v8/include/v8-fast-api-calls.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

420 lines
15 KiB
C
Raw Normal View History

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/**
* This file provides additional API on top of the default one for making
* API calls, which come from embedder C++ functions. The functions are being
* called directly from optimized code, doing all the necessary typechecks
* in the compiler itself, instead of on the embedder side. Hence the "fast"
* in the name. Example usage might look like:
*
* \code
* void FastMethod(int param, bool another_param);
*
* v8::FunctionTemplate::New(isolate, SlowCallback, data,
* signature, length, constructor_behavior
* side_effect_type,
* &v8::CFunction::Make(FastMethod));
* \endcode
*
* By design, fast calls are limited by the following requirements, which
* the embedder should enforce themselves:
* - they should not allocate on the JS heap;
* - they should not trigger JS execution.
* To enforce them, the embedder could use the existing
* v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
* Blink's NoAllocationScope:
* https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
*
* Due to these limitations, it's not directly possible to report errors by
* throwing a JS exception or to otherwise do an allocation. There is an
* alternative way of creating fast calls that supports falling back to the
* slow call and then performing the necessary allocation. When one creates
* the fast method by using CFunction::MakeWithFallbackSupport instead of
* CFunction::Make, the fast callback gets as last parameter an output variable,
* through which it can request falling back to the slow call. So one might
* declare their method like:
*
* \code
* void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
* \endcode
*
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return from
* the fast method. Then V8 checks the value of options.fallback and if it's
* true, falls back to executing the SlowCallback, which is capable of reporting
* the error (either by throwing a JS exception or logging to the console) or
* doing the allocation. It's the embedder's responsibility to ensure that the
* fast callback is idempotent up to the point where error and fallback
* conditions are checked, because otherwise executing the slow callback might
* produce visible side-effects twice.
*
* An example for custom embedder type support might employ a way to wrap/
* unwrap various C++ types in JSObject instances, e.g:
*
* \code
*
* // Helper method with a check for field count.
* template <typename T, int offset>
* inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
* assert(offset < wrapper->InternalFieldCount());
* return reinterpret_cast<T*>(
* wrapper->GetAlignedPointerFromInternalField(offset));
* }
*
* class CustomEmbedderType {
* public:
* // Returns the raw C object from a wrapper JS object.
* static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
* return GetInternalField<CustomEmbedderType,
* kV8EmbedderWrapperObjectIndex>(wrapper);
* }
* static void FastMethod(v8::ApiObject receiver_obj, int param) {
* v8::Object* v8_object = reinterpret_cast<v8::Object*>(&api_object);
* CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
* receiver_obj->GetAlignedPointerFromInternalField(
* kV8EmbedderWrapperObjectIndex));
*
* // Type checks are already done by the optimized code.
* // Then call some performance-critical method like:
* // receiver->Method(param);
* }
*
* static void SlowMethod(
* const v8::FunctionCallbackInfo<v8::Value>& info) {
* v8::Local<v8::Object> instance =
* v8::Local<v8::Object>::Cast(info.Holder());
* CustomEmbedderType* receiver = Unwrap(instance);
* // TODO: Do type checks and extract {param}.
* receiver->Method(param);
* }
* };
*
* // TODO(mslekova): Clean-up these constants
* // The constants kV8EmbedderWrapperTypeIndex and
* // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
* // struct and the native object, when expressed as internal field indices
* // within a JSObject. The existance of this helper function assumes that
* // all embedder objects have their JSObject-side type info at the same
* // offset, but this is not a limitation of the API itself. For a detailed
* // use case, see the third example.
* static constexpr int kV8EmbedderWrapperTypeIndex = 0;
* static constexpr int kV8EmbedderWrapperObjectIndex = 1;
*
* // The following setup function can be templatized based on
* // the {embedder_object} argument.
* void SetupCustomEmbedderObject(v8::Isolate* isolate,
* v8::Local<v8::Context> context,
* CustomEmbedderType* embedder_object) {
* isolate->set_embedder_wrapper_type_index(
* kV8EmbedderWrapperTypeIndex);
* isolate->set_embedder_wrapper_object_index(
* kV8EmbedderWrapperObjectIndex);
*
* v8::CFunction c_func =
* MakeV8CFunction(CustomEmbedderType::FastMethod);
*
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::New(
* isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
* v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
* v8::SideEffectType::kHasSideEffect, &c_func);
*
* v8::Local<v8::ObjectTemplate> object_template =
* v8::ObjectTemplate::New(isolate);
* object_template->SetInternalFieldCount(
* kV8EmbedderWrapperObjectIndex + 1);
* object_template->Set(isolate, "method", method_template);
*
* // Instantiate the wrapper JS object.
