v8/test/cctest/test-regexp.cc

2377 lines
86 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <memory>
#include <sstream>
#include "include/v8.h"
#include "src/api/api-inl.h"
#include "src/ast/ast.h"
#include "src/codegen/assembler-arch.h"
#include "src/codegen/macro-assembler.h"
#include "src/init/v8.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/objects-inl.h"
#include "src/regexp/regexp-bytecode-generator.h"
Reland "[regexp] Bytecode peephole optimization" This is a reland of 6612943010eca49e9ce262796e871e3d22999154 Fixed: Unaligned reads, unspecified evaluation order. Original change's description: > [regexp] Bytecode peephole optimization > > Bytecodes used by the regular expression interpreter often occur in > specific sequences. The number of dispatches in the interpreter can be > reduced if those sequences are combined into a single bytecode. > > This CL adds a peephole optimization pass for regexp bytecodes. > This pass checks the generated bytecode for pre-defined sequences that > can be merged into a single bytecode. > > With the currently implemented bytecode sequences a speedup of 1.12x on > regex-dna and octane-regexp is achieved. > > Bug: v8:9330 > Change-Id: I827f93273a5848e5963c7e3329daeb898995d151 > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1813743 > Commit-Queue: Patrick Thier <pthier@google.com> > Reviewed-by: Peter Marshall <petermarshall@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#63992} Cq-Include-Trybots: luci.v8.try:v8_linux64_ubsan_rel_ng Cq-Include-Trybots: luci.v8.try:v8_linux_gcc_rel Bug: v8:9330,chromium:1008502,chromium:1008631 Change-Id: Ib9fc395b6809aa1debdb54d9fba5b7f09a235e5b Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1828917 Reviewed-by: Peter Marshall <petermarshall@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#64064}
2019-10-01 11:55:16 +00:00
#include "src/regexp/regexp-bytecodes.h"
#include "src/regexp/regexp-compiler.h"
#include "src/regexp/regexp-interpreter.h"
#include "src/regexp/regexp-macro-assembler-arch.h"
#include "src/regexp/regexp-parser.h"
#include "src/regexp/regexp.h"
#include "src/strings/char-predicates-inl.h"
#include "src/strings/string-stream.h"
#include "src/strings/unicode-inl.h"
#include "src/utils/ostreams.h"
#include "src/zone/zone-list-inl.h"
#include "test/cctest/cctest.h"
#include "test/common/flag-utils.h"
namespace v8 {
namespace internal {
namespace test_regexp {
static bool CheckParse(const char* input) {
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
Zone zone(isolate->allocator(), ZONE_NAME);
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData result;
return v8::internal::RegExpParser::ParseRegExp(isolate, &zone, &reader,
JSRegExp::kNone, &result);
}
static void CheckParseEq(const char* input, const char* expected,
bool unicode = false) {
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
Zone zone(isolate->allocator(), ZONE_NAME);
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(v8::internal::RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
&result));
CHECK_NOT_NULL(result.tree);
Reland "[regexp] Rewrite error handling" This is a reland of e80ca24c80432f747c386da61459282d44ba7aaa Original change's description: > [regexp] Rewrite error handling > > This patch modifies irregexp's error handling. Instead of representing > errors as C strings, they are represented as an enumeration value > (RegExpError), and only converted to strings when throwing the error > object in regexp.cc. This makes it significantly easier to integrate > into SpiderMonkey. A few notes: > > 1. Depending on whether the stack overflows during parsing or > analysis, the stack overflow message can vary ("Stack overflow" or > "Maximum call stack size exceeded"). I kept that behaviour in this > patch, under the assumption that stack overflow messages are > (sadly) the sorts of things that real world code ends up depending > on. > > 2. Depending on the point in code where the error was identified, > invalid unicode escapes could be reported as "Invalid Unicode > escape", "Invalid unicode escape", or "Invalid Unicode escape > sequence". I fervently hope that nobody depends on the specific > wording of a syntax error, so I standardized on the first one. (It > was both the most common, and the most consistent with other > "Invalid X escape" messages.) > > 3. In addition to changing the representation, this patch also adds an > error_pos field to RegExpParser and RegExpCompileData, which stores > the position at which an error occurred. This is used by > SpiderMonkey to provide more helpful messages about where a syntax > error occurred in large regular expressions. > > 4. This model is closer to V8's existing MessageTemplate > infrastructure. I considered trying to integrate it more closely > with MessageTemplate, but since one of our stated goals for this > project was to make it easier to use irregexp outside of V8, I > decided to hold off. > > R=jgruber@chromium.org > > Bug: v8:10303 > Change-Id: I62605fd2def2fc539f38a7e0eefa04d36e14bbde > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2091863 > Commit-Queue: Jakob Gruber <jgruber@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#66784} R=jgruber@chromium.org Bug: v8:10303 Change-Id: Iad1f11a0e0b9e525d7499aacb56c27eff9e7c7b5 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2109952 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#66798}
2020-03-19 14:02:33 +00:00
CHECK(result.error == RegExpError::kNone);
std::ostringstream os;
result.tree->Print(os, &zone);
if (strcmp(expected, os.str().c_str()) != 0) {
printf("%s | %s\n", expected, os.str().c_str());
}
CHECK_EQ(0, strcmp(expected, os.str().c_str()));
}
static bool CheckSimple(const char* input) {
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
Zone zone(isolate->allocator(), ZONE_NAME);
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(isolate, &zone, &reader,
JSRegExp::kNone, &result));
CHECK_NOT_NULL(result.tree);
Reland "[regexp] Rewrite error handling" This is a reland of e80ca24c80432f747c386da61459282d44ba7aaa Original change's description: > [regexp] Rewrite error handling > > This patch modifies irregexp's error handling. Instead of representing > errors as C strings, they are represented as an enumeration value > (RegExpError), and only converted to strings when throwing the error > object in regexp.cc. This makes it significantly easier to integrate > into SpiderMonkey. A few notes: > > 1. Depending on whether the stack overflows during parsing or > analysis, the stack overflow message can vary ("Stack overflow" or > "Maximum call stack size exceeded"). I kept that behaviour in this > patch, under the assumption that stack overflow messages are > (sadly) the sorts of things that real world code ends up depending > on. > > 2. Depending on the point in code where the error was identified, > invalid unicode escapes could be reported as "Invalid Unicode > escape", "Invalid unicode escape", or "Invalid Unicode escape > sequence". I fervently hope that nobody depends on the specific > wording of a syntax error, so I standardized on the first one. (It > was both the most common, and the most consistent with other > "Invalid X escape" messages.) > > 3. In addition to changing the representation, this patch also adds an > error_pos field to RegExpParser and RegExpCompileData, which stores > the position at which an error occurred. This is used by > SpiderMonkey to provide more helpful messages about where a syntax > error occurred in large regular expressions. > > 4. This model is closer to V8's existing MessageTemplate > infrastructure. I considered trying to integrate it more closely > with MessageTemplate, but since one of our stated goals for this > project was to make it easier to use irregexp outside of V8, I > decided to hold off. > > R=jgruber@chromium.org > > Bug: v8:10303 > Change-Id: I62605fd2def2fc539f38a7e0eefa04d36e14bbde > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2091863 > Commit-Queue: Jakob Gruber <jgruber@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#66784} R=jgruber@chromium.org Bug: v8:10303 Change-Id: Iad1f11a0e0b9e525d7499aacb56c27eff9e7c7b5 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2109952 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#66798}
2020-03-19 14:02:33 +00:00
CHECK(result.error == RegExpError::kNone);
return result.simple;
}
struct MinMaxPair {
int min_match;
int max_match;
};
static MinMaxPair CheckMinMaxMatch(const char* input) {
