v8/src/preparser.h

1581 lines
53 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_PREPARSER_H
#define V8_PREPARSER_H
#include "func-name-inferrer.h"
#include "hashmap.h"
#include "scopes.h"
#include "token.h"
#include "scanner.h"
#include "v8.h"
namespace v8 {
namespace internal {
// Common base class shared between parser and pre-parser. Traits encapsulate
// the differences between Parser and PreParser:
// - Return types: For example, Parser functions return Expression* and
// PreParser functions return PreParserExpression.
// - Creating parse tree nodes: Parser generates an AST during the recursive
// descent. PreParser doesn't create a tree. Instead, it passes around minimal
// data objects (PreParserExpression, PreParserIdentifier etc.) which contain
// just enough data for the upper layer functions. PreParserFactory is
// responsible for creating these dummy objects. It provides a similar kind of
// interface as AstNodeFactory, so ParserBase doesn't need to care which one is
// used.
// - Miscellanous other tasks interleaved with the recursive descent. For
// example, Parser keeps track of which function literals should be marked as
// pretenured, and PreParser doesn't care.
// The traits are expected to contain the following typedefs:
// struct Traits {
// // In particular...
// struct Type {
// // Used by FunctionState and BlockState.
// typedef Scope;
// typedef GeneratorVariable;
// typedef Zone;
// // Return types for traversing functions.
// typedef Identifier;
// typedef Expression;
// typedef FunctionLiteral;
// typedef ObjectLiteralProperty;
// typedef Literal;
// typedef ExpressionList;
// typedef PropertyList;
// // For constructing objects returned by the traversing functions.
// typedef Factory;
// };
// // ...
// };
template <typename Traits>
class ParserBase : public Traits {
public:
ParserBase(Scanner* scanner, uintptr_t stack_limit,
v8::Extension* extension,
typename Traits::Type::Zone* zone,
typename Traits::Type::Parser this_object)
: Traits(this_object),
parenthesized_function_(false),
scope_(NULL),
function_state_(NULL),
extension_(extension),
fni_(NULL),
scanner_(scanner),
stack_limit_(stack_limit),
stack_overflow_(false),
allow_lazy_(false),
allow_natives_syntax_(false),
allow_generators_(false),
allow_for_of_(false),
zone_(zone) { }
// Getters that indicate whether certain syntactical constructs are
// allowed to be parsed by this instance of the parser.
bool allow_lazy() const { return allow_lazy_; }
bool allow_natives_syntax() const { return allow_natives_syntax_; }
bool allow_generators() const { return allow_generators_; }
bool allow_for_of() const { return allow_for_of_; }
bool allow_modules() const { return scanner()->HarmonyModules(); }
bool allow_harmony_scoping() const { return scanner()->HarmonyScoping(); }
bool allow_harmony_numeric_literals() const {
return scanner()->HarmonyNumericLiterals();
}
// Setters that determine whether certain syntactical constructs are
// allowed to be parsed by this instance of the parser.
void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; }
void set_allow_generators(bool allow) { allow_generators_ = allow; }
void set_allow_for_of(bool allow) { allow_for_of_ = allow; }
void set_allow_modules(bool allow) { scanner()->SetHarmonyModules(allow); }
void set_allow_harmony_scoping(bool allow) {
scanner()->SetHarmonyScoping(allow);
}
void set_allow_harmony_numeric_literals(bool allow) {
scanner()->SetHarmonyNumericLiterals(allow);
}
protected:
Make strict more error messages about "eval" and "arguments" less specific. We used to have error messages which provide context, like "Variable name may not be eval or arguments in strict mode", but for other illegal words we only have non-context specific error messages like "Unexpected reserved word". Providing the context makes the code unnecessarily complex, since every individual place must remember to check for eval or arguments. This CL produces a unified error message ("Unexpected eval or arguments in strict mode"), and puts the error reporting to (Pre)Parser::ParseIdentifier. Notes: - The module feature is so experimental, that I decided to not allow "eval" or "arguments" as module-related identifiers in the strict mode (even though this check wasn't there before). - Unfortunately, there were some inconsistencies, since it was the responsibility of the caller of ParseIdentifier to check "eval" and "arguments" and some places didn't have the check for no good reason. This CL is supposed to keep backward compatibility and *not* introduce any new errors. - ECMA allows "eval" and "arguments" as labels even in strict mode. (Syntax: "LabelledStatement: Identifier : Statement", and no strict mode restrictions on Identifier are listed.) - Tests which compare error message strings will fail, and need to be updated. BUG=3126 LOG=N R=ulan@chromium.org Review URL: https://codereview.chromium.org/152813005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19112 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-02-05 16:26:48 +00:00
enum AllowEvalOrArgumentsAsIdentifier {
kAllowEvalOrArguments,
kDontAllowEvalOrArguments
};
// ---------------------------------------------------------------------------
// FunctionState and BlockState together implement the parser's scope stack.
// The parser's current scope is in scope_. BlockState and FunctionState
// constructors push on the scope stack and the destructors pop. They are also
// used to hold the parser's per-function and per-block state.
class BlockState BASE_EMBEDDED {
public:
BlockState(typename Traits::Type::Scope** scope_stack,
typename Traits::Type::Scope* scope)
: scope_stack_(scope_stack),
outer_scope_(*scope_stack),
scope_(scope) {
*scope_stack_ = scope_;
}
~BlockState() { *scope_stack_ = outer_scope_; }
private:
typename Traits::Type::Scope** scope_stack_;
typename Traits::Type::Scope* outer_scope_;
typename Traits::Type::Scope* scope_;
};
class FunctionState BASE_EMBEDDED {
public:
FunctionState(
FunctionState** function_state_stack,
typename Traits::Type::Scope** scope_stack,
typename Traits::Type::Scope* scope,
typename Traits::Type::Zone* zone = NULL);
~FunctionState();
int NextMaterializedLiteralIndex() {
return next_materialized_literal_index_++;
}
int materialized_literal_count() {
return next_materialized_literal_index_ - JSFunction::kLiteralsPrefixSize;
}
int NextHandlerIndex() { return next_handler_index_++; }
int handler_count() { return next_handler_index_; }
void AddProperty() { expected_property_count_++; }
int expected_property_count() { return expected_property_count_; }
void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
bool is_generator() const { return is_generator_; }
void set_generator_object_variable(
typename Traits::Type::GeneratorVariable* variable) {
ASSERT(variable != NULL);
ASSERT(!is_generator());
generator_object_variable_ = variable;
is_generator_ = true;
}
typename Traits::Type::GeneratorVariable* generator_object_variable()
const {
return generator_object_variable_;
}
typename Traits::Type::Factory* factory() { return &factory_; }
private:
// Used to assign an index to each literal that needs materialization in
// the function. Includes regexp literals, and boilerplate for object and
// array literals.
