v8/test/cctest/wasm/test-run-wasm-bulk-memory.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

903 lines
30 KiB
C++
Raw Normal View History

// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/cctest/cctest.h"
#include "test/cctest/wasm/wasm-run-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace test_run_wasm_bulk_memory {
namespace {
void CheckMemoryEquals(
TestingModuleBuilder& builder, // NOLINT(runtime/references)
size_t index, const std::vector<byte>& expected) {
const byte* mem_start = builder.raw_mem_start<byte>();
const byte* mem_end = builder.raw_mem_end<byte>();
size_t mem_size = mem_end - mem_start;
CHECK_LE(index, mem_size);
CHECK_LE(index + expected.size(), mem_size);
for (size_t i = 0; i < expected.size(); ++i) {
CHECK_EQ(expected[i], mem_start[index + i]);
}
}
void CheckMemoryEqualsZero(
TestingModuleBuilder& builder, // NOLINT(runtime/references)
size_t index, size_t length) {
const byte* mem_start = builder.raw_mem_start<byte>();
const byte* mem_end = builder.raw_mem_end<byte>();
size_t mem_size = mem_end - mem_start;
CHECK_LE(index, mem_size);
CHECK_LE(index + length, mem_size);
for (size_t i = 0; i < length; ++i) {
CHECK_EQ(0, mem_start[index + i]);
}
}
void CheckMemoryEqualsFollowedByZeroes(
TestingModuleBuilder& builder, // NOLINT(runtime/references)
const std::vector<byte>& expected) {
CheckMemoryEquals(builder, 0, expected);
CheckMemoryEqualsZero(builder, expected.size(),
builder.mem_size() - expected.size());
}
} // namespace
WASM_EXEC_TEST(MemoryInit) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
const byte data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
r.builder().AddPassiveDataSegment(ArrayVector(data));
BUILD(r,
WASM_MEMORY_INIT(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
kExprI32Const, 0);
// All zeroes.
CheckMemoryEqualsZero(r.builder(), 0, kWasmPageSize);
// Copy all bytes from data segment 0, to memory at [10, 20).
CHECK_EQ(0, r.Call(10, 0, 10));
CheckMemoryEqualsFollowedByZeroes(
r.builder(),
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
// Copy bytes in range [5, 10) from data segment 0, to memory at [0, 5).
CHECK_EQ(0, r.Call(0, 5, 5));
CheckMemoryEqualsFollowedByZeroes(
r.builder(),
{5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
// Copy 0 bytes does nothing.
CHECK_EQ(0, r.Call(10, 1, 0));
CheckMemoryEqualsFollowedByZeroes(
r.builder(),
{5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
// Copy 0 at end of memory region or data segment is OK.
CHECK_EQ(0, r.Call(kWasmPageSize, 0, 0));
CHECK_EQ(0, r.Call(0, sizeof(data), 0));
}
WASM_EXEC_TEST(MemoryInitOutOfBoundsData) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
const byte data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
r.builder().AddPassiveDataSegment(ArrayVector(data));
BUILD(r,
WASM_MEMORY_INIT(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const uint32_t last_5_bytes = kWasmPageSize - 5;
// Write all values up to the out-of-bounds write.
CHECK_EQ(0xDEADBEEF, r.Call(kWasmPageSize - 5, 0, 6));
CheckMemoryEquals(r.builder(), last_5_bytes, {0, 1, 2, 3, 4});
// Write all values up to the out-of-bounds read.
r.builder().BlankMemory();
CHECK_EQ(0xDEADBEEF, r.Call(0, 5, 6));
CheckMemoryEqualsFollowedByZeroes(r.builder(), {5, 6, 7, 8, 9});
}
WASM_EXEC_TEST(MemoryInitOutOfBounds) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
const byte data[kWasmPageSize] = {};
r.builder().AddPassiveDataSegment(ArrayVector(data));
BUILD(r,
WASM_MEMORY_INIT(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
kExprI32Const, 0);
// OK, copy the full data segment to memory.
r.Call(0, 0, kWasmPageSize);
// Source range must not be out of bounds.