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
Zone zone(isolate->allocator(), ZONE_NAME);
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(isolate, &zone, &reader,
JSRegExp::kNone, &result));
CHECK_NOT_NULL(result.tree);
Reland "[regexp] Rewrite error handling" This is a reland of e80ca24c80432f747c386da61459282d44ba7aaa Original change's description: > [regexp] Rewrite error handling > > This patch modifies irregexp's error handling. Instead of representing > errors as C strings, they are represented as an enumeration value > (RegExpError), and only converted to strings when throwing the error > object in regexp.cc. This makes it significantly easier to integrate > into SpiderMonkey. A few notes: > > 1. Depending on whether the stack overflows during parsing or > analysis, the stack overflow message can vary ("Stack overflow" or > "Maximum call stack size exceeded"). I kept that behaviour in this > patch, under the assumption that stack overflow messages are > (sadly) the sorts of things that real world code ends up depending > on. > > 2. Depending on the point in code where the error was identified, > invalid unicode escapes could be reported as "Invalid Unicode > escape", "Invalid unicode escape", or "Invalid Unicode escape > sequence". I fervently hope that nobody depends on the specific > wording of a syntax error, so I standardized on the first one. (It > was both the most common, and the most consistent with other > "Invalid X escape" messages.) > > 3. In addition to changing the representation, this patch also adds an > error_pos field to RegExpParser and RegExpCompileData, which stores > the position at which an error occurred. This is used by > SpiderMonkey to provide more helpful messages about where a syntax > error occurred in large regular expressions. > > 4. This model is closer to V8's existing MessageTemplate > infrastructure. I considered trying to integrate it more closely > with MessageTemplate, but since one of our stated goals for this > project was to make it easier to use irregexp outside of V8, I > decided to hold off. > > R=jgruber@chromium.org > > Bug: v8:10303 > Change-Id: I62605fd2def2fc539f38a7e0eefa04d36e14bbde > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2091863 > Commit-Queue: Jakob Gruber <jgruber@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#66784} R=jgruber@chromium.org Bug: v8:10303 Change-Id: Iad1f11a0e0b9e525d7499aacb56c27eff9e7c7b5 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2109952 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#66798}
2020-03-19 14:02:33 +00:00
CHECK(result.error == RegExpError::kNone);
int min_match = result.tree->min_match();
int max_match = result.tree->max_match();
MinMaxPair pair = { min_match, max_match };
return pair;
}
#define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input))
#define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input));
#define CHECK_MIN_MAX(input, min, max) \
{ MinMaxPair min_max = CheckMinMaxMatch(input); \
CHECK_EQ(min, min_max.min_match); \
CHECK_EQ(max, min_max.max_match); \
}
TEST(RegExpParser) {
CHECK_PARSE_ERROR("?");
CheckParseEq("abc", "'abc'");
CheckParseEq("", "%");
CheckParseEq("abc|def", "(| 'abc' 'def')");
CheckParseEq("abc|def|ghi", "(| 'abc' 'def' 'ghi')");
CheckParseEq("^xxx$", "(: @^i 'xxx' @$i)");
CheckParseEq("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')");
CheckParseEq("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])");
CheckParseEq("a*", "(# 0 - g 'a')");
CheckParseEq("a*?", "(# 0 - n 'a')");
CheckParseEq("abc+", "(: 'ab' (# 1 - g 'c'))");
CheckParseEq("abc+?", "(: 'ab' (# 1 - n 'c'))");
CheckParseEq("xyz?", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz??", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{93}", "(: 'xy' (# 93 93 g 'z'))");
CheckParseEq("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))");
CheckParseEq("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))");
CheckParseEq("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))");
CheckParseEq("xyz{1,}", "(: 'xy' (# 1 - g 'z'))");
CheckParseEq("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))");
CheckParseEq("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'");
CheckParseEq("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')");
CheckParseEq("(?:foo)", "(?: 'foo')");
CheckParseEq("(?: foo )", "(?: ' foo ')");
CheckParseEq("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))");
CheckParseEq("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')");
CheckParseEq("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')");
CheckParseEq("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')");
CheckParseEq("foo(?<=bar)baz", "(: 'foo' (<- + 'bar') 'baz')");
CheckParseEq("foo(?<!bar)baz", "(: 'foo' (<- - 'bar') 'baz')");
CheckParseEq("()", "(^ %)");
CheckParseEq("(?=)", "(-> + %)");
CheckParseEq("[]", "^[\\x00-\\u{10ffff}]"); // Doesn't compile on windows
CheckParseEq("[^]", "[\\x00-\\u{10ffff}]"); // \uffff isn't in codepage 1252
CheckParseEq("[x]", "[x]");
CheckParseEq("[xyz]", "[x y z]");
CheckParseEq("[a-zA-Z0-9]", "[a-z A-Z 0-9]");
CheckParseEq("[-123]", "[- 1 2 3]");
CheckParseEq("[^123]", "^[1 2 3]");
CheckParseEq("]", "']'");
CheckParseEq("}", "'}'");
CheckParseEq("[a-b-c]", "[a-b - c]");
CheckParseEq("[\\d]", "[0-9]");
CheckParseEq("[x\\dz]", "[x 0-9 z]");
CheckParseEq("[\\d-z]", "[0-9 - z]");
CheckParseEq("[\\d-\\d]", "[0-9 0-9 -]");
CheckParseEq("[z-\\d]", "[0-9 z -]");
// Control character outside character class.
CheckParseEq("\\cj\\cJ\\ci\\cI\\ck\\cK", "'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'");
CheckParseEq("\\c!", "'\\c!'");
CheckParseEq("\\c_", "'\\c_'");
CheckParseEq("\\c~", "'\\c~'");
CheckParseEq("\\c1", "'\\c1'");
// Control character inside character class.
CheckParseEq("[\\c!]", "[\\ c !]");
CheckParseEq("[\\c_]", "[\\x1f]");
CheckParseEq("[\\c~]", "[\\ c ~]");
CheckParseEq("[\\ca]", "[\\x01]");
CheckParseEq("[\\cz]", "[\\x1a]");
CheckParseEq("[\\cA]", "[\\x01]");
CheckParseEq("[\\cZ]", "[\\x1a]");
CheckParseEq("[\\c1]", "[\\x11]");
CheckParseEq("[a\\]c]", "[a ] c]");
CheckParseEq("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '");
CheckParseEq("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]");
CheckParseEq("\\0", "'\\x00'");
CheckParseEq("\\8", "'8'");
CheckParseEq("\\9", "'9'");
CheckParseEq("\\11", "'\\x09'");
CheckParseEq("\\11a", "'\\x09a'");
CheckParseEq("\\011", "'\\x09'");
CheckParseEq("\\00011", "'\\x0011'");
CheckParseEq("\\118", "'\\x098'");
CheckParseEq("\\111", "'I'");
CheckParseEq("\\1111", "'I1'");
CheckParseEq("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))");
CheckParseEq("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))");
CheckParseEq("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))");
CheckParseEq("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')");
CheckParseEq("(x)(x)(x)\\1*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 1)))");
CheckParseEq("(x)(x)(x)\\2*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 2)))");
CheckParseEq("(x)(x)(x)\\3*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 3)))");
CheckParseEq("(x)(x)(x)\\4*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g '\\x04'))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')");
CheckParseEq("(a)\\1", "(: (^ 'a') (<- 1))");
CheckParseEq("(a\\1)", "(^ 'a')");
CheckParseEq("(\\1a)", "(^ 'a')");
CheckParseEq("(\\2)(\\1)", "(: (^ (<- 2)) (^ (<- 1)))");
CheckParseEq("(?=a)?a", "'a'");
CheckParseEq("(?=a){0,10}a", "'a'");
CheckParseEq("(?=a){1,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?=a){9,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?!a)?a", "'a'");
CheckParseEq("\\1(a)", "(: (<- 1) (^ 'a'))");
CheckParseEq("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))");
CheckParseEq("(?!\\1(a\\1)\\1)\\1",
"(: (-> - (: (<- 1) (^ 'a') (<- 1))) (<- 1))");
CheckParseEq("\\1\\2(a(?:\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (?: (^ 'b')) (<- 2))) (<- 1))");
CheckParseEq("\\1\\2(a(?<=\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (<- + (^ 'b')) (<- 2))) (<- 1))");
CheckParseEq("[\\0]", "[\\x00]");
CheckParseEq("[\\11]", "[\\x09]");
CheckParseEq("[\\11a]", "[\\x09 a]");
CheckParseEq("[\\011]", "[\\x09]");
CheckParseEq("[\\00011]", "[\\x00 1 1]");
CheckParseEq("[\\118]", "[\\x09 8]");
CheckParseEq("[\\111]", "[I]");
CheckParseEq("[\\1111]", "[I 1]");
CheckParseEq("\\x34", "'\x34'");
CheckParseEq("\\x60", "'\x60'");
CheckParseEq("\\x3z", "'x3z'");
CheckParseEq("\\c", "'\\c'");