* v8::Local<v8::Object> object =
* object_template->NewInstance(context).ToLocalChecked();
* object->SetAlignedPointerInInternalField(
* kV8EmbedderWrapperObjectIndex,
* reinterpret_cast<void*>(embedder_object));
*
* // TODO: Expose {object} where it's necessary.
* }
* \endcode
*
* For instance if {object} is exposed via a global "obj" variable,
* one could write in JS:
* function hot_func() {
* obj.method(42);
* }
* and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
* will be called instead of the slow version, with the following arguments:
* receiver := the {embedder_object} from above
* param := 42
*
* Currently supported return types:
* - void
* - bool
* - int32_t
* - uint32_t
* - float32_t
* - float64_t
* Currently supported argument types:
* - pointer to an embedder type
* - bool
* - int32_t
* - uint32_t
* - int64_t
* - uint64_t
* - float32_t
* - float64_t
*
* The 64-bit integer types currently have the IDL (unsigned) long long
* semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
* In the future we'll extend the API to also provide conversions from/to
* BigInt to preserve full precision.
* The floating point types currently have the IDL (unrestricted) semantics,
* which is the only one used by WebGL. We plan to add support also for
* restricted floats/doubles, similarly to the BigInt conversion policies.
* We also differ from the specific NaN bit pattern that WebIDL prescribes
* (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
* passes NaN values as-is, i.e. doesn't normalize them.
*
* To be supported types:
* - arrays of C types
* - arrays of embedder types
*/
#ifndef INCLUDE_V8_FAST_API_CALLS_H_
#define INCLUDE_V8_FAST_API_CALLS_H_
#include <stddef.h>
#include <stdint.h>
#include "v8config.h" // NOLINT(build/include_directory)
namespace v8 {
class CTypeInfo {
public:
enum class Type : uint8_t {
kVoid,
kBool,
kInt32,
kUint32,
kInt64,
kUint64,
kFloat32,
kFloat64,
kV8Value,
};
// kCallbackOptionsType and kInvalidType are not part of the Type enum
// because they are only used internally. Use values 255 and 254 that
// are larger than any valid Type enum.
static constexpr Type kCallbackOptionsType = Type(255);
static constexpr Type kInvalidType = Type(254);
enum class ArgFlags : uint8_t {
kNone = 0,
};
explicit constexpr CTypeInfo(Type type, ArgFlags flags = ArgFlags::kNone)
: type_(type), flags_(flags) {}
constexpr Type GetType() const { return type_; }
constexpr ArgFlags GetFlags() const { return flags_; }
static const CTypeInfo& Invalid() {
static CTypeInfo invalid = CTypeInfo(kInvalidType);
return invalid;
}
private:
Type type_;
ArgFlags flags_;
};
class CFunctionInfo {
public:
virtual const CTypeInfo& ReturnInfo() const = 0;
virtual unsigned int ArgumentCount() const = 0;
virtual const CTypeInfo& ArgumentInfo(unsigned int index) const = 0;
virtual bool HasOptions() const = 0;
};
struct ApiObject {
uintptr_t address;
};
/**
* A struct which may be passed to a fast call callback, like so:
* \code
* void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
* \endcode
*/
struct FastApiCallbackOptions {
/**
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return
* from the fast method. Then V8 checks the value of options.fallback and if
* it's true, falls back to executing the SlowCallback, which is capable of
* reporting the error (either by throwing a JS exception or logging to the
* console) or doing the allocation. It's the embedder's responsibility to
* ensure that the fast callback is idempotent up to the point where error and
* fallback conditions are checked, because otherwise executing the slow
* callback might produce visible side-effects twice.
*/
bool fallback;
/**
* The `data` passed to the FunctionTemplate constructor, or `undefined`.