int next_materialized_literal_index_;
// Used to assign a per-function index to try and catch handlers.
int next_handler_index_;
// Properties count estimation.
int expected_property_count_;
// Whether the function is a generator.
bool is_generator_;
// For generators, this variable may hold the generator object. It variable
// is used by yield expressions and return statements. It is not necessary
// for generator functions to have this variable set.
Variable* generator_object_variable_;
FunctionState** function_state_stack_;
FunctionState* outer_function_state_;
typename Traits::Type::Scope** scope_stack_;
typename Traits::Type::Scope* outer_scope_;
Isolate* isolate_; // Only used by ParserTraits.
int saved_ast_node_id_; // Only used by ParserTraits.
typename Traits::Type::Factory factory_;
friend class ParserTraits;
};
Scanner* scanner() const { return scanner_; }
int position() { return scanner_->location().beg_pos; }
int peek_position() { return scanner_->peek_location().beg_pos; }
bool stack_overflow() const { return stack_overflow_; }
void set_stack_overflow() { stack_overflow_ = true; }
typename Traits::Type::Zone* zone() const { return zone_; }
INLINE(Token::Value peek()) {
if (stack_overflow_) return Token::ILLEGAL;
return scanner()->peek();
}
INLINE(Token::Value Next()) {
if (stack_overflow_) return Token::ILLEGAL;
{
int marker;
if (reinterpret_cast<uintptr_t>(&marker) < stack_limit_) {
// Any further calls to Next or peek will return the illegal token.
// The current call must return the next token, which might already
// have been peek'ed.
stack_overflow_ = true;
}
}
return scanner()->Next();
}
void Consume(Token::Value token) {
Token::Value next = Next();
USE(next);
USE(token);
ASSERT(next == token);
}
bool Check(Token::Value token) {
Token::Value next = peek();
if (next == token) {
Consume(next);
return true;
}
return false;
}
void Expect(Token::Value token, bool* ok) {
Token::Value next = Next();
if (next != token) {
ReportUnexpectedToken(next);
*ok = false;
}
}
void ExpectSemicolon(bool* ok) {
// Check for automatic semicolon insertion according to
// the rules given in ECMA-262, section 7.9, page 21.
Token::Value tok = peek();
if (tok == Token::SEMICOLON) {
Next();
return;
}
if (scanner()->HasAnyLineTerminatorBeforeNext() ||
tok == Token::RBRACE ||
tok == Token::EOS) {
return;
}
Expect(Token::SEMICOLON, ok);
}
bool peek_any_identifier() {
Token::Value next = peek();
return next == Token::IDENTIFIER ||
next == Token::FUTURE_RESERVED_WORD ||
next == Token::FUTURE_STRICT_RESERVED_WORD ||
next == Token::YIELD;
}
bool CheckContextualKeyword(Vector<const char> keyword) {
if (peek() == Token::IDENTIFIER &&
scanner()->is_next_contextual_keyword(keyword)) {
Consume(Token::IDENTIFIER);
return true;
}
return false;
}
void ExpectContextualKeyword(Vector<const char> keyword, bool* ok) {
Expect(Token::IDENTIFIER, ok);
if (!*ok) return;
if (!scanner()->is_literal_contextual_keyword(keyword)) {
ReportUnexpectedToken(scanner()->current_token());
*ok = false;
}
}
// Checks whether an octal literal was last seen between beg_pos and end_pos.
// If so, reports an error. Only called for strict mode.
void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok) {
Scanner::Location octal = scanner()->octal_position();
if (octal.IsValid() && beg_pos <= octal.beg_pos &&
octal.end_pos <= end_pos) {
ReportMessageAt(octal, "strict_octal_literal");
scanner()->clear_octal_position();
*ok = false;
}
}
// Determine precedence of given token.
static int Precedence(Token::Value token, bool accept_IN) {
if (token == Token::IN && !accept_IN)
return 0; // 0 precedence will terminate binary expression parsing
return Token::Precedence(token);
}
typename Traits::Type::Factory* factory() {
return function_state_->factory();
}
StrictMode strict_mode() { return scope_->strict_mode(); }
bool is_generator() const { return function_state_->is_generator(); }
// Report syntax errors.
void ReportMessage(const char* message, Vector<const char*> args) {
Scanner::Location source_location = scanner()->location();
Traits::ReportMessageAt(source_location, message, args);
}
void ReportMessageAt(Scanner::Location location, const char* message) {
Traits::ReportMessageAt(location, message, Vector<const char*>::empty());
}
void ReportUnexpectedToken(Token::Value token);
// Recursive descent functions:
// Parses an identifier that is valid for the current scope, in particular it
// fails on strict mode future reserved keywords in a strict scope. If
// allow_eval_or_arguments is kAllowEvalOrArguments, we allow "eval" or
// "arguments" as identifier even in strict mode (this is needed in cases like
// "var foo = eval;").
typename Traits::Type::Identifier ParseIdentifier(
AllowEvalOrArgumentsAsIdentifier,
bool* ok);
// Parses an identifier or a strict mode future reserved word, and indicate
// whether it is strict mode future reserved.
typename Traits::Type::Identifier ParseIdentifierOrStrictReservedWord(
bool* is_strict_reserved,
bool* ok);
typename Traits::Type::Identifier ParseIdentifierName(bool* ok);
// Parses an identifier and determines whether or not it is 'get' or 'set'.
typename Traits::Type::Identifier ParseIdentifierNameOrGetOrSet(bool* is_get,
bool* is_set,
bool* ok);
typename Traits::Type::Expression ParseRegExpLiteral(bool seen_equal,
bool* ok);
typename Traits::Type::Expression ParsePrimaryExpression(bool* ok);
typename Traits::Type::Expression ParseExpression(bool accept_IN, bool* ok);
typename Traits::Type::Expression ParseArrayLiteral(bool* ok);
typename Traits::Type::Expression ParseObjectLiteral(bool* ok);
typename Traits::Type::ExpressionList ParseArguments(bool* ok);
// Used to detect duplicates in object literals. Each of the values
// kGetterProperty, kSetterProperty and kValueProperty represents
// a type of object literal property. When parsing a property, its
// type value is stored in the DuplicateFinder for the property name.