CHECK_EQ(0xDEADBEEF, r.Call(0, 1, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(0, 1000, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(0, kWasmPageSize, 1));
// Destination range must not be out of bounds.
CHECK_EQ(0xDEADBEEF, r.Call(1, 0, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(1000, 0, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(kWasmPageSize, 0, 1));
// Copy 0 out-of-bounds succeeds.
CHECK_EQ(0, r.Call(kWasmPageSize + 1, 0, 0));
CHECK_EQ(0, r.Call(0, kWasmPageSize + 1, 0));
// Make sure bounds aren't checked with 32-bit wrapping.
CHECK_EQ(0xDEADBEEF, r.Call(1, 1, 0xFFFFFFFF));
}
WASM_EXEC_TEST(MemoryCopy) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
byte* mem = r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_COPY(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const byte initial[] = {0, 11, 22, 33, 44, 55, 66, 77};
memcpy(mem, initial, sizeof(initial));
// Copy from [1, 8] to [10, 16].
CHECK_EQ(0, r.Call(10, 1, 8));
CheckMemoryEqualsFollowedByZeroes(
r.builder(),
{0, 11, 22, 33, 44, 55, 66, 77, 0, 0, 11, 22, 33, 44, 55, 66, 77});
// Copy 0 bytes does nothing.
CHECK_EQ(0, r.Call(10, 2, 0));
CheckMemoryEqualsFollowedByZeroes(
r.builder(),
{0, 11, 22, 33, 44, 55, 66, 77, 0, 0, 11, 22, 33, 44, 55, 66, 77});
// Copy 0 at end of memory region is OK.
CHECK_EQ(0, r.Call(kWasmPageSize, 0, 0));
CHECK_EQ(0, r.Call(0, kWasmPageSize, 0));
}
WASM_EXEC_TEST(MemoryCopyOverlapping) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
byte* mem = r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_COPY(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const byte initial[] = {10, 20, 30};
memcpy(mem, initial, sizeof(initial));
// Copy from [0, 3] -> [2, 5]. The copy must not overwrite 30 before copying
// it (i.e. cannot copy forward in this case).
CHECK_EQ(0, r.Call(2, 0, 3));
CheckMemoryEqualsFollowedByZeroes(r.builder(), {10, 20, 10, 20, 30});
// Copy from [2, 5] -> [0, 3]. The copy must not write the first 10 (i.e.
// cannot copy backward in this case).
CHECK_EQ(0, r.Call(0, 2, 3));
CheckMemoryEqualsFollowedByZeroes(r.builder(), {10, 20, 30, 20, 30});
}
WASM_EXEC_TEST(MemoryCopyOutOfBoundsData) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
byte* mem = r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_COPY(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const byte data[] = {11, 22, 33, 44, 55, 66, 77, 88};
memcpy(mem, data, sizeof(data));
const uint32_t last_5_bytes = kWasmPageSize - 5;
// Copy with source < destination. Copy would happen backwards,
// but the first byte to copy is out-of-bounds, so no data should be written.
CHECK_EQ(0xDEADBEEF, r.Call(last_5_bytes, 0, 6));
CheckMemoryEquals(r.builder(), last_5_bytes, {0, 0, 0, 0, 0});
// Copy overlapping with destination < source. Copy will happen forwards, up
// to the out-of-bounds access.
r.builder().BlankMemory();
memcpy(mem + last_5_bytes, data, 5);
CHECK_EQ(0xDEADBEEF, r.Call(0, last_5_bytes, kWasmPageSize));
CheckMemoryEquals(r.builder(), 0, {11, 22, 33, 44, 55});
// Copy overlapping with source < destination. Copy would happen backwards,
// but the first byte to copy is out-of-bounds, so no data should be written.
r.builder().BlankMemory();
memcpy(mem, data, 5);
CHECK_EQ(0xDEADBEEF, r.Call(last_5_bytes, 0, kWasmPageSize));
CheckMemoryEquals(r.builder(), last_5_bytes, {0, 0, 0, 0, 0});
}
WASM_EXEC_TEST(MemoryCopyOutOfBounds) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_COPY(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
// Copy full range is OK.