*/
const ApiObject data;
};
namespace internal {
template <typename T>
struct GetCType;
#define SPECIALIZE_GET_C_TYPE_FOR(ctype, ctypeinfo) \
template <> \
struct GetCType<ctype> { \
static constexpr CTypeInfo Get() { \
return CTypeInfo(CTypeInfo::Type::ctypeinfo); \
} \
};
#define SUPPORTED_C_TYPES(V) \
V(void, kVoid) \
V(bool, kBool) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64) \
V(ApiObject, kV8Value)
SUPPORTED_C_TYPES(SPECIALIZE_GET_C_TYPE_FOR)
template <>
struct GetCType<FastApiCallbackOptions&> {
static constexpr CTypeInfo Get() {
return CTypeInfo(CTypeInfo::kCallbackOptionsType);
}
};
// Helper to count the number of occurances of `T` in `List`
template <typename T, typename... List>
struct count : std::integral_constant<int, 0> {};
template <typename T, typename... Args>
struct count<T, T, Args...>
: std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
template <typename T, typename U, typename... Args>
struct count<T, U, Args...> : count<T, Args...> {};
template <typename R, typename... Args>
class CFunctionInfoImpl : public CFunctionInfo {
public:
static constexpr int kOptionsArgCount =
count<FastApiCallbackOptions&, Args...>();
static constexpr int kReceiverCount = 1;
CFunctionInfoImpl()
: return_info_(internal::GetCType<R>::Get()),
arg_count_(sizeof...(Args) - kOptionsArgCount),
arg_info_{internal::GetCType<Args>::Get()...} {
static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
"Only one options parameter is supported.");
static_assert(sizeof...(Args) >= kOptionsArgCount + kReceiverCount,
"The receiver or the fallback argument is missing.");
constexpr CTypeInfo::Type type = internal::GetCType<R>::Get().GetType();
static_assert(type == CTypeInfo::Type::kVoid ||
type == CTypeInfo::Type::kBool ||
type == CTypeInfo::Type::kInt32 ||
type == CTypeInfo::Type::kUint32 ||
type == CTypeInfo::Type::kFloat32 ||
type == CTypeInfo::Type::kFloat64,
"64-bit int and api object values are not currently "
"supported return types.");
}
const CTypeInfo& ReturnInfo() const override { return return_info_; }
unsigned int ArgumentCount() const override { return arg_count_; }
const CTypeInfo& ArgumentInfo(unsigned int index) const override {
if (index >= ArgumentCount()) {
return CTypeInfo::Invalid();
}
return arg_info_[index];
}
bool HasOptions() const override { return kOptionsArgCount == 1; }
private:
const CTypeInfo return_info_;
const unsigned int arg_count_;
const CTypeInfo arg_info_[sizeof...(Args)];
};
} // namespace internal
class V8_EXPORT CFunction {
public:
constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
const CTypeInfo& ArgumentInfo(unsigned int index) const {
return type_info_->ArgumentInfo(index);
}
unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
const void* GetAddress() const { return address_; }
const CFunctionInfo* GetTypeInfo() const { return type_info_; }
template <typename F>
static CFunction Make(F* func) {
return ArgUnwrap<F*>::Make(func);
}
template <typename F>
V8_DEPRECATED("Use CFunction::Make instead.")
static CFunction MakeWithFallbackSupport(F* func) {
return ArgUnwrap<F*>::Make(func);
}
template <typename F>
static CFunction Make(F* func, const CFunctionInfo* type_info) {
return CFunction(reinterpret_cast<const void*>(func), type_info);
}
private:
const void* address_;
const CFunctionInfo* type_info_;
CFunction(const void* address, const CFunctionInfo* type_info);
template <typename R, typename... Args>
static CFunctionInfo* GetCFunctionInfo() {
static internal::CFunctionInfoImpl<R, Args...> instance;
return &instance;
}
template <typename F>
class ArgUnwrap {
static_assert(sizeof(F) != sizeof(F),
"CFunction must be created from a function pointer.");
};
template <typename R, typename... Args>
class ArgUnwrap<R (*)(Args...)> {
public:
static CFunction Make(R (*func)(Args...)) {
return CFunction(reinterpret_cast<const void*>(func),
GetCFunctionInfo<R, Args...>());
}
};
};
} // namespace v8
#endif // INCLUDE_V8_FAST_API_CALLS_H_