// Values are chosen so that having intersection bits means the there is
// an incompatibility.
// I.e., you can add a getter to a property that already has a setter, since
// kGetterProperty and kSetterProperty doesn't intersect, but not if it
// already has a getter or a value. Adding the getter to an existing
// setter will store the value (kGetterProperty | kSetterProperty), which
// is incompatible with adding any further properties.
enum PropertyKind {
kNone = 0,
// Bit patterns representing different object literal property types.
kGetterProperty = 1,
kSetterProperty = 2,
kValueProperty = 7,
// Helper constants.
kValueFlag = 4
};
// Validation per ECMA 262 - 11.1.5 "Object Initialiser".
class ObjectLiteralChecker {
public:
ObjectLiteralChecker(ParserBase* parser, StrictMode strict_mode)
: parser_(parser),
finder_(scanner()->unicode_cache()),
strict_mode_(strict_mode) { }
void CheckProperty(Token::Value property, PropertyKind type, bool* ok);
private:
ParserBase* parser() const { return parser_; }
Scanner* scanner() const { return parser_->scanner(); }
// Checks the type of conflict based on values coming from PropertyType.
bool HasConflict(PropertyKind type1, PropertyKind type2) {
return (type1 & type2) != 0;
}
bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) {
return ((type1 & type2) & kValueFlag) != 0;
}
bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) {
return ((type1 ^ type2) & kValueFlag) != 0;
}
bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) {
return ((type1 | type2) & kValueFlag) == 0;
}
ParserBase* parser_;
DuplicateFinder finder_;
StrictMode strict_mode_;
};
// If true, the next (and immediately following) function literal is
// preceded by a parenthesis.
// Heuristically that means that the function will be called immediately,
// so never lazily compile it.
bool parenthesized_function_;
typename Traits::Type::Scope* scope_; // Scope stack.
FunctionState* function_state_; // Function state stack.
v8::Extension* extension_;
FuncNameInferrer* fni_;
private:
Scanner* scanner_;
uintptr_t stack_limit_;
bool stack_overflow_;
bool allow_lazy_;
bool allow_natives_syntax_;
bool allow_generators_;
bool allow_for_of_;
typename Traits::Type::Zone* zone_; // Only used by Parser.
};
class PreParserIdentifier {
public:
static PreParserIdentifier Default() {
return PreParserIdentifier(kUnknownIdentifier);
}
static PreParserIdentifier Eval() {
return PreParserIdentifier(kEvalIdentifier);
}
static PreParserIdentifier Arguments() {
return PreParserIdentifier(kArgumentsIdentifier);
}
static PreParserIdentifier FutureReserved() {
return PreParserIdentifier(kFutureReservedIdentifier);
}
static PreParserIdentifier FutureStrictReserved() {
return PreParserIdentifier(kFutureStrictReservedIdentifier);
}
static PreParserIdentifier Yield() {
return PreParserIdentifier(kYieldIdentifier);
}
bool IsEval() { return type_ == kEvalIdentifier; }
bool IsArguments() { return type_ == kArgumentsIdentifier; }
bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; }
bool IsYield() { return type_ == kYieldIdentifier; }
bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; }
bool IsFutureStrictReserved() {
return type_ == kFutureStrictReservedIdentifier;
}
bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; }
private:
enum Type {
kUnknownIdentifier,
kFutureReservedIdentifier,
kFutureStrictReservedIdentifier,
kYieldIdentifier,
kEvalIdentifier,
kArgumentsIdentifier
};
explicit PreParserIdentifier(Type type) : type_(type) {}
Type type_;
friend class PreParserExpression;
};
// Bits 0 and 1 are used to identify the type of expression:
// If bit 0 is set, it's an identifier.
// if bit 1 is set, it's a string literal.
// If neither is set, it's no particular type, and both set isn't
// use yet.
class PreParserExpression {
public:
static PreParserExpression Default() {
return PreParserExpression(kUnknownExpression);
}
static PreParserExpression FromIdentifier(PreParserIdentifier id) {
return PreParserExpression(kIdentifierFlag |
(id.type_ << kIdentifierShift));
}
static PreParserExpression StringLiteral() {
return PreParserExpression(kUnknownStringLiteral);
}
static PreParserExpression UseStrictStringLiteral() {
return PreParserExpression(kUseStrictString);
}
static PreParserExpression This() {
return PreParserExpression(kThisExpression);
}
static PreParserExpression ThisProperty() {
return PreParserExpression(kThisPropertyExpression);
}
static PreParserExpression StrictFunction() {
return PreParserExpression(kStrictFunctionExpression);
}
bool IsIdentifier() { return (code_ & kIdentifierFlag) != 0; }
// Only works corretly if it is actually an identifier expression.
PreParserIdentifier AsIdentifier() {
return PreParserIdentifier(
static_cast<PreParserIdentifier::Type>(code_ >> kIdentifierShift));
}
bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; }
bool IsUseStrictLiteral() {
return (code_ & kStringLiteralMask) == kUseStrictString;
}
bool IsThis() { return code_ == kThisExpression; }
bool IsThisProperty() { return code_ == kThisPropertyExpression; }
bool IsStrictFunction() { return code_ == kStrictFunctionExpression; }
private:
// First two/three bits are used as flags.