CHECK_EQ(0, r.Call(0, 0, kWasmPageSize));
// Source range must not be out of bounds.
CHECK_EQ(0xDEADBEEF, r.Call(0, 1, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(0, 1000, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(0, kWasmPageSize, 1));
// Destination range must not be out of bounds.
CHECK_EQ(0xDEADBEEF, r.Call(1, 0, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(1000, 0, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(kWasmPageSize, 0, 1));
// Copy 0 out-of-bounds always succeeds.
CHECK_EQ(0, r.Call(kWasmPageSize + 1, 0, 0));
CHECK_EQ(0, r.Call(0, kWasmPageSize + 1, 0));
// Make sure bounds aren't checked with 32-bit wrapping.
CHECK_EQ(0xDEADBEEF, r.Call(1, 1, 0xFFFFFFFF));
}
WASM_EXEC_TEST(MemoryFill) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_FILL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
CHECK_EQ(0, r.Call(1, 33, 5));
CheckMemoryEqualsFollowedByZeroes(r.builder(), {0, 33, 33, 33, 33, 33});
CHECK_EQ(0, r.Call(4, 66, 4));
CheckMemoryEqualsFollowedByZeroes(r.builder(),
{0, 33, 33, 33, 66, 66, 66, 66});
// Fill 0 bytes does nothing.
CHECK_EQ(0, r.Call(4, 66, 0));
CheckMemoryEqualsFollowedByZeroes(r.builder(),
{0, 33, 33, 33, 66, 66, 66, 66});
// Fill 0 at end of memory region is OK.
CHECK_EQ(0, r.Call(kWasmPageSize, 66, 0));
}
WASM_EXEC_TEST(MemoryFillValueWrapsToByte) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_FILL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
CHECK_EQ(0, r.Call(0, 1000, 3));
const byte expected = 1000 & 255;
CheckMemoryEqualsFollowedByZeroes(r.builder(),
{expected, expected, expected});
}
WASM_EXEC_TEST(MemoryFillOutOfBoundsData) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_FILL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const byte v = 123;
CHECK_EQ(0xDEADBEEF, r.Call(kWasmPageSize - 5, v, 999));
CheckMemoryEquals(r.builder(), kWasmPageSize - 6, {0, v, v, v, v, v});
}
WASM_EXEC_TEST(MemoryFillOutOfBounds) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
BUILD(
r,
WASM_MEMORY_FILL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
const byte v = 123;
// Destination range must not be out of bounds.
CHECK_EQ(0xDEADBEEF, r.Call(1, v, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(1000, v, kWasmPageSize));
CHECK_EQ(0xDEADBEEF, r.Call(kWasmPageSize, v, 1));
// Fill 0 out-of-bounds succeeds.
CHECK_EQ(0, r.Call(kWasmPageSize + 1, v, 0));
// Make sure bounds aren't checked with 32-bit wrapping.
CHECK_EQ(0xDEADBEEF, r.Call(1, v, 0xFFFFFFFF));
}
WASM_EXEC_TEST(DataDropTwice) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
const byte data[] = {0};
r.builder().AddPassiveDataSegment(ArrayVector(data));
BUILD(r, WASM_DATA_DROP(0), kExprI32Const, 0);
CHECK_EQ(0, r.Call());
CHECK_EQ(0xDEADBEEF, r.Call());
}
WASM_EXEC_TEST(DataDropThenMemoryInit) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t> r(execution_tier);
r.builder().AddMemory(kWasmPageSize);
const byte data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
r.builder().AddPassiveDataSegment(ArrayVector(data));
BUILD(r, WASM_DATA_DROP(0),
WASM_MEMORY_INIT(0, WASM_I32V_1(0), WASM_I32V_1(1), WASM_I32V_1(2)),
kExprI32Const, 0);
CHECK_EQ(0xDEADBEEF, r.Call());
}
void TestTableCopyInbounds(ExecutionTier execution_tier, int table_dst,
int table_src) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
// Add 10 function tables, even though we only test one table.
