;
DISALLOW_COPY_AND_ASSIGN(HPhase);
};
class HTracer FINAL : public Malloced {
public:
explicit HTracer(int isolate_id)
: trace_(&string_allocator_), indent_(0) {
if (FLAG_trace_hydrogen_file == NULL) {
SNPrintF(filename_,
"hydrogen-%d-%d.cfg",
base::OS::GetCurrentProcessId(),
isolate_id);
} else {
StrNCpy(filename_, FLAG_trace_hydrogen_file, filename_.length());
}
WriteChars(filename_.start(), "", 0, false);
}
void TraceCompilation(CompilationInfo* info);
void TraceHydrogen(const char* name, HGraph* graph);
void TraceLithium(const char* name, LChunk* chunk);
void TraceLiveRanges(const char* name, LAllocator* allocator);
private:
class Tag FINAL BASE_EMBEDDED {
public:
Tag(HTracer* tracer, const char* name) {
name_ = name;
tracer_ = tracer;
tracer->PrintIndent();
tracer->trace_.Add("begin_%s\n", name);
tracer->indent_++;
}
~Tag() {
tracer_->indent_--;
tracer_->PrintIndent();
tracer_->trace_.Add("end_%s\n", name_);
DCHECK(tracer_->indent_ >= 0);
tracer_->FlushToFile();
}
private:
HTracer* tracer_;
const char* name_;
};
void TraceLiveRange(LiveRange* range, const char* type, Zone* zone);
void Trace(const char* name, HGraph* graph, LChunk* chunk);
void FlushToFile();
void PrintEmptyProperty(const char* name) {
PrintIndent();
trace_.Add("%s\n", name);
}
void PrintStringProperty(const char* name, const char* value) {
PrintIndent();
trace_.Add("%s \"%s\"\n", name, value);
}
void PrintLongProperty(const char* name, int64_t value) {
PrintIndent();
trace_.Add("%s %d000\n", name, static_cast<int>(value / 1000));
}
void PrintBlockProperty(const char* name, int block_id) {
PrintIndent();
trace_.Add("%s \"B%d\"\n", name, block_id);
}
void PrintIntProperty(const char* name, int value) {
PrintIndent();
trace_.Add("%s %d\n", name, value);
}
void PrintIndent() {
for (int i = 0; i < indent_; i++) {
trace_.Add(" ");
}
}
EmbeddedVector<char, 64> filename_;
HeapStringAllocator string_allocator_;
StringStream trace_;
int indent_;
};
class NoObservableSideEffectsScope FINAL {
public:
explicit NoObservableSideEffectsScope(HGraphBuilder* builder) :
builder_(builder) {
builder_->graph()->IncrementInNoSideEffectsScope();
}
~NoObservableSideEffectsScope() {
builder_->graph()->DecrementInNoSideEffectsScope();
}
private:
HGraphBuilder* builder_;
};
} } // namespace v8::internal
#endif // V8_HYDROGEN_H_