// Bit 0 and 1 represent identifiers or strings literals, and are
// mutually exclusive, but can both be absent.
enum {
kUnknownExpression = 0,
// Identifiers
kIdentifierFlag = 1, // Used to detect labels.
kIdentifierShift = 3,
kStringLiteralFlag = 2, // Used to detect directive prologue.
kUnknownStringLiteral = kStringLiteralFlag,
kUseStrictString = kStringLiteralFlag | 8,
kStringLiteralMask = kUseStrictString,
// Below here applies if neither identifier nor string literal.
kThisExpression = 4,
kThisPropertyExpression = 8,
kStrictFunctionExpression = 12
};
explicit PreParserExpression(int expression_code) : code_(expression_code) {}
int code_;
};
// PreParserExpressionList doesn't actually store the expressions because
// PreParser doesn't need to.
class PreParserExpressionList {
public:
// These functions make list->Add(some_expression) work (and do nothing).
PreParserExpressionList() : length_(0) {}
PreParserExpressionList* operator->() { return this; }
void Add(PreParserExpression, void*) { ++length_; }
int length() const { return length_; }
private:
int length_;
};
class PreParserScope {
public:
explicit PreParserScope(PreParserScope* outer_scope, ScopeType scope_type)
: scope_type_(scope_type) {
if (outer_scope) {
scope_inside_with_ = outer_scope->scope_inside_with_ || is_with_scope();
strict_mode_ = outer_scope->strict_mode();
} else {
scope_inside_with_ = is_with_scope();
strict_mode_ = SLOPPY;
}
}
bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
bool inside_with() const {
return scope_inside_with_;
}
ScopeType type() { return scope_type_; }
StrictMode strict_mode() const { return strict_mode_; }
void SetStrictMode(StrictMode strict_mode) { strict_mode_ = strict_mode; }
private:
ScopeType scope_type_;
bool scope_inside_with_;
StrictMode strict_mode_;
};
class PreParserFactory {
public:
explicit PreParserFactory(void* extra_param) {}
PreParserExpression NewRegExpLiteral(PreParserIdentifier js_pattern,
PreParserIdentifier js_flags,
int literal_index,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewBinaryOperation(Token::Value op,
PreParserExpression left,
PreParserExpression right, int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewArrayLiteral(PreParserExpressionList values,
int literal_index,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewObjectLiteralProperty(bool is_getter,
PreParserExpression value,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewObjectLiteralProperty(PreParserExpression key,
PreParserExpression value) {
return PreParserExpression::Default();
}
PreParserExpression NewObjectLiteral(PreParserExpressionList properties,
int literal_index,
int boilerplate_properties,
bool has_function,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewLiteral(PreParserIdentifier identifier,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewNumberLiteral(double number,
int pos) {
return PreParserExpression::Default();
}
};
class PreParser;
class PreParserTraits {
public:
struct Type {
// TODO(marja): To be removed. The Traits object should contain all the data
// it needs.
typedef PreParser* Parser;
// Used by FunctionState and BlockState.
typedef PreParserScope Scope;
// PreParser doesn't need to store generator variables.
typedef void GeneratorVariable;
// No interaction with Zones.
typedef void Zone;
// Return types for traversing functions.
typedef PreParserIdentifier Identifier;
typedef PreParserExpression Expression;
typedef PreParserExpression FunctionLiteral;
typedef PreParserExpression ObjectLiteralProperty;
typedef PreParserExpression Literal;
typedef PreParserExpressionList ExpressionList;
typedef PreParserExpressionList PropertyList;
// For constructing objects returned by the traversing functions.
typedef PreParserFactory Factory;
};
explicit PreParserTraits(PreParser* pre_parser) : pre_parser_(pre_parser) {}
// Custom operations executed when FunctionStates are created and
// destructed. (The PreParser doesn't need to do anything.)
template<typename FunctionState>
static void SetUpFunctionState(FunctionState* function_state, void*) {}
template<typename FunctionState>
static void TearDownFunctionState(FunctionState* function_state) {}
// Helper functions for recursive descent.
static bool IsEvalOrArguments(PreParserIdentifier identifier) {
return identifier.IsEvalOrArguments();
}
static bool IsBoilerplateProperty(PreParserExpression property) {
// PreParser doesn't count boilerplate properties.
return false;
}
static bool IsArrayIndex(PreParserIdentifier string, uint32_t* index) {
return false;
}
static void PushLiteralName(FuncNameInferrer* fni, PreParserIdentifier id) {
// PreParser should not use FuncNameInferrer.
ASSERT(false);
}
static void CheckFunctionLiteralInsideTopLevelObjectLiteral(
PreParserScope* scope, PreParserExpression value, bool* has_function) {}
// Reporting errors.
void ReportMessageAt(Scanner::Location location,
const char* message,
Vector<const char*> args);
void ReportMessageAt(Scanner::Location location,
const char* type,
const char* name_opt);
void ReportMessageAt(int start_pos,
int end_pos,
const char* type,
const char* name_opt);
// "null" return type creators.
static PreParserIdentifier EmptyIdentifier() {
return PreParserIdentifier::Default();
}
static PreParserExpression EmptyExpression() {
return PreParserExpression::Default();
}
static PreParserExpression EmptyLiteral() {
return PreParserExpression::Default();
}
static PreParserExpressionList NullExpressionList() {
return PreParserExpressionList();
}
// Odd-ball literal creators.
static PreParserExpression GetLiteralTheHole(int position,
PreParserFactory* factory) {
return PreParserExpression::Default();
}
// Producing data during the recursive descent.
PreParserIdentifier GetSymbol(Scanner* scanner);
static PreParserIdentifier NextLiteralString(Scanner* scanner,
PretenureFlag tenured) {
return PreParserIdentifier::Default();
}
static PreParserExpression ThisExpression(PreParserScope* scope,
PreParserFactory* factory) {
return PreParserExpression::This();
}
static PreParserExpression ExpressionFromLiteral(
Token::Value token, int pos, Scanner* scanner,
PreParserFactory* factory) {
return PreParserExpression::Default();
}
static PreParserExpression ExpressionFromIdentifier(
PreParserIdentifier name, int pos, PreParserScope* scope,
PreParserFactory* factory) {
return PreParserExpression::FromIdentifier(name);
}
PreParserExpression ExpressionFromString(int pos,
Scanner* scanner,
PreParserFactory* factory = NULL);
static PreParserExpressionList NewExpressionList(int size, void* zone) {
return PreParserExpressionList();
}
static PreParserExpressionList NewPropertyList(int size, void* zone) {
return PreParserExpressionList();
}
// Temporary glue; these functions will move to ParserBase.