CheckParseEq("\\u0034", "'\x34'");
CheckParseEq("\\u003z", "'u003z'");
CheckParseEq("foo[z]*", "(: 'foo' (# 0 - g [z]))");
CheckParseEq("^^^$$$\\b\\b\\b\\b", "(: @^i @^i @^i @$i @$i @$i @b @b @b @b)");
CheckParseEq("\\b\\b\\b\\b\\B\\B\\B\\B\\b\\b\\b\\b",
"(: @b @b @b @b @B @B @B @B @b @b @b @b)");
CheckParseEq("\\b\\B\\b", "(: @b @B @b)");
// Unicode regexps
CheckParseEq("\\u{12345}", "'\\ud808\\udf45'", true);
CheckParseEq("\\u{12345}\\u{23456}", "(! '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}|\\u{23456}", "(| '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}{3}", "(# 3 3 g '\\ud808\\udf45')", true);
CheckParseEq("\\u{12345}*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("\\ud808\\udf45*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("[\\ud808\\udf45-\\ud809\\udccc]", "[\\u{012345}-\\u{0124cc}]",
true);
CHECK_SIMPLE("", false);
CHECK_SIMPLE("a", true);
CHECK_SIMPLE("a|b", false);
CHECK_SIMPLE("a\\n", false);
CHECK_SIMPLE("^a", false);
CHECK_SIMPLE("a$", false);
CHECK_SIMPLE("a\\b!", false);
CHECK_SIMPLE("a\\Bb", false);
CHECK_SIMPLE("a*", false);
CHECK_SIMPLE("a*?", false);
CHECK_SIMPLE("a?", false);
CHECK_SIMPLE("a??", false);
CHECK_SIMPLE("a{0,1}?", false);
CHECK_SIMPLE("a{1,1}?", false);
CHECK_SIMPLE("a{1,2}?", false);
CHECK_SIMPLE("a+?", false);
CHECK_SIMPLE("(a)", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(\\1a)", false);
CHECK_SIMPLE("\\1(a)", false);
CHECK_SIMPLE("a\\s", false);
CHECK_SIMPLE("a\\S", false);
CHECK_SIMPLE("a\\d", false);
CHECK_SIMPLE("a\\D", false);
CHECK_SIMPLE("a\\w", false);
CHECK_SIMPLE("a\\W", false);
CHECK_SIMPLE("a.", false);
CHECK_SIMPLE("a\\q", false);
CHECK_SIMPLE("a[a]", false);
CHECK_SIMPLE("a[^a]", false);
CHECK_SIMPLE("a[a-z]", false);
CHECK_SIMPLE("a[\\q]", false);
CHECK_SIMPLE("a(?:b)", false);
CHECK_SIMPLE("a(?=b)", false);
CHECK_SIMPLE("a(?!b)", false);
CHECK_SIMPLE("\\x60", false);
CHECK_SIMPLE("\\u0060", false);
CHECK_SIMPLE("\\cA", false);
CHECK_SIMPLE("\\q", false);
CHECK_SIMPLE("\\1112", false);
CHECK_SIMPLE("\\0", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(?=a)?a", false);
CHECK_SIMPLE("(?!a)?a\\1", false);
CHECK_SIMPLE("(?:(?=a))a\\1", false);
CheckParseEq("a{}", "'a{}'");
CheckParseEq("a{,}", "'a{,}'");
CheckParseEq("a{", "'a{'");
CheckParseEq("a{z}", "'a{z}'");
CheckParseEq("a{1z}", "'a{1z}'");
CheckParseEq("a{12z}", "'a{12z}'");
CheckParseEq("a{12,", "'a{12,'");
CheckParseEq("a{12,3b", "'a{12,3b'");
CheckParseEq("{}", "'{}'");
CheckParseEq("{,}", "'{,}'");
CheckParseEq("{", "'{'");
CheckParseEq("{z}", "'{z}'");
CheckParseEq("{1z}", "'{1z}'");
CheckParseEq("{12z}", "'{12z}'");
CheckParseEq("{12,", "'{12,'");
CheckParseEq("{12,3b", "'{12,3b'");
CHECK_MIN_MAX("a", 1, 1);
CHECK_MIN_MAX("abc", 3, 3);
CHECK_MIN_MAX("a[bc]d", 3, 3);
CHECK_MIN_MAX("a|bc", 1, 2);
CHECK_MIN_MAX("ab|c", 1, 2);
CHECK_MIN_MAX("a||bc", 0, 2);
CHECK_MIN_MAX("|", 0, 0);
CHECK_MIN_MAX("(?:ab)", 2, 2);
CHECK_MIN_MAX("(?:ab|cde)", 2, 3);
CHECK_MIN_MAX("(?:ab)|cde", 2, 3);
CHECK_MIN_MAX("(ab)", 2, 2);
CHECK_MIN_MAX("(ab|cde)", 2, 3);
CHECK_MIN_MAX("(ab)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(ab|cde)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)?", 0, 2);
CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a?", 0, 1);
CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a??", 0, 1);
CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)?", 0, 1);
CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a{0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0,0}", 0, 0);
CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab){4,7}", 8, 14);
CHECK_MIN_MAX("a\\bc", 2, 2);
CHECK_MIN_MAX("a\\Bc", 2, 2);
CHECK_MIN_MAX("a\\sc", 3, 3);
CHECK_MIN_MAX("a\\Sc", 3, 3);
CHECK_MIN_MAX("a(?=b)c", 2, 2);
CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2);
CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2);
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<a>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 1))", true);
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<b>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 2))", true);
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<c>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 3))", true);
CheckParseEq("(?<a>a)\\k<a>", "(: (^ 'a') (<- 1))", true);
CheckParseEq("(?<a>a\\k<a>)", "(^ 'a')", true);
CheckParseEq("(?<a>\\k<a>a)", "(^ 'a')", true);
CheckParseEq("(?<a>\\k<b>)(?<b>\\k<a>)", "(: (^ (<- 2)) (^ (<- 1)))", true);
CheckParseEq("\\k<a>(?<a>a)", "(: (<- 1) (^ 'a'))", true);
CheckParseEq("(?<\\u{03C0}>a)", "(^ 'a')", true);
CheckParseEq("(?<\\u03C0>a)", "(^ 'a')", true);
}
TEST(ParserRegression) {
CheckParseEq("[A-Z$-][x]", "(! [A-Z $ -] [x])");
CheckParseEq("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')");
CheckParseEq("{", "'{'");
CheckParseEq("a|", "(| 'a' %)");
}
static void ExpectError(const char* input, const char* expected,
bool unicode = false) {
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
Zone zone(isolate->allocator(), ZONE_NAME);
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(!v8::internal::RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
&result));
CHECK_NULL(result.tree);
Reland "[regexp] Rewrite error handling" This is a reland of e80ca24c80432f747c386da61459282d44ba7aaa Original change's description: > [regexp] Rewrite error handling > > This patch modifies irregexp's error handling. Instead of representing > errors as C strings, they are represented as an enumeration value > (RegExpError), and only converted to strings when throwing the error > object in regexp.cc. This makes it significantly easier to integrate > into SpiderMonkey. A few notes: > > 1. Depending on whether the stack overflows during parsing or > analysis, the stack overflow message can vary ("Stack overflow" or > "Maximum call stack size exceeded"). I kept that behaviour in this > patch, under the assumption that stack overflow messages are > (sadly) the sorts of things that real world code ends up depending > on. > > 2. Depending on the point in code where the error was identified, > invalid unicode escapes could be reported as "Invalid Unicode > escape", "Invalid unicode escape", or "Invalid Unicode escape > sequence". I fervently hope that nobody depends on the specific > wording of a syntax error, so I standardized on the first one. (It > was both the most common, and the most consistent with other > "Invalid X escape" messages.) > > 3. In addition to changing the representation, this patch also adds an > error_pos field to RegExpParser and RegExpCompileData, which stores > the position at which an error occurred. This is used by > SpiderMonkey to provide more helpful messages about where a syntax > error occurred in large regular expressions. > > 4. This model is closer to V8's existing MessageTemplate > infrastructure. I considered trying to integrate it more closely > with MessageTemplate, but since one of our stated goals for this > project was to make it easier to use irregexp outside of V8, I > decided to hold off. > > R=jgruber@chromium.org > > Bug: v8:10303 > Change-Id: I62605fd2def2fc539f38a7e0eefa04d36e14bbde > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2091863 > Commit-Queue: Jakob Gruber <jgruber@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#66784} R=jgruber@chromium.org Bug: v8:10303 Change-Id: Iad1f11a0e0b9e525d7499aacb56c27eff9e7c7b5 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2109952 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#66798}
2020-03-19 14:02:33 +00:00
CHECK(result.error != RegExpError::kNone);
CHECK_EQ(0, strcmp(expected, RegExpErrorString(result.error)));
}
TEST(Errors) {
const char* kEndBackslash = "\\ at end of pattern";
ExpectError("\\", kEndBackslash);
const char* kUnterminatedGroup = "Unterminated group";
ExpectError("(foo", kUnterminatedGroup);
const char* kInvalidGroup = "Invalid group";
ExpectError("(?", kInvalidGroup);
const char* kUnterminatedCharacterClass = "Unterminated character class";
ExpectError("[", kUnterminatedCharacterClass);
ExpectError("[a-", kUnterminatedCharacterClass);
const char* kNothingToRepeat = "Nothing to repeat";
ExpectError("*", kNothingToRepeat);
ExpectError("?", kNothingToRepeat);
ExpectError("+", kNothingToRepeat);
ExpectError("{1}", kNothingToRepeat);
ExpectError("{1,2}", kNothingToRepeat);
ExpectError("{1,}", kNothingToRepeat);
// Check that we don't allow more than kMaxCapture captures
const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures.