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(nullptr, kTableSize);
}
BUILD(r,
WASM_TABLE_COPY(table_dst, table_src, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
for (uint32_t i = 0; i <= kTableSize; ++i) {
r.CheckCallViaJS(0, 0, 0, i); // nop
r.CheckCallViaJS(0, 0, i, kTableSize - i);
r.CheckCallViaJS(0, i, 0, kTableSize - i);
}
}
WASM_EXEC_TEST(TableCopyInboundsFrom0To0) {
TestTableCopyInbounds(execution_tier, 0, 0);
}
WASM_EXEC_TEST(TableCopyInboundsFrom3To0) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyInbounds(execution_tier, 3, 0);
}
WASM_EXEC_TEST(TableCopyInboundsFrom5To9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyInbounds(execution_tier, 5, 9);
}
WASM_EXEC_TEST(TableCopyInboundsFrom6To6) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyInbounds(execution_tier, 6, 6);
}
namespace {
template <typename... Args>
void CheckTable(Isolate* isolate, Handle<WasmTableObject> table, Args... args) {
uint32_t args_length = static_cast<uint32_t>(sizeof...(args));
CHECK_EQ(table->current_length(), args_length);
Handle<Object> handles[] = {args...};
for (uint32_t i = 0; i < args_length; ++i) {
CHECK(WasmTableObject::Get(isolate, table, i).is_identical_to(handles[i]));
}
}
template <typename WasmRunner, typename... Args>
void CheckTableCall(Isolate* isolate, Handle<WasmTableObject> table,
WasmRunner& r, // NOLINT(runtime/references)
uint32_t function_index, Args... args) {
uint32_t args_length = static_cast<uint32_t>(sizeof...(args));
CHECK_EQ(table->current_length(), args_length);
double expected[] = {args...};
for (uint32_t i = 0; i < args_length; ++i) {
Handle<Object> buffer[] = {isolate->factory()->NewNumber(i)};
r.CheckCallApplyViaJS(expected[i], function_index, buffer, 1);
}
}
} // namespace
void TestTableInitElems(ExecutionTier execution_tier, int table_index) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
std::vector<uint32_t> function_indexes;
const uint32_t sig_index = r.builder().AddSignature(sigs.i_v());
for (uint32_t i = 0; i < kTableSize; ++i) {
WasmFunctionCompiler& fn = r.NewFunction(sigs.i_v(), "f");
BUILD(fn, WASM_I32V_1(i));
fn.SetSigIndex(sig_index);
function_indexes.push_back(fn.function_index());
}
// Passive element segment has [f0, f1, f2, f3, f4, null].
function_indexes.push_back(WasmElemSegment::kNullIndex);
// Add 10 function tables, even though we only test one table.
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(nullptr, kTableSize);
}
r.builder().AddPassiveElementSegment(function_indexes);
WasmFunctionCompiler& call = r.NewFunction(sigs.i_i(), "call");
BUILD(call,
WASM_CALL_INDIRECT_TABLE0(table_index, sig_index, WASM_GET_LOCAL(0)));
const uint32_t call_index = call.function_index();
BUILD(r,
WASM_TABLE_INIT(table_index, 0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
kExprI32Const, 0);
auto table =
handle(WasmTableObject::cast(
r.builder().instance_object()->tables().get(table_index)),
isolate);
const double null = 0xDEADBEEF;
CheckTableCall(isolate, table, r, call_index, null, null, null, null, null);
// 0 count is ok in bounds, and at end of regions.
r.CheckCallViaJS(0, 0, 0, 0);
r.CheckCallViaJS(0, kTableSize, 0, 0);
r.CheckCallViaJS(0, 0, kTableSize, 0);
// Test actual writes.