PreParserExpression ParseAssignmentExpression(bool accept_IN, bool* ok);
PreParserExpression ParseV8Intrinsic(bool* ok);
PreParserExpression ParseFunctionLiteral(
PreParserIdentifier name,
Scanner::Location function_name_location,
bool name_is_strict_reserved,
bool is_generator,
int function_token_position,
FunctionLiteral::FunctionType type,
bool* ok);
private:
PreParser* pre_parser_;
};
// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparse-data-format.h for the data format.
// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
class PreParser : public ParserBase<PreParserTraits> {
public:
typedef PreParserIdentifier Identifier;
typedef PreParserExpression Expression;
enum PreParseResult {
kPreParseStackOverflow,
kPreParseSuccess
};
PreParser(Scanner* scanner,
ParserRecorder* log,
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
uintptr_t stack_limit)
: ParserBase<PreParserTraits>(scanner, stack_limit, NULL, NULL, this),
log_(log) {}
// Pre-parse the program from the character stream; returns true on
// success (even if parsing failed, the pre-parse data successfully
// captured the syntax error), and false if a stack-overflow happened
// during parsing.
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
PreParseResult PreParseProgram() {
PreParserScope scope(scope_, GLOBAL_SCOPE);
FunctionState top_scope(&function_state_, &scope_, &scope, NULL);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
bool ok = true;
int start_position = scanner()->peek_location().beg_pos;
ParseSourceElements(Token::EOS, &ok);
if (stack_overflow()) return kPreParseStackOverflow;
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
if (!ok) {
ReportUnexpectedToken(scanner()->current_token());
} else if (scope_->strict_mode() == STRICT) {
CheckOctalLiteral(start_position, scanner()->location().end_pos, &ok);
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
}
return kPreParseSuccess;
}
// Parses a single function literal, from the opening parentheses before
// parameters to the closing brace after the body.
// Returns a FunctionEntry describing the body of the function in enough
// detail that it can be lazily compiled.
// The scanner is expected to have matched the "function" or "function*"
// keyword and parameters, and have consumed the initial '{'.
// At return, unless an error occurred, the scanner is positioned before the
// the final '}'.
PreParseResult PreParseLazyFunction(StrictMode strict_mode,
bool is_generator,
ParserRecorder* log);
private:
friend class PreParserTraits;
// These types form an algebra over syntactic categories that is just
// rich enough to let us recognize and propagate the constructs that
// are either being counted in the preparser data, or is important
// to throw the correct syntax error exceptions.
enum VariableDeclarationContext {
kSourceElement,
kStatement,
kForStatement
};
// If a list of variable declarations includes any initializers.
enum VariableDeclarationProperties {
kHasInitializers,
kHasNoInitializers
};
class Statement {
public:
static Statement Default() {
return Statement(kUnknownStatement);
}
static Statement FunctionDeclaration() {
return Statement(kFunctionDeclaration);
}
// Creates expression statement from expression.
// Preserves being an unparenthesized string literal, possibly
// "use strict".
static Statement ExpressionStatement(Expression expression) {
if (expression.IsUseStrictLiteral()) {
return Statement(kUseStrictExpressionStatement);
}
if (expression.IsStringLiteral()) {
return Statement(kStringLiteralExpressionStatement);
}
return Default();
}
bool IsStringLiteral() {
return code_ == kStringLiteralExpressionStatement;
}
bool IsUseStrictLiteral() {
return code_ == kUseStrictExpressionStatement;
}
bool IsFunctionDeclaration() {
return code_ == kFunctionDeclaration;
}
private:
enum Type {
kUnknownStatement,
kStringLiteralExpressionStatement,
kUseStrictExpressionStatement,
kFunctionDeclaration
};
explicit Statement(Type code) : code_(code) {}
Type code_;
};
enum SourceElements {
kUnknownSourceElements
};
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
Statement ParseSourceElement(bool* ok);
SourceElements ParseSourceElements(int end_token, bool* ok);
Statement ParseStatement(bool* ok);
Statement ParseFunctionDeclaration(bool* ok);
Statement ParseBlock(bool* ok);
Statement ParseVariableStatement(VariableDeclarationContext var_context,
bool* ok);
Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
VariableDeclarationProperties* decl_props,
int* num_decl,
bool* ok);
Statement ParseExpressionOrLabelledStatement(bool* ok);
Statement ParseIfStatement(bool* ok);
Statement ParseContinueStatement(bool* ok);
Statement ParseBreakStatement(bool* ok);
Statement ParseReturnStatement(bool* ok);
Statement ParseWithStatement(bool* ok);
Statement ParseSwitchStatement(bool* ok);
Statement ParseDoWhileStatement(bool* ok);
Statement ParseWhileStatement(bool* ok);
Statement ParseForStatement(bool* ok);
Statement ParseThrowStatement(bool* ok);
Statement ParseTryStatement(bool* ok);
Statement ParseDebuggerStatement(bool* ok);
Expression ParseAssignmentExpression(bool accept_IN, bool* ok);
Expression ParseYieldExpression(bool* ok);
Expression ParseConditionalExpression(bool accept_IN, bool* ok);
Expression ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
Expression ParseUnaryExpression(bool* ok);
Expression ParsePostfixExpression(bool* ok);
Expression ParseLeftHandSideExpression(bool* ok);
Expression ParseMemberExpression(bool* ok);
Expression ParseMemberExpressionContinuation(PreParserExpression expression,
bool* ok);
Expression ParseMemberWithNewPrefixesExpression(bool* ok);
Expression ParseObjectLiteral(bool* ok);
Expression ParseV8Intrinsic(bool* ok);
Expression ParseFunctionLiteral(
Identifier name,
Scanner::Location function_name_location,
bool name_is_strict_reserved,
bool is_generator,
int function_token_pos,
FunctionLiteral::FunctionType function_type,
bool* ok);
void ParseLazyFunctionLiteralBody(bool* ok);
// Logs the currently parsed literal as a symbol in the preparser data.
void LogSymbol();
// Log the currently parsed string literal.