const char* kTooManyCaptures = "Too many captures";
std::ostringstream os;
for (int i = 0; i <= kMaxCaptures; i++) {
os << "()";
}
ExpectError(os.str().c_str(), kTooManyCaptures);
const char* kInvalidCaptureName = "Invalid capture group name";
ExpectError("(?<>.)", kInvalidCaptureName, true);
ExpectError("(?<1>.)", kInvalidCaptureName, true);
ExpectError("(?<_%>.)", kInvalidCaptureName, true);
ExpectError("\\k<a", kInvalidCaptureName, true);
const char* kDuplicateCaptureName = "Duplicate capture group name";
ExpectError("(?<a>.)(?<a>.)", kDuplicateCaptureName, true);
Reland "[regexp] Rewrite error handling" This is a reland of e80ca24c80432f747c386da61459282d44ba7aaa Original change's description: > [regexp] Rewrite error handling > > This patch modifies irregexp's error handling. Instead of representing > errors as C strings, they are represented as an enumeration value > (RegExpError), and only converted to strings when throwing the error > object in regexp.cc. This makes it significantly easier to integrate > into SpiderMonkey. A few notes: > > 1. Depending on whether the stack overflows during parsing or > analysis, the stack overflow message can vary ("Stack overflow" or > "Maximum call stack size exceeded"). I kept that behaviour in this > patch, under the assumption that stack overflow messages are > (sadly) the sorts of things that real world code ends up depending > on. > > 2. Depending on the point in code where the error was identified, > invalid unicode escapes could be reported as "Invalid Unicode > escape", "Invalid unicode escape", or "Invalid Unicode escape > sequence". I fervently hope that nobody depends on the specific > wording of a syntax error, so I standardized on the first one. (It > was both the most common, and the most consistent with other > "Invalid X escape" messages.) > > 3. In addition to changing the representation, this patch also adds an > error_pos field to RegExpParser and RegExpCompileData, which stores > the position at which an error occurred. This is used by > SpiderMonkey to provide more helpful messages about where a syntax > error occurred in large regular expressions. > > 4. This model is closer to V8's existing MessageTemplate > infrastructure. I considered trying to integrate it more closely > with MessageTemplate, but since one of our stated goals for this > project was to make it easier to use irregexp outside of V8, I > decided to hold off. > > R=jgruber@chromium.org > > Bug: v8:10303 > Change-Id: I62605fd2def2fc539f38a7e0eefa04d36e14bbde > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2091863 > Commit-Queue: Jakob Gruber <jgruber@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#66784} R=jgruber@chromium.org Bug: v8:10303 Change-Id: Iad1f11a0e0b9e525d7499aacb56c27eff9e7c7b5 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2109952 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#66798}
2020-03-19 14:02:33 +00:00
const char* kInvalidUnicodeEscape = "Invalid Unicode escape";
ExpectError("(?<\\u{FISK}", kInvalidUnicodeEscape, true);
const char* kInvalidCaptureReferenced = "Invalid named capture referenced";
ExpectError("\\k<a>", kInvalidCaptureReferenced, true);
ExpectError("(?<b>)\\k<a>", kInvalidCaptureReferenced, true);
const char* kInvalidNamedReference = "Invalid named reference";
ExpectError("\\ka", kInvalidNamedReference, true);
}
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool IsDigit(uc32 c) { return ('0' <= c && c <= '9'); }
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool NotDigit(uc32 c) { return !IsDigit(c); }
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool IsWhiteSpaceOrLineTerminator(uc32 c) {
// According to ECMA 5.1, 15.10.2.12 the CharacterClassEscape \s includes
// WhiteSpace (7.2) and LineTerminator (7.3) values.
return v8::internal::IsWhiteSpaceOrLineTerminator(c);
}
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool NotWhiteSpaceNorLineTermiantor(uc32 c) {
return !IsWhiteSpaceOrLineTerminator(c);
}
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool NotWord(uc32 c) { return !IsRegExpWord(c); }
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static bool NotLineTerminator(uc32 c) { return !unibrow::IsLineTerminator(c); }
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
static void TestCharacterClassEscapes(uc32 c, bool(pred)(uc32 c)) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* ranges =
zone.New<ZoneList<CharacterRange>>(2, &zone);
CharacterRange::AddClassEscape(c, ranges, &zone);
for (uc32 i = 0; i < (1 << 16); i++) {
bool in_class = false;
for (int j = 0; !in_class && j < ranges->length(); j++) {
CharacterRange& range = ranges->at(j);
in_class = (range.from() <= i && i <= range.to());
}
CHECK_EQ(pred(i), in_class);
}
}
TEST(CharacterClassEscapes) {
[regexp] Support assertions in experimental engine Assertions are implemented with the new ASSERTION instruction. The nfa interpreter evaluates the assertion based on the current context in the subject string every time a thread executes ASSERTION. This is analogous to what re2 and rust/regex do. Alternatives to this approach: - The interpreter could calculate eagerly for all assertion types whether they are satisfied whenever the current input position is advanced. This would make evaluating the ASSERTION instruction itself cheaper, but at the cost of making every advance in the input string more expensive. I suspect this would be slower on average because assertions are not that common that we typically evaluate >= 2 assertions at every input position. - Assertions in a regexp could be desugared into CONSUME_RANGE instructions, so that no new instruction would be necessary. For example, the word boundary assertion \b is satisfied at a given position/state if we have just consumed a word character and will consume a non-word character next, or vice-versa. The tricky part about this is that the assertion itself should not consume input, so we'd have to split (automaton) states according to whether we've arrived at them via a word character or not. The current compiler is not really equipped for this kind of transformation. For {start,end} of {line,file} assertions, we'd need to introduce dummy characters indicating start/end of input (say, 0x10000 and 0x10001) which we feed to the interpreter before respectively after the actual input. I suspect that this approach wouldn't make much of a difference for NFA execution. It would likely speed up (lazy) DFA execution though because assertions would be dealt with in the fast path. Cq-Include-Trybots: luci.v8.try:v8_linux64_fyi_rel_ng Bug: v8:10765 Change-Id: Ic2012c943e0ce54eb8662789fb3d4c1b6cd8d606 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2398644 Commit-Queue: Martin Bidlingmaier <mbid@google.com> Reviewed-by: Leszek Swirski <leszeks@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#70026}
2020-09-17 16:24:35 +00:00
TestCharacterClassEscapes('.', NotLineTerminator);
TestCharacterClassEscapes('d', IsDigit);
TestCharacterClassEscapes('D', NotDigit);
TestCharacterClassEscapes('s', IsWhiteSpaceOrLineTerminator);
TestCharacterClassEscapes('S', NotWhiteSpaceNorLineTermiantor);
TestCharacterClassEscapes('w', IsRegExpWord);
TestCharacterClassEscapes('W', NotWord);
}
static RegExpNode* Compile(const char* input, bool multiline, bool unicode,
bool is_one_byte, Zone* zone) {
Isolate* isolate = CcTest::i_isolate();
Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(input);
FlatStringReader reader(isolate, str);
RegExpCompileData compile_data;
compile_data.compilation_target = RegExpCompilationTarget::kNative;
JSRegExp::Flags flags = JSRegExp::kNone;
if (multiline) flags = JSRegExp::kMultiline;
if (unicode) flags = JSRegExp::kUnicode;
if (!v8::internal::RegExpParser::ParseRegExp(isolate, zone, &reader, flags,
&compile_data))
return nullptr;
Handle<String> pattern = isolate->factory()
->NewStringFromUtf8(CStrVector(input))
.ToHandleChecked();
Regexp: Improve the speed that we scan for an initial point where a non-anchored regexp can match by using a Boyer-Moore-like table. This is done by identifying non-greedy non-capturing loops in the nodes that eat any character one at a time. For example in the middle of the regexp /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly inserted at the start of any non-anchored regexp. When we have found such a loop we look ahead in the nodes to find the set of characters that can come at given distances. For example for the regexp /.?foo/ we know that there are at least 3 characters ahead of us, and the sets of characters that can occur are [any, [f, o], [o]]. We find a range in the lookahead info where the set of characters is reasonably constrained. In our example this is from index 1 to 2 (0 is not constrained). We can now look 3 characters ahead and if we don't find one of [f, o] (the union of [f, o] and [o]) then we can skip forwards by the range size (in this case 2). For Unicode input strings we do the same, but modulo 128. We also look at the first string fed to the regexp and use that to get a hint of the character frequencies in the inputs. This affects the assessment of whether the set of characters is 'reasonably constrained'. We still have the old lookahead mechanism, which uses a wide load of multiple characters followed by a mask and compare to determine whether a match is possible at this point. Review URL: http://codereview.chromium.org/9965010 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@11204 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-04-02 09:38:07 +00:00
Handle<String> sample_subject =
isolate->factory()->NewStringFromUtf8(CStrVector("")).ToHandleChecked();
RegExp::CompileForTesting(isolate, zone, &compile_data, flags, pattern,
sample_subject, is_one_byte);
return compile_data.node;
}
static void Execute(const char* input, bool multiline, bool unicode,
bool is_one_byte, bool dot_output = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
RegExpNode* node = Compile(input, multiline, unicode, is_one_byte, &zone);
USE(node);
#ifdef DEBUG
if (dot_output) RegExp::DotPrintForTesting(input, node);
#endif // DEBUG
}
// Test of debug-only syntax.
#ifdef DEBUG
TEST(ParsePossessiveRepetition) {
bool old_flag_value = FLAG_regexp_possessive_quantifier;
// Enable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = true;
CheckParseEq("a*+", "(# 0 - p 'a')");
CheckParseEq("a++", "(# 1 - p 'a')");
CheckParseEq("a?+", "(# 0 1 p 'a')");
CheckParseEq("a{10,20}+", "(# 10 20 p 'a')");
CheckParseEq("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')");
// Disable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = false;
CHECK_PARSE_ERROR("a*+");
CHECK_PARSE_ERROR("a++");
CHECK_PARSE_ERROR("a?+");
CHECK_PARSE_ERROR("a{10,20}+");
CHECK_PARSE_ERROR("a{10,20}+b");
FLAG_regexp_possessive_quantifier = old_flag_value;
}
#endif
// Tests of interpreter.