r.CheckCallViaJS(0, 0, 0, 1);
CheckTableCall(isolate, table, r, call_index, 0, null, null, null, null);
r.CheckCallViaJS(0, 0, 0, 2);
CheckTableCall(isolate, table, r, call_index, 0, 1, null, null, null);
r.CheckCallViaJS(0, 0, 0, 3);
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, null, null);
r.CheckCallViaJS(0, 3, 0, 2);
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 0, 1);
r.CheckCallViaJS(0, 3, 1, 2);
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 1, 2);
r.CheckCallViaJS(0, 3, 2, 2);
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 2, 3);
r.CheckCallViaJS(0, 3, 3, 2);
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 3, 4);
}
WASM_EXEC_TEST(TableInitElems0) { TestTableInitElems(execution_tier, 0); }
WASM_EXEC_TEST(TableInitElems7) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableInitElems(execution_tier, 7);
}
WASM_EXEC_TEST(TableInitElems9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableInitElems(execution_tier, 9);
}
void TestTableInitOob(ExecutionTier execution_tier, int table_index) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
std::vector<uint32_t> function_indexes;
const uint32_t sig_index = r.builder().AddSignature(sigs.i_v());
for (uint32_t i = 0; i < kTableSize; ++i) {
WasmFunctionCompiler& fn = r.NewFunction(sigs.i_v(), "f");
BUILD(fn, WASM_I32V_1(i));
fn.SetSigIndex(sig_index);
function_indexes.push_back(fn.function_index());
}
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(nullptr, kTableSize);
}
r.builder().AddPassiveElementSegment(function_indexes);
WasmFunctionCompiler& call = r.NewFunction(sigs.i_i(), "call");
BUILD(call,
WASM_CALL_INDIRECT_TABLE0(table_index, sig_index, WASM_GET_LOCAL(0)));
const uint32_t call_index = call.function_index();
BUILD(r,
WASM_TABLE_INIT(table_index, 0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
kExprI32Const, 0);
auto table =
handle(WasmTableObject::cast(
r.builder().instance_object()->tables().get(table_index)),
isolate);
const double null = 0xDEADBEEF;
CheckTableCall(isolate, table, r, call_index, null, null, null, null, null);
// Write all values up to the out-of-bounds write.
r.CheckCallViaJS(0xDEADBEEF, 3, 0, 3);
CheckTableCall(isolate, table, r, call_index, null, null, null, 0, 1);
// Write all values up to the out-of-bounds read.
r.CheckCallViaJS(0xDEADBEEF, 0, 3, 3);
CheckTableCall(isolate, table, r, call_index, 3, 4, null, 0, 1);
// 0-count is never oob.
r.CheckCallViaJS(0, kTableSize + 1, 0, 0);
r.CheckCallViaJS(0, 0, kTableSize + 1, 0);
r.CheckCallViaJS(0xDEADBEEF, 0, 0, 6);
r.CheckCallViaJS(0xDEADBEEF, 0, 1, 5);
r.CheckCallViaJS(0xDEADBEEF, 0, 2, 4);
r.CheckCallViaJS(0xDEADBEEF, 0, 3, 3);
r.CheckCallViaJS(0xDEADBEEF, 0, 4, 2);
r.CheckCallViaJS(0xDEADBEEF, 0, 5, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, 0, 6);
r.CheckCallViaJS(0xDEADBEEF, 1, 0, 5);
r.CheckCallViaJS(0xDEADBEEF, 2, 0, 4);
r.CheckCallViaJS(0xDEADBEEF, 3, 0, 3);
r.CheckCallViaJS(0xDEADBEEF, 4, 0, 2);
r.CheckCallViaJS(0xDEADBEEF, 5, 0, 1);
r.CheckCallViaJS(0xDEADBEEF, 10, 0, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, 10, 1);
}
WASM_EXEC_TEST(TableInitOob0) { TestTableInitOob(execution_tier, 0); }