Expression GetStringSymbol();
bool CheckInOrOf(bool accept_OF);
ParserRecorder* log_;
};
template<class Traits>
ParserBase<Traits>::FunctionState::FunctionState(
FunctionState** function_state_stack,
typename Traits::Type::Scope** scope_stack,
typename Traits::Type::Scope* scope,
typename Traits::Type::Zone* extra_param)
: next_materialized_literal_index_(JSFunction::kLiteralsPrefixSize),
next_handler_index_(0),
expected_property_count_(0),
is_generator_(false),
generator_object_variable_(NULL),
function_state_stack_(function_state_stack),
outer_function_state_(*function_state_stack),
scope_stack_(scope_stack),
outer_scope_(*scope_stack),
isolate_(NULL),
saved_ast_node_id_(0),
factory_(extra_param) {
*scope_stack_ = scope;
*function_state_stack = this;
Traits::SetUpFunctionState(this, extra_param);
}
template<class Traits>
ParserBase<Traits>::FunctionState::~FunctionState() {
*scope_stack_ = outer_scope_;
*function_state_stack_ = outer_function_state_;
Traits::TearDownFunctionState(this);
}
template<class Traits>
void ParserBase<Traits>::ReportUnexpectedToken(Token::Value token) {
Scanner::Location source_location = scanner()->location();
// Four of the tokens are treated specially
switch (token) {
case Token::EOS:
return ReportMessageAt(source_location, "unexpected_eos");
case Token::NUMBER:
return ReportMessageAt(source_location, "unexpected_token_number");
case Token::STRING:
return ReportMessageAt(source_location, "unexpected_token_string");
case Token::IDENTIFIER:
return ReportMessageAt(source_location, "unexpected_token_identifier");
case Token::FUTURE_RESERVED_WORD:
return ReportMessageAt(source_location, "unexpected_reserved");
case Token::YIELD:
case Token::FUTURE_STRICT_RESERVED_WORD:
return ReportMessageAt(source_location, strict_mode() == SLOPPY
? "unexpected_token_identifier" : "unexpected_strict_reserved");
default:
const char* name = Token::String(token);
ASSERT(name != NULL);
Traits::ReportMessageAt(
source_location, "unexpected_token", Vector<const char*>(&name, 1));
}
}
template<class Traits>
typename Traits::Type::Identifier ParserBase<Traits>::ParseIdentifier(
AllowEvalOrArgumentsAsIdentifier allow_eval_or_arguments,
bool* ok) {
Token::Value next = Next();
if (next == Token::IDENTIFIER) {
typename Traits::Type::Identifier name = this->GetSymbol(scanner());
if (allow_eval_or_arguments == kDontAllowEvalOrArguments &&
strict_mode() == STRICT && this->IsEvalOrArguments(name)) {
ReportMessageAt(scanner()->location(), "strict_eval_arguments");
*ok = false;
}
return name;
} else if (strict_mode() == SLOPPY &&
(next == Token::FUTURE_STRICT_RESERVED_WORD ||
(next == Token::YIELD && !is_generator()))) {
return this->GetSymbol(scanner());
} else {
this->ReportUnexpectedToken(next);
*ok = false;
return Traits::EmptyIdentifier();
}
}
template <class Traits>
typename Traits::Type::Identifier ParserBase<
Traits>::ParseIdentifierOrStrictReservedWord(bool* is_strict_reserved,
bool* ok) {
Token::Value next = Next();
if (next == Token::IDENTIFIER) {
*is_strict_reserved = false;
} else if (next == Token::FUTURE_STRICT_RESERVED_WORD ||
(next == Token::YIELD && !this->is_generator())) {
*is_strict_reserved = true;
} else {
ReportUnexpectedToken(next);
*ok = false;
return Traits::EmptyIdentifier();
}
return this->GetSymbol(scanner());
}
template <class Traits>
typename Traits::Type::Identifier ParserBase<Traits>::ParseIdentifierName(
bool* ok) {
Token::Value next = Next();
if (next != Token::IDENTIFIER && next != Token::FUTURE_RESERVED_WORD &&
next != Token::FUTURE_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) {
this->ReportUnexpectedToken(next);
*ok = false;
return Traits::EmptyIdentifier();
}
return this->GetSymbol(scanner());
}
template <class Traits>
typename Traits::Type::Identifier
ParserBase<Traits>::ParseIdentifierNameOrGetOrSet(bool* is_get,
bool* is_set,
bool* ok) {
typename Traits::Type::Identifier result = ParseIdentifierName(ok);
if (!*ok) return Traits::EmptyIdentifier();
scanner()->IsGetOrSet(is_get, is_set);
return result;
}
template <class Traits>
typename Traits::Type::Expression
ParserBase<Traits>::ParseRegExpLiteral(bool seen_equal, bool* ok) {
int pos = peek_position();
if (!scanner()->ScanRegExpPattern(seen_equal)) {
Next();
ReportMessage("unterminated_regexp", Vector<const char*>::empty());
*ok = false;
return Traits::EmptyExpression();
}
int literal_index = function_state_->NextMaterializedLiteralIndex();
typename Traits::Type::Identifier js_pattern =
this->NextLiteralString(scanner(), TENURED);
if (!scanner()->ScanRegExpFlags()) {
Next();
ReportMessageAt(scanner()->location(), "invalid_regexp_flags");
*ok = false;
return Traits::EmptyExpression();
}
typename Traits::Type::Identifier js_flags =
this->NextLiteralString(scanner(), TENURED);
Next();
return factory()->NewRegExpLiteral(js_pattern, js_flags, literal_index, pos);
}
#define CHECK_OK ok); \
if (!*ok) return this->EmptyExpression(); \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
// Used in functions where the return type is not Traits::Type::Expression.