#if V8_TARGET_ARCH_IA32
using ArchRegExpMacroAssembler = RegExpMacroAssemblerIA32;
#elif V8_TARGET_ARCH_X64
using ArchRegExpMacroAssembler = RegExpMacroAssemblerX64;
#elif V8_TARGET_ARCH_ARM
using ArchRegExpMacroAssembler = RegExpMacroAssemblerARM;
#elif V8_TARGET_ARCH_ARM64
using ArchRegExpMacroAssembler = RegExpMacroAssemblerARM64;
#elif V8_TARGET_ARCH_S390
using ArchRegExpMacroAssembler = RegExpMacroAssemblerS390;
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
using ArchRegExpMacroAssembler = RegExpMacroAssemblerPPC;
#elif V8_TARGET_ARCH_MIPS
using ArchRegExpMacroAssembler = RegExpMacroAssemblerMIPS;
#elif V8_TARGET_ARCH_MIPS64
using ArchRegExpMacroAssembler = RegExpMacroAssemblerMIPS;
#elif V8_TARGET_ARCH_X87
using ArchRegExpMacroAssembler = RegExpMacroAssemblerX87;
#endif
class ContextInitializer {
public:
ContextInitializer()
: scope_(CcTest::isolate()),
env_(v8::Context::New(CcTest::isolate())) {
env_->Enter();
}
~ContextInitializer() {
env_->Exit();
}
private:
v8::HandleScope scope_;
v8::Local<v8::Context> env_;
};
// Create new JSRegExp object with only necessary fields (for this tests)
// initialized.
static Handle<JSRegExp> CreateJSRegExp(Handle<String> source, Handle<Code> code,
bool is_unicode = false) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<JSFunction> constructor = isolate->regexp_function();
Handle<JSRegExp> regexp =
Handle<JSRegExp>::cast(factory->NewJSObject(constructor));
factory->SetRegExpIrregexpData(regexp, source, JSRegExp::kNone, 0,
JSRegExp::kNoBacktrackLimit);
regexp->SetDataAt(is_unicode ? JSRegExp::kIrregexpUC16CodeIndex
: JSRegExp::kIrregexpLatin1CodeIndex,
*code);
return regexp;
}
static ArchRegExpMacroAssembler::Result Execute(JSRegExp regexp, String input,
int start_offset,
Address input_start,
Address input_end,
int* captures) {
return static_cast<NativeRegExpMacroAssembler::Result>(
NativeRegExpMacroAssembler::Execute(
input, start_offset, reinterpret_cast<byte*>(input_start),
reinterpret_cast<byte*>(input_end), captures, 0, CcTest::i_isolate(),
regexp));
}
TEST(MacroAssemblerNativeSuccess) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + seq_input->length(), captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(-1, captures[0]);
CHECK_EQ(-1, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
}
TEST(MacroAssemblerNativeSimple) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(1, nullptr, false);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(0, nullptr, false);
m.CheckNotCharacter('f', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.BindJumpTarget(&backtrack);
m.Backtrack();
m.BindJumpTarget(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
input = factory->NewStringFromStaticChars("barbarbar");
seq_input = Handle<SeqOneByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*regexp, *input, 0, start_adr, start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeSimpleUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(1, nullptr, false);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(0, nullptr, false);
m.CheckNotCharacter('f', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.BindJumpTarget(&backtrack);
m.Backtrack();
m.BindJumpTarget(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code, true);
int captures[4] = {42, 37, 87, 117};
const uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o',
static_cast<uc16>(0x2603)};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
const uc16 input_data2[9] = {'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a',
static_cast<uc16>(0x2603)};
input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data2, 9)).ToHandleChecked();
seq_input = Handle<SeqTwoByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*regexp, *input, 0, start_adr,
start_adr + input->length() * 2, captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBacktrack) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label fail;
Label backtrack;
m.LoadCurrentCharacter(10, &fail);
m.Succeed();
m.BindJumpTarget(&fail);
m.PushBacktrack(&backtrack);
m.LoadCurrentCharacter(10, nullptr);
m.Succeed();
m.BindJumpTarget(&backtrack);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("..........");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBackReferenceLATIN1) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
Handle<String> input = factory->NewStringFromStaticChars("fooofo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblerNativeBackReferenceUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code, true);
const uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length() * 2, output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblernativeAtStart) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label not_at_start, newline, fail;
m.CheckNotAtStart(0, &not_at_start);
// Check that prevchar = '\n' and current = 'f'.
m.CheckCharacter('\n', &newline);
m.BindJumpTarget(&fail);
m.Fail();
m.Bind(&newline);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('f', &fail);
m.Succeed();
m.Bind(&not_at_start);
// Check that prevchar = 'o' and current = 'b'.
Label prevo;
m.CheckCharacter('o', &prevo);
m.Fail();
m.Bind(&prevo);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('b', &fail);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("(^f|ob)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
Handle<String> input = factory->NewStringFromStaticChars("foobar");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
result = Execute(*regexp, *input, 3, start_adr + 3,
start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
}
TEST(MacroAssemblerNativeBackRefNoCase) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, succ;
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(2, 0);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(3, 0);
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "AbC".
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "ABC".
Label expected_fail;
m.CheckNotBackReferenceIgnoreCase(2, false, false, &expected_fail);
m.BindJumpTarget(&fail);
m.Fail();
m.Bind(&expected_fail);
m.AdvanceCurrentPosition(3); // Skip "xYz"
m.CheckNotBackReferenceIgnoreCase(2, false, false, &succ);
m.Fail();
m.Bind(&succ);
m.WriteCurrentPositionToRegister(1, 0);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("^(abc)\1\1(?!\1)...(?!\1)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
Handle<String> input = factory->NewStringFromStaticChars("aBcAbCABCxYzab");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(12, output[1]);
CHECK_EQ(0, output[2]);
CHECK_EQ(3, output[3]);
}
TEST(MacroAssemblerNativeRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
6);
uc16 foo_chars[3] = {'f', 'o', 'o'};
Vector<const uc16> foo(foo_chars, 3);
enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt };
Label fail;
Label backtrack;
m.WriteCurrentPositionToRegister(out1, 0); // Output: [0]
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&backtrack);
m.WriteStackPointerToRegister(sp);
// Fill stack and registers
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(out1, 0);
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&fail);
// Drop backtrack stack frames.
m.ReadStackPointerFromRegister(sp);
// And take the first backtrack (to &backtrack)
m.Backtrack();
m.PushCurrentPosition();
m.AdvanceCurrentPosition(2);
m.PopCurrentPosition();
m.BindJumpTarget(&backtrack);
m.PopRegister(out1);
m.ReadCurrentPositionFromRegister(out1);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(out2, 0); // [0,3]
Label loop;
m.SetRegister(loop_cnt, 0); // loop counter
m.Bind(&loop);
m.AdvanceRegister(loop_cnt, 1);
m.AdvanceCurrentPosition(1);
m.IfRegisterLT(loop_cnt, 3, &loop);
m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6]
Label loop2;
m.SetRegister(loop_cnt, 2); // loop counter
m.Bind(&loop2);
m.AdvanceRegister(loop_cnt, -1);
m.AdvanceCurrentPosition(1);
m.IfRegisterGE(loop_cnt, 0, &loop2);
m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9]
Label loop3;
Label exit_loop3;
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.ReadCurrentPositionFromRegister(out3);
m.Bind(&loop3);
m.AdvanceCurrentPosition(1);
m.CheckGreedyLoop(&exit_loop3);
m.GoTo(&loop3);
m.Bind(&exit_loop3);
m.PopCurrentPosition();
m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1]
m.Succeed();
m.BindJumpTarget(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("<loop test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("foofoofoofoofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[6];
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(3, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(9, output[3]);
CHECK_EQ(9, output[4]);
CHECK_EQ(-1, output[5]);
}
TEST(MacroAssemblerStackOverflow) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label loop;
m.Bind(&loop);
m.PushBacktrack(&loop);
m.GoTo(&loop);
Handle<String> source =
factory->NewStringFromStaticChars("<stack overflow test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("dummy");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result);
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
TEST(MacroAssemblerNativeLotsOfRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
2);
// At least 2048, to ensure the allocated space for registers
// span one full page.
const int large_number = 8000;
m.WriteCurrentPositionToRegister(large_number, 42);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 1);
Label done;
m.CheckNotBackReference(0, false, &done); // Performs a system-stack push.
m.Bind(&done);
m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck);
m.PopRegister(1);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("<huge register space test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<JSRegExp> regexp = CreateJSRegExp(source, code);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("sample text");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int captures[2];
NativeRegExpMacroAssembler::Result result = Execute(
*regexp, *input, 0, start_adr, start_adr + input->length(), captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(42, captures[1]);
isolate->clear_pending_exception();
}
TEST(MacroAssembler) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
RegExpBytecodeGenerator m(CcTest::i_isolate(), &zone);
// ^f(o)o.
Label start, fail, backtrack;
m.SetRegister(4, 42);
m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck);
m.AdvanceRegister(4, 42);
m.GoTo(&start);
m.Fail();
m.Bind(&start);
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(0, nullptr);
m.CheckNotCharacter('f', nullptr);
m.LoadCurrentCharacter(1, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.WriteCurrentPositionToRegister(2, 1);
m.WriteCurrentPositionToRegister(3, 2);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.BindJumpTarget(&backtrack);
m.ClearRegisters(2, 3);
m.Backtrack();
m.BindJumpTarget(&fail);
m.PopRegister(0);
m.Fail();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<String> source = factory->NewStringFromStaticChars("^f(o)o");
Handle<ByteArray> array = Handle<ByteArray>::cast(m.GetCode(source));
int captures[5];
std::memset(captures, 0, sizeof(captures));
const uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'};
Handle<String> f1_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str1, 6)).ToHandleChecked();
CHECK_EQ(IrregexpInterpreter::SUCCESS,
IrregexpInterpreter::MatchInternal(
isolate, *array, *f1_16, captures, 5, 5, 0,
RegExp::CallOrigin::kFromRuntime, JSRegExp::kNoBacktrackLimit));
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(1, captures[2]);
CHECK_EQ(2, captures[3]);
CHECK_EQ(84, captures[4]);
const uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'};
Handle<String> f2_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str2, 6)).ToHandleChecked();
std::memset(captures, 0, sizeof(captures));
CHECK_EQ(IrregexpInterpreter::FAILURE,
IrregexpInterpreter::MatchInternal(
isolate, *array, *f2_16, captures, 5, 5, 0,
RegExp::CallOrigin::kFromRuntime, JSRegExp::kNoBacktrackLimit));
// Failed matches don't alter output registers.