#define CHECK_OK_CUSTOM(x) ok); \
if (!*ok) return this->x(); \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
template <class Traits>
typename Traits::Type::Expression ParserBase<Traits>::ParsePrimaryExpression(
bool* ok) {
// PrimaryExpression ::
// 'this'
// 'null'
// 'true'
// 'false'
// Identifier
// Number
// String
// ArrayLiteral
// ObjectLiteral
// RegExpLiteral
// '(' Expression ')'
int pos = peek_position();
typename Traits::Type::Expression result = this->EmptyExpression();
Token::Value token = peek();
switch (token) {
case Token::THIS: {
Consume(Token::THIS);
result = this->ThisExpression(scope_, factory());
break;
}
case Token::NULL_LITERAL:
case Token::TRUE_LITERAL:
case Token::FALSE_LITERAL:
case Token::NUMBER:
Next();
result = this->ExpressionFromLiteral(token, pos, scanner(), factory());
break;
case Token::IDENTIFIER:
case Token::YIELD:
case Token::FUTURE_STRICT_RESERVED_WORD: {
// Using eval or arguments in this context is OK even in strict mode.
typename Traits::Type::Identifier name =
ParseIdentifier(kAllowEvalOrArguments, CHECK_OK);
result =
this->ExpressionFromIdentifier(name, pos, scope_, factory());
break;
}
case Token::STRING: {
Consume(Token::STRING);
result = this->ExpressionFromString(pos, scanner(), factory());
break;
}
case Token::ASSIGN_DIV:
result = this->ParseRegExpLiteral(true, CHECK_OK);
break;
case Token::DIV:
result = this->ParseRegExpLiteral(false, CHECK_OK);
break;
case Token::LBRACK:
result = this->ParseArrayLiteral(CHECK_OK);
break;
case Token::LBRACE:
result = this->ParseObjectLiteral(CHECK_OK);
break;
case Token::LPAREN:
Consume(Token::LPAREN);
// Heuristically try to detect immediately called functions before
// seeing the call parentheses.
parenthesized_function_ = (peek() == Token::FUNCTION);
result = this->ParseExpression(true, CHECK_OK);
Expect(Token::RPAREN, CHECK_OK);
break;
case Token::MOD:
if (allow_natives_syntax() || extension_ != NULL) {
result = this->ParseV8Intrinsic(CHECK_OK);
break;
}
// If we're not allowing special syntax we fall-through to the
// default case.
default: {
Next();
ReportUnexpectedToken(token);
*ok = false;
}
}
return result;
}
// Precedence = 1
template <class Traits>
typename Traits::Type::Expression ParserBase<Traits>::ParseExpression(
bool accept_IN, bool* ok) {
// Expression ::
// AssignmentExpression
// Expression ',' AssignmentExpression
typename Traits::Type::Expression result =
this->ParseAssignmentExpression(accept_IN, CHECK_OK);
while (peek() == Token::COMMA) {
Expect(Token::COMMA, CHECK_OK);
int pos = position();
typename Traits::Type::Expression right =
this->ParseAssignmentExpression(accept_IN, CHECK_OK);
result = factory()->NewBinaryOperation(Token::COMMA, result, right, pos);
}
return result;
}
template <class Traits>
typename Traits::Type::Expression ParserBase<Traits>::ParseArrayLiteral(
bool* ok) {
// ArrayLiteral ::
// '[' Expression? (',' Expression?)* ']'
int pos = peek_position();
typename Traits::Type::ExpressionList values =
this->NewExpressionList(4, zone_);
Expect(Token::LBRACK, CHECK_OK);
while (peek() != Token::RBRACK) {
typename Traits::Type::Expression elem = this->EmptyExpression();
if (peek() == Token::COMMA) {
elem = this->GetLiteralTheHole(peek_position(), factory());
} else {
elem = this->ParseAssignmentExpression(true, CHECK_OK);
}
values->Add(elem, zone_);
if (peek() != Token::RBRACK) {
Expect(Token::COMMA, CHECK_OK);
}
}
Expect(Token::RBRACK, CHECK_OK);
// Update the scope information before the pre-parsing bailout.
int literal_index = function_state_->NextMaterializedLiteralIndex();
return factory()->NewArrayLiteral(values, literal_index, pos);
}
template <class Traits>
typename Traits::Type::Expression ParserBase<Traits>::ParseObjectLiteral(
bool* ok) {
// ObjectLiteral ::
// '{' ((
// ((IdentifierName | String | Number) ':' AssignmentExpression) |
// (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral)
// ) ',')* '}'
// (Except that trailing comma is not required and not allowed.)
int pos = peek_position();
typename Traits::Type::PropertyList properties =
this->NewPropertyList(4, zone_);
int number_of_boilerplate_properties = 0;
bool has_function = false;
ObjectLiteralChecker checker(this, strict_mode());
Expect(Token::LBRACE, CHECK_OK);
while (peek() != Token::RBRACE) {
if (fni_ != NULL) fni_->Enter();
typename Traits::Type::Literal key = this->EmptyLiteral();
Token::Value next = peek();
int next_pos = peek_position();
switch (next) {
case Token::FUTURE_RESERVED_WORD:
case Token::FUTURE_STRICT_RESERVED_WORD:
case Token::IDENTIFIER: {
bool is_getter = false;
bool is_setter = false;
typename Traits::Type::Identifier id =
ParseIdentifierNameOrGetOrSet(&is_getter, &is_setter, CHECK_OK);
if (fni_ != NULL) this->PushLiteralName(fni_, id);
if ((is_getter || is_setter) && peek() != Token::COLON) {
// Special handling of getter and setter syntax:
// { ... , get foo() { ... }, ... , set foo(v) { ... v ... } , ... }
// We have already read the "get" or "set" keyword.
Token::Value next = Next();
if (next != i::Token::IDENTIFIER &&
next != i::Token::FUTURE_RESERVED_WORD &&
next != i::Token::FUTURE_STRICT_RESERVED_WORD &&
next != i::Token::NUMBER &&
next != i::Token::STRING &&
!Token::IsKeyword(next)) {
ReportUnexpectedToken(next);
*ok = false;
return this->EmptyLiteral();
}
// Validate the property.