CHECK_EQ(0, captures[0]);
CHECK_EQ(0, captures[1]);
CHECK_EQ(0, captures[2]);
CHECK_EQ(0, captures[3]);
CHECK_EQ(0, captures[4]);
}
#ifndef V8_INTL_SUPPORT
static uc32 canonicalize(uc32 c) {
unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth];
int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, nullptr);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(LatinCanonicalize) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
for (unibrow::uchar lower = 'a'; lower <= 'z'; lower++) {
unibrow::uchar upper = lower + ('A' - 'a');
CHECK_EQ(canonicalize(lower), canonicalize(upper));
unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length = un_canonicalize.get(lower, '\0', uncanon);
CHECK_EQ(2, length);
CHECK_EQ(upper, uncanon[0]);
CHECK_EQ(lower, uncanon[1]);
}
for (uc32 c = 128; c < (1 << 21); c++)
CHECK_GE(canonicalize(c), 128);
unibrow::Mapping<unibrow::ToUppercase> to_upper;
// Canonicalization is only defined for the Basic Multilingual Plane.
for (uc32 c = 0; c < (1 << 16); c++) {
unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth];
int length = to_upper.get(c, '\0', upper);
if (length == 0) {
length = 1;
upper[0] = c;
}
uc32 u = upper[0];
if (length > 1 || (c >= 128 && u < 128))
u = c;
CHECK_EQ(u, canonicalize(c));
}
}
static uc32 CanonRangeEnd(uc32 c) {
unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth];
int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, nullptr);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(RangeCanonicalization) {
// Check that we arrive at the same result when using the basic
// range canonicalization primitives as when using immediate
// canonicalization.
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
int block_start = 0;
while (block_start <= 0xFFFF) {
uc32 block_end = CanonRangeEnd(block_start);
unsigned block_length = block_end - block_start + 1;
if (block_length > 1) {
unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int first_length = un_canonicalize.get(block_start, '\0', first);
for (unsigned i = 1; i < block_length; i++) {
unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int succ_length = un_canonicalize.get(block_start + i, '\0', succ);
CHECK_EQ(first_length, succ_length);
for (int j = 0; j < succ_length; j++) {
int calc = first[j] + i;
int found = succ[j];
CHECK_EQ(calc, found);
}
}
}
block_start = block_start + block_length;
}
}
TEST(UncanonicalizeEquivalence) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
for (int i = 0; i < (1 << 16); i++) {
int length = un_canonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length2 = un_canonicalize.get(chars[j], '\0', chars2);
CHECK_EQ(length, length2);
for (int k = 0; k < length; k++)
CHECK_EQ(static_cast<int>(chars[k]), static_cast<int>(chars2[k]));
}
}
}
#endif
static void TestRangeCaseIndependence(Isolate* isolate, CharacterRange input,
Vector<CharacterRange> expected) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
int count = expected.length();
ZoneList<CharacterRange>* list =
zone.New<ZoneList<CharacterRange>>(count, &zone);
list->Add(input, &zone);
CharacterRange::AddCaseEquivalents(isolate, &zone, list, false);
list->Remove(0); // Remove the input before checking results.
CHECK_EQ(count, list->length());
for (int i = 0; i < list->length(); i++) {
CHECK_EQ(expected[i].from(), list->at(i).from());
CHECK_EQ(expected[i].to(), list->at(i).to());
}
}
static void TestSimpleRangeCaseIndependence(Isolate* isolate,
CharacterRange input,
CharacterRange expected) {
EmbeddedVector<CharacterRange, 1> vector;
vector[0] = expected;
TestRangeCaseIndependence(isolate, input, vector);
}
TEST(CharacterRangeCaseIndependence) {
Isolate* isolate = CcTest::i_isolate();
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('a'),
CharacterRange::Singleton('A'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('z'),
CharacterRange::Singleton('Z'));
#ifndef V8_INTL_SUPPORT
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'z'),
CharacterRange::Range('A', 'Z'));
#endif // !V8_INTL_SUPPORT
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('c', 'f'),
CharacterRange::Range('C', 'F'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'b'),
CharacterRange::Range('A', 'B'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('y', 'z'),
CharacterRange::Range('Y', 'Z'));
#ifndef V8_INTL_SUPPORT
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('a' - 1, 'z' + 1),
CharacterRange::Range('A', 'Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'Z'),
CharacterRange::Range('a', 'z'));
#endif // !V8_INTL_SUPPORT
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('C', 'F'),
CharacterRange::Range('c', 'f'));
#ifndef V8_INTL_SUPPORT
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('A' - 1, 'Z' + 1),
CharacterRange::Range('a', 'z'));
// Here we need to add [l-z] to complete the case independence of
// [A-Za-z] but we expect [a-z] to be added since we always add a
// whole block at a time.
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'k'),
CharacterRange::Range('a', 'z'));
#endif // !V8_INTL_SUPPORT
}
static bool InClass(uc32 c,
const UnicodeRangeSplitter::CharacterRangeVector* ranges) {
if (ranges == nullptr) return false;
for (size_t i = 0; i < ranges->size(); i++) {
CharacterRange range = ranges->at(i);
if (range.from() <= c && c <= range.to())
return true;
}
return false;
}
TEST(UnicodeRangeSplitter) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* base = zone.New<ZoneList<CharacterRange>>(1, &zone);
base->Add(CharacterRange::Everything(), &zone);
UnicodeRangeSplitter splitter(base);
// BMP
for (uc32 c = 0; c < 0xD800; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Lead surrogates
for (uc32 c = 0xD800; c < 0xDBFF; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Trail surrogates
for (uc32 c = 0xDC00; c < 0xDFFF; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// BMP
for (uc32 c = 0xE000; c < 0xFFFF; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Non-BMP
for (uc32 c = 0x10000; c < 0x10FFFF; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(InClass(c, splitter.non_bmp()));
}
}
TEST(CanonicalizeCharacterSets) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* list = zone.New<ZoneList<CharacterRange>>(4, &zone);
CharacterSet set(list);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(25, 25), &zone);
list->Add(CharacterRange::Range(100, 100), &zone);
list->Add(CharacterRange::Range(1, 1), &zone);
set.Canonicalize();
CHECK_EQ(5, list->length());
CHECK_EQ(1, list->at(0).from());
CHECK_EQ(1, list->at(0).to());
CHECK_EQ(10, list->at(1).from());
CHECK_EQ(20, list->at(1).to());
CHECK_EQ(25, list->at(2).from());
CHECK_EQ(25, list->at(2).to());
CHECK_EQ(30, list->at(3).from());
CHECK_EQ(40, list->at(3).to());
CHECK_EQ(100, list->at(4).from());
CHECK_EQ(100, list->at(4).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 19), &zone);
list->Add(CharacterRange::Range(21, 30), &zone);
list->Add(CharacterRange::Range(20, 20), &zone);
set.Canonicalize();
CHECK_EQ(1, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(30, list->at(0).to());
}
TEST(CharacterRangeMerge) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange> l1(4, &zone);
ZoneList<CharacterRange> l2(4, &zone);
// Create all combinations of intersections of ranges, both singletons and
// longer.
int offset = 0;
// The five kinds of singleton intersections:
// X
// Y - outside before
// Y - outside touching start
// Y - overlap
// Y - outside touching end
// Y - outside after
for (int i = 0; i < 5; i++) {
l1.Add(CharacterRange::Singleton(offset + 2), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 6;
}
// The seven kinds of singleton/non-singleton intersections:
// XXX
// Y - outside before
// Y - outside touching start
// Y - inside touching start
// Y - entirely inside
// Y - inside touching end
// Y - outside touching end
// Y - disjoint after
for (int i = 0; i < 7; i++) {
l1.Add(CharacterRange::Range(offset + 2, offset + 4), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 8;
}
// The eleven kinds of non-singleton intersections:
//
// XXXXXXXX
// YYYY - outside before.
// YYYY - outside touching start.