PropertyKind type = is_getter ? kGetterProperty : kSetterProperty;
checker.CheckProperty(next, type, CHECK_OK);
typename Traits::Type::Identifier name = this->GetSymbol(scanner_);
typename Traits::Type::FunctionLiteral value =
this->ParseFunctionLiteral(
name, scanner()->location(),
false, // reserved words are allowed here
false, // not a generator
RelocInfo::kNoPosition, FunctionLiteral::ANONYMOUS_EXPRESSION,
CHECK_OK);
// Allow any number of parameters for compatibilty with JSC.
// Specification only allows zero parameters for get and one for set.
typename Traits::Type::ObjectLiteralProperty property =
factory()->NewObjectLiteralProperty(is_getter, value, next_pos);
if (this->IsBoilerplateProperty(property)) {
number_of_boilerplate_properties++;
}
properties->Add(property, zone());
if (peek() != Token::RBRACE) {
// Need {} because of the CHECK_OK macro.
Expect(Token::COMMA, CHECK_OK);
}
if (fni_ != NULL) {
fni_->Infer();
fni_->Leave();
}
continue; // restart the while
}
// Failed to parse as get/set property, so it's just a normal property
// (which might be called "get" or "set" or something else).
key = factory()->NewLiteral(id, next_pos);
break;
}
case Token::STRING: {
Consume(Token::STRING);
typename Traits::Type::Identifier string = this->GetSymbol(scanner_);
if (fni_ != NULL) this->PushLiteralName(fni_, string);
uint32_t index;
if (this->IsArrayIndex(string, &index)) {
key = factory()->NewNumberLiteral(index, next_pos);
break;
}
key = factory()->NewLiteral(string, next_pos);
break;
}
case Token::NUMBER: {
Consume(Token::NUMBER);
key = this->ExpressionFromLiteral(Token::NUMBER, next_pos, scanner_,
factory());
break;
}
default:
if (Token::IsKeyword(next)) {
Consume(next);
typename Traits::Type::Identifier string = this->GetSymbol(scanner_);
key = factory()->NewLiteral(string, next_pos);
} else {
Token::Value next = Next();
ReportUnexpectedToken(next);
*ok = false;
return this->EmptyLiteral();
}
}
// Validate the property
checker.CheckProperty(next, kValueProperty, CHECK_OK);
Expect(Token::COLON, CHECK_OK);
typename Traits::Type::Expression value =
this->ParseAssignmentExpression(true, CHECK_OK);
typename Traits::Type::ObjectLiteralProperty property =
factory()->NewObjectLiteralProperty(key, value);
// Mark top-level object literals that contain function literals and
// pretenure the literal so it can be added as a constant function
// property. (Parser only.)
this->CheckFunctionLiteralInsideTopLevelObjectLiteral(scope_, value,
&has_function);
// Count CONSTANT or COMPUTED properties to maintain the enumeration order.
if (this->IsBoilerplateProperty(property)) {
number_of_boilerplate_properties++;
}
properties->Add(property, zone());
// TODO(1240767): Consider allowing trailing comma.
if (peek() != Token::RBRACE) {
// Need {} because of the CHECK_OK macro.
Expect(Token::COMMA, CHECK_OK);
}
if (fni_ != NULL) {
fni_->Infer();
fni_->Leave();
}
}
Expect(Token::RBRACE, CHECK_OK);
// Computation of literal_index must happen before pre parse bailout.
int literal_index = function_state_->NextMaterializedLiteralIndex();
return factory()->NewObjectLiteral(properties,
literal_index,
number_of_boilerplate_properties,
has_function,
pos);
}
template <class Traits>
typename Traits::Type::ExpressionList ParserBase<Traits>::ParseArguments(
bool* ok) {
// Arguments ::
// '(' (AssignmentExpression)*[','] ')'
typename Traits::Type::ExpressionList result =
this->NewExpressionList(4, zone_);
Expect(Token::LPAREN, CHECK_OK_CUSTOM(NullExpressionList));
bool done = (peek() == Token::RPAREN);
while (!done) {
typename Traits::Type::Expression argument =
this->ParseAssignmentExpression(true,
CHECK_OK_CUSTOM(NullExpressionList));
result->Add(argument, zone_);
if (result->length() > Code::kMaxArguments) {
ReportMessageAt(scanner()->location(), "too_many_arguments");
*ok = false;
return this->NullExpressionList();
}
done = (peek() == Token::RPAREN);
if (!done) {
// Need {} because of the CHECK_OK_CUSTOM macro.
Expect(Token::COMMA, CHECK_OK_CUSTOM(NullExpressionList));
}
}
Expect(Token::RPAREN, CHECK_OK_CUSTOM(NullExpressionList));
return result;
}
#undef CHECK_OK
#undef CHECK_OK_CUSTOM
template <typename Traits>
void ParserBase<Traits>::ObjectLiteralChecker::CheckProperty(
Token::Value property,
PropertyKind type,
bool* ok) {
int old;
if (property == Token::NUMBER) {
old = scanner()->FindNumber(&finder_, type);
} else {
old = scanner()->FindSymbol(&finder_, type);
}
PropertyKind old_type = static_cast<PropertyKind>(old);
if (HasConflict(old_type, type)) {
if (IsDataDataConflict(old_type, type)) {
// Both are data properties.
if (strict_mode_ == SLOPPY) return;
parser()->ReportMessageAt(scanner()->location(),
"strict_duplicate_property");
} else if (IsDataAccessorConflict(old_type, type)) {
// Both a data and an accessor property with the same name.
parser()->ReportMessageAt(scanner()->location(),
"accessor_data_property");
} else {
ASSERT(IsAccessorAccessorConflict(old_type, type));
// Both accessors of the same type.
parser()->ReportMessageAt(scanner()->location(),
"accessor_get_set");
}
*ok = false;
}
}
} } // v8::internal
#endif // V8_PREPARSER_H