// YYYY - overlapping start
// YYYY - inside touching start
// YYYY - entirely inside
// YYYY - inside touching end
// YYYY - overlapping end
// YYYY - outside touching end
// YYYY - outside after
// YYYYYYYY - identical
// YYYYYYYYYYYY - containing entirely.
for (int i = 0; i < 9; i++) {
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); // Length 8.
l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3), &zone);
offset += 22;
}
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
offset += 22;
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 4, offset + 17), &zone);
offset += 22;
// Different kinds of multi-range overlap:
// XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
// YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y
l1.Add(CharacterRange::Range(offset, offset + 21), &zone);
l1.Add(CharacterRange::Range(offset + 31, offset + 52), &zone);
for (int i = 0; i < 6; i++) {
l2.Add(CharacterRange::Range(offset + 2, offset + 5), &zone);
l2.Add(CharacterRange::Singleton(offset + 8), &zone);
offset += 9;
}
CHECK(CharacterRange::IsCanonical(&l1));
CHECK(CharacterRange::IsCanonical(&l2));
ZoneList<CharacterRange> first_only(4, &zone);
ZoneList<CharacterRange> second_only(4, &zone);
ZoneList<CharacterRange> both(4, &zone);
}
TEST(Graph) {
Execute("\\b\\w+\\b", false, true, true);
}
namespace {
int* global_use_counts = nullptr;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
++global_use_counts[feature];
}
}
// Test that ES2015+ RegExp compatibility fixes are in place, that they
// are not overly broad, and the appropriate UseCounters are incremented
TEST(UseCountRegExp) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
LocalContext env;
int use_counts[v8::Isolate::kUseCounterFeatureCount] = {};
global_use_counts = use_counts;
CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback);
// Compat fix: RegExp.prototype.sticky == undefined; UseCounter tracks it
v8::Local<v8::Value> resultSticky = CompileRun("RegExp.prototype.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultSticky->IsUndefined());
// re.sticky has approriate value and doesn't touch UseCounter
v8::Local<v8::Value> resultReSticky = CompileRun("/a/.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReSticky->IsFalse());
// When the getter is called on another object, throw an exception
// and don't increment the UseCounter
v8::Local<v8::Value> resultStickyError = CompileRun(
"var exception;"
"try { "
" Object.getOwnPropertyDescriptor(RegExp.prototype, 'sticky')"
" .get.call(null);"
"} catch (e) {"
" exception = e;"
"}"
"exception");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultStickyError->IsObject());
// RegExp.prototype.toString() returns '/(?:)/' as a compatibility fix;
// a UseCounter is incremented to track it.
v8::Local<v8::Value> resultToString =
CompileRun("RegExp.prototype.toString().length");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToString->IsInt32());
CHECK_EQ(6,
resultToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() works on normal RegExps
v8::Local<v8::Value> resultReToString = CompileRun("/a/.toString().length");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReToString->IsInt32());
CHECK_EQ(
3, resultReToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() throws on non-RegExps that aren't RegExp.prototype
v8::Local<v8::Value> resultToStringError = CompileRun(
"var exception;"
"try { RegExp.prototype.toString.call(null) }"
"catch (e) { exception = e; }"
"exception");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToStringError->IsObject());
}
class UncachedExternalString
: public v8::String::ExternalOneByteStringResource {
public:
const char* data() const override { return "abcdefghijklmnopqrstuvwxyz"; }
size_t length() const override { return 26; }
bool IsCacheable() const override { return false; }
};
TEST(UncachedExternalString) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
LocalContext env;
v8::Local<v8::String> external =
v8::String::NewExternalOneByte(isolate, new UncachedExternalString())
.ToLocalChecked();
CHECK(v8::Utils::OpenHandle(*external)->map() ==
ReadOnlyRoots(CcTest::i_isolate())
.uncached_external_one_byte_string_map());
v8::Local<v8::Object> global = env->Global();
global->Set(env.local(), v8_str("external"), external).FromJust();
CompileRun("var re = /y(.)/; re.test('ab');");
ExpectString("external.substring(1).match(re)[1]", "z");
}
Reland "[regexp] Bytecode peephole optimization" This is a reland of 6612943010eca49e9ce262796e871e3d22999154 Fixed: Unaligned reads, unspecified evaluation order. Original change's description: > [regexp] Bytecode peephole optimization > > Bytecodes used by the regular expression interpreter often occur in > specific sequences. The number of dispatches in the interpreter can be > reduced if those sequences are combined into a single bytecode. > > This CL adds a peephole optimization pass for regexp bytecodes. > This pass checks the generated bytecode for pre-defined sequences that > can be merged into a single bytecode. > > With the currently implemented bytecode sequences a speedup of 1.12x on > regex-dna and octane-regexp is achieved. > > Bug: v8:9330 > Change-Id: I827f93273a5848e5963c7e3329daeb898995d151 > Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1813743 > Commit-Queue: Patrick Thier <pthier@google.com> > Reviewed-by: Peter Marshall <petermarshall@chromium.org> > Reviewed-by: Jakob Gruber <jgruber@chromium.org> > Cr-Commit-Position: refs/heads/master@{#63992} Cq-Include-Trybots: luci.v8.try:v8_linux64_ubsan_rel_ng Cq-Include-Trybots: luci.v8.try:v8_linux_gcc_rel Bug: v8:9330,chromium:1008502,chromium:1008631 Change-Id: Ib9fc395b6809aa1debdb54d9fba5b7f09a235e5b Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1828917 Reviewed-by: Peter Marshall <petermarshall@chromium.org> Reviewed-by: Jakob Gruber <jgruber@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#64064}
2019-10-01 11:55:16 +00:00
// Test bytecode peephole optimization
void CreatePeepholeNoChangeBytecode(RegExpMacroAssembler* m) {
Label fail, backtrack;
m->PushBacktrack(&fail);
m->CheckNotAtStart(0, nullptr);
m->LoadCurrentCharacter(2, nullptr);
m->CheckNotCharacter('o', nullptr);
m->LoadCurrentCharacter(1, nullptr, false);
m->CheckNotCharacter('o', nullptr);
m->LoadCurrentCharacter(0, nullptr, false);
m->CheckNotCharacter('f', nullptr);
m->WriteCurrentPositionToRegister(0, 0);
m->WriteCurrentPositionToRegister(1, 3);
m->AdvanceCurrentPosition(3);
m->PushBacktrack(&backtrack);
m->Succeed();
m->Bind(&backtrack);
m->Backtrack();
m->Bind(&fail);
m->Fail();
}
TEST(PeepholeNoChange) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeNoChangeBytecode(&orig);
CreatePeepholeNoChangeBytecode(&opt);
Handle<String> source = factory->NewStringFromStaticChars("^foo");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
byte* byte_array = array->GetDataStartAddress();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
byte* byte_array_optimized = array_optimized->GetDataStartAddress();
CHECK_EQ(0, memcmp(byte_array, byte_array_optimized, length));
}
void CreatePeepholeSkipUntilCharBytecode(RegExpMacroAssembler* m) {
Label start;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacter('x', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
}
TEST(PeepholeSkipUntilChar) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilCharBytecode(&orig);
CreatePeepholeSkipUntilCharBytecode(&opt);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) +
RegExpBytecodeLength(BC_CHECK_CHAR) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_CHAR, array_optimized->get(0));
CHECK_EQ(BC_POP_BT,
array_optimized->get(RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR)));
}
void CreatePeepholeSkipUntilBitInTableBytecode(RegExpMacroAssembler* m,
Factory* factory) {
Handle<ByteArray> bit_table = factory->NewByteArray(
RegExpMacroAssembler::kTableSize, AllocationType::kOld);
for (uint32_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
bit_table->set(i, 0);
}
Label start;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckBitInTable(bit_table, nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
}
TEST(PeepholeSkipUntilBitInTable) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilBitInTableBytecode(&orig, factory);
CreatePeepholeSkipUntilBitInTableBytecode(&opt, factory);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) +
RegExpBytecodeLength(BC_CHECK_BIT_IN_TABLE) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected =
RegExpBytecodeLength(BC_SKIP_UNTIL_BIT_IN_TABLE) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_BIT_IN_TABLE, array_optimized->get(0));
CHECK_EQ(BC_POP_BT, array_optimized->get(
RegExpBytecodeLength(BC_SKIP_UNTIL_BIT_IN_TABLE)));
}
void CreatePeepholeSkipUntilCharPosCheckedBytecode(RegExpMacroAssembler* m) {
Label start;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true, 1, 2);
m->CheckCharacter('x', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
}
TEST(PeepholeSkipUntilCharPosChecked) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilCharPosCheckedBytecode(&orig);
CreatePeepholeSkipUntilCharPosCheckedBytecode(&opt);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_CHECK_CURRENT_POSITION) +
RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR_UNCHECKED) +
RegExpBytecodeLength(BC_CHECK_CHAR) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected =
RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_POS_CHECKED) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_CHAR_POS_CHECKED, array_optimized->get(0));
CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength(
BC_SKIP_UNTIL_CHAR_POS_CHECKED)));
}
void CreatePeepholeSkipUntilCharAndBytecode(RegExpMacroAssembler* m) {
Label start;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true, 1, 2);
m->CheckCharacterAfterAnd('x', 0xFF, nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
}
TEST(PeepholeSkipUntilCharAnd) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilCharAndBytecode(&orig);
CreatePeepholeSkipUntilCharAndBytecode(&opt);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_CHECK_CURRENT_POSITION) +
RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR_UNCHECKED) +
RegExpBytecodeLength(BC_AND_CHECK_CHAR) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_AND) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_CHAR_AND, array_optimized->get(0));
CHECK_EQ(BC_POP_BT,
array_optimized->get(RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_AND)));
}
void CreatePeepholeSkipUntilCharOrCharBytecode(RegExpMacroAssembler* m) {
Label start;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacter('x', nullptr);
m->CheckCharacter('y', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
}
TEST(PeepholeSkipUntilCharOrChar) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilCharOrCharBytecode(&orig);
CreatePeepholeSkipUntilCharOrCharBytecode(&opt);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) +
RegExpBytecodeLength(BC_CHECK_CHAR) +
RegExpBytecodeLength(BC_CHECK_CHAR) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected =
RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_OR_CHAR) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_CHAR_OR_CHAR, array_optimized->get(0));
CHECK_EQ(BC_POP_BT, array_optimized->get(
RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_OR_CHAR)));
}
void CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(RegExpMacroAssembler* m,
Factory* factory) {
Handle<ByteArray> bit_table = factory->NewByteArray(
RegExpMacroAssembler::kTableSize, AllocationType::kOld);
for (uint32_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
bit_table->set(i, 0);
}
Label start, end, advance;
m->Bind(&start);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacterGT('x', nullptr);
m->CheckBitInTable(bit_table, &advance);
m->GoTo(&end);
m->Bind(&advance);
m->AdvanceCurrentPosition(1);
m->GoTo(&start);
m->Bind(&end);
}
TEST(PeepholeSkipUntilGtOrNotBitInTable) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(&orig, factory);
CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(&opt, factory);
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
int length = array->length();
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
int length_optimized = array_optimized->length();
int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) +
RegExpBytecodeLength(BC_CHECK_GT) +
RegExpBytecodeLength(BC_CHECK_BIT_IN_TABLE) +
RegExpBytecodeLength(BC_GOTO) +
RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) +
RegExpBytecodeLength(BC_POP_BT);
int length_optimized_expected =
RegExpBytecodeLength(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE) +
RegExpBytecodeLength(BC_POP_BT);
CHECK_EQ(length, length_expected);
CHECK_EQ(length_optimized, length_optimized_expected);
CHECK_EQ(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE, array_optimized->get(0));
CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength(
BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE)));
}
void CreatePeepholeLabelFixupsInsideBytecode(RegExpMacroAssembler* m,
Label* dummy_before,
Label* dummy_after,
Label* dummy_inside) {
Label loop;
m->Bind(dummy_before);
m->LoadCurrentCharacter(0, dummy_before);
m->CheckCharacter('a', dummy_after);
m->CheckCharacter('b', dummy_inside);
m->Bind(&loop);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacter('x', nullptr);
m->Bind(dummy_inside);
m->CheckCharacter('y', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&loop);
m->Bind(dummy_after);
m->LoadCurrentCharacter(0, dummy_before);
m->CheckCharacter('a', dummy_after);
m->CheckCharacter('b', dummy_inside);
}
TEST(PeepholeLabelFixupsInside) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
{
Label dummy_before, dummy_after, dummy_inside;
CreatePeepholeLabelFixupsInsideBytecode(&opt, &dummy_before, &dummy_after,
&dummy_inside);
}
Label dummy_before, dummy_after, dummy_inside;
CreatePeepholeLabelFixupsInsideBytecode(&orig, &dummy_before, &dummy_after,
&dummy_inside);
CHECK_EQ(0x00, dummy_before.pos());
CHECK_EQ(0x28, dummy_inside.pos());
CHECK_EQ(0x38, dummy_after.pos());
const Label* labels[] = {&dummy_before, &dummy_after, &dummy_inside};
const int label_positions[4][3] = {
{0x04, 0x3C}, // dummy_before
{0x0C, 0x44}, // dummy after
{0x14, 0x4C} // dummy inside
};
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
for (int label_idx = 0; label_idx < 3; label_idx++) {
for (int pos_idx = 0; pos_idx < 2; pos_idx++) {
CHECK_EQ(labels[label_idx]->pos(),
array->get(label_positions[label_idx][pos_idx]));
}
}
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
const int pos_fixups[] = {
0, // Position before optimization should be unchanged.
4, // Position after first replacement should be 4 (optimized size (20) -
// original size (32) + preserve length (16)).
};
const int target_fixups[] = {
0, // dummy_before should be unchanged
4, // dummy_inside should be 4
4 // dummy_after should be 4
};
for (int label_idx = 0; label_idx < 3; label_idx++) {
for (int pos_idx = 0; pos_idx < 2; pos_idx++) {
int label_pos = label_positions[label_idx][pos_idx] + pos_fixups[pos_idx];
int jump_address = *reinterpret_cast<uint32_t*>(
array_optimized->GetDataStartAddress() + label_pos);
int expected_jump_address =
labels[label_idx]->pos() + target_fixups[label_idx];
CHECK_EQ(expected_jump_address, jump_address);
}
}
}
void CreatePeepholeLabelFixupsComplexBytecode(RegExpMacroAssembler* m,
Label* dummy_before,
Label* dummy_between,
Label* dummy_after,
Label* dummy_inside) {
Label loop1, loop2;
m->Bind(dummy_before);
m->LoadCurrentCharacter(0, dummy_before);
m->CheckCharacter('a', dummy_between);
m->CheckCharacter('b', dummy_after);
m->CheckCharacter('c', dummy_inside);
m->Bind(&loop1);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacter('x', nullptr);
m->CheckCharacter('y', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&loop1);
m->Bind(dummy_between);
m->LoadCurrentCharacter(0, dummy_before);
m->CheckCharacter('a', dummy_between);
m->CheckCharacter('b', dummy_after);
m->CheckCharacter('c', dummy_inside);
m->Bind(&loop2);
m->LoadCurrentCharacter(0, nullptr, true);
m->CheckCharacter('x', nullptr);
m->Bind(dummy_inside);
m->CheckCharacter('y', nullptr);
m->AdvanceCurrentPosition(1);
m->GoTo(&loop2);
m->Bind(dummy_after);
m->LoadCurrentCharacter(0, dummy_before);
m->CheckCharacter('a', dummy_between);
m->CheckCharacter('b', dummy_after);
m->CheckCharacter('c', dummy_inside);
}
TEST(PeepholeLabelFixupsComplex) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
RegExpBytecodeGenerator orig(CcTest::i_isolate(), &zone);
RegExpBytecodeGenerator opt(CcTest::i_isolate(), &zone);
{
Label dummy_before, dummy_between, dummy_after, dummy_inside;
CreatePeepholeLabelFixupsComplexBytecode(
&opt, &dummy_before, &dummy_between, &dummy_after, &dummy_inside);
}
Label dummy_before, dummy_between, dummy_after, dummy_inside;
CreatePeepholeLabelFixupsComplexBytecode(&orig, &dummy_before, &dummy_between,
&dummy_after, &dummy_inside);
CHECK_EQ(0x00, dummy_before.pos());
CHECK_EQ(0x40, dummy_between.pos());
CHECK_EQ(0x70, dummy_inside.pos());
CHECK_EQ(0x80, dummy_after.pos());
const Label* labels[] = {&dummy_before, &dummy_between, &dummy_after,
&dummy_inside};
const int label_positions[4][3] = {
{0x04, 0x44, 0x84}, // dummy_before
{0x0C, 0x4C, 0x8C}, // dummy between
{0x14, 0x54, 0x94}, // dummy after
{0x1C, 0x5C, 0x9C} // dummy inside
};
Handle<String> source = factory->NewStringFromStaticChars("dummy");
i::FLAG_regexp_peephole_optimization = false;
Handle<ByteArray> array = Handle<ByteArray>::cast(orig.GetCode(source));
for (int label_idx = 0; label_idx < 4; label_idx++) {
for (int pos_idx = 0; pos_idx < 3; pos_idx++) {
CHECK_EQ(labels[label_idx]->pos(),
array->get(label_positions[label_idx][pos_idx]));
}
}
i::FLAG_regexp_peephole_optimization = true;
Handle<ByteArray> array_optimized =
Handle<ByteArray>::cast(opt.GetCode(source));
const int pos_fixups[] = {
0, // Position before optimization should be unchanged.
-12, // Position after first replacement should be -12 (optimized size =
// 20 - 32 = original size).
-8 // Position after second replacement should be -8 (-12 from first
// optimization -12 from second optimization + 16 preserved
// bytecodes).
};
const int target_fixups[] = {
0, // dummy_before should be unchanged
-12, // dummy_between should be -12
-8, // dummy_inside should be -8
-8 // dummy_after should be -8
};
for (int label_idx = 0; label_idx < 4; label_idx++) {
for (int pos_idx = 0; pos_idx < 3; pos_idx++) {
int label_pos = label_positions[label_idx][pos_idx] + pos_fixups[pos_idx];
int jump_address = *reinterpret_cast<uint32_t*>(
array_optimized->GetDataStartAddress() + label_pos);
int expected_jump_address =
labels[label_idx]->pos() + target_fixups[label_idx];
CHECK_EQ(expected_jump_address, jump_address);
}
}
}
TEST(UnicodePropertyEscapeCodeSize) {
i::FlagScope<bool> f(&v8::internal::FLAG_regexp_tier_up, false);
LocalContext env;
v8::HandleScope scope(CcTest::isolate());
i::Handle<i::JSRegExp> re = Utils::OpenHandle(
*CompileRun("const r = /\\p{L}\\p{L}\\p{L}/u; r.exec('\\u200b'); r;")
.As<v8::RegExp>());
static constexpr int kMaxSize = 200 * KB;
static constexpr bool kIsNotLatin1 = false;
Object maybe_code = re->Code(kIsNotLatin1);
Object maybe_bytecode = re->Bytecode(kIsNotLatin1);
if (maybe_bytecode.IsByteArray()) {
// On x64, excessive inlining produced >250KB.
CHECK_LT(ByteArray::cast(maybe_bytecode).Size(), kMaxSize);
} else if (maybe_code.IsCode()) {
// On x64, excessive inlining produced >360KB.
CHECK_LT(Code::cast(maybe_code).Size(), kMaxSize);
CHECK_EQ(Code::cast(maybe_code).kind(), CodeKind::REGEXP);
} else {
UNREACHABLE();
}
}
#undef CHECK_PARSE_ERROR
#undef CHECK_SIMPLE
#undef CHECK_MIN_MAX
} // namespace test_regexp
} // namespace internal
} // namespace v8