WASM_EXEC_TEST(TableInitOob7) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableInitOob(execution_tier, 7);
}
WASM_EXEC_TEST(TableInitOob9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableInitOob(execution_tier, 9);
}
void TestTableCopyElems(ExecutionTier execution_tier, int table_dst,
int table_src) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
uint16_t function_indexes[kTableSize];
const uint32_t sig_index = r.builder().AddSignature(sigs.i_v());
for (uint32_t i = 0; i < kTableSize; ++i) {
WasmFunctionCompiler& fn = r.NewFunction(sigs.i_v(), "f");
BUILD(fn, WASM_I32V_1(i));
fn.SetSigIndex(sig_index);
function_indexes[i] = fn.function_index();
}
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(function_indexes, kTableSize);
}
BUILD(r,
WASM_TABLE_COPY(table_dst, table_src, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
r.builder().FreezeSignatureMapAndInitializeWrapperCache();
auto table =
handle(WasmTableObject::cast(
r.builder().instance_object()->tables().get(table_dst)),
isolate);
r.CheckCallViaJS(0, 0, 0, kTableSize);
auto f0 = WasmTableObject::Get(isolate, table, 0);
auto f1 = WasmTableObject::Get(isolate, table, 1);
auto f2 = WasmTableObject::Get(isolate, table, 2);
auto f3 = WasmTableObject::Get(isolate, table, 3);
auto f4 = WasmTableObject::Get(isolate, table, 4);
if (table_dst == table_src) {
CheckTable(isolate, table, f0, f1, f2, f3, f4);
r.CheckCallViaJS(0, 0, 1, 1);
CheckTable(isolate, table, f1, f1, f2, f3, f4);
r.CheckCallViaJS(0, 0, 1, 2);
CheckTable(isolate, table, f1, f2, f2, f3, f4);
r.CheckCallViaJS(0, 3, 0, 2);
CheckTable(isolate, table, f1, f2, f2, f1, f2);
r.CheckCallViaJS(0, 1, 0, 2);
CheckTable(isolate, table, f1, f1, f2, f1, f2);
} else {
CheckTable(isolate, table, f0, f1, f2, f3, f4);
r.CheckCallViaJS(0, 0, 1, 1);
CheckTable(isolate, table, f1, f1, f2, f3, f4);
r.CheckCallViaJS(0, 0, 1, 2);
CheckTable(isolate, table, f1, f2, f2, f3, f4);
r.CheckCallViaJS(0, 3, 0, 2);
CheckTable(isolate, table, f1, f2, f2, f0, f1);
r.CheckCallViaJS(0, 1, 0, 2);
CheckTable(isolate, table, f1, f0, f1, f0, f1);
}
}
WASM_EXEC_TEST(TableCopyElemsFrom0To0) {
TestTableCopyElems(execution_tier, 0, 0);
}
WASM_EXEC_TEST(TableCopyElemsFrom3To0) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyElems(execution_tier, 3, 0);
}
WASM_EXEC_TEST(TableCopyElemsFrom5To9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyElems(execution_tier, 5, 9);
}
WASM_EXEC_TEST(TableCopyElemsFrom6To6) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyElems(execution_tier, 6, 6);
}
void TestTableCopyCalls(ExecutionTier execution_tier, int table_dst,
int table_src) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
uint16_t function_indexes[kTableSize];
const uint32_t sig_index = r.builder().AddSignature(sigs.i_v());
for (uint32_t i = 0; i < kTableSize; ++i) {
WasmFunctionCompiler& fn = r.NewFunction(sigs.i_v(), "f");
BUILD(fn, WASM_I32V_1(i));
fn.SetSigIndex(sig_index);
function_indexes[i] = fn.function_index();
}
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(function_indexes, kTableSize);
}
WasmFunctionCompiler& call = r.NewFunction(sigs.i_i(), "call");
BUILD(call,
WASM_CALL_INDIRECT_TABLE0(table_dst, sig_index, WASM_GET_LOCAL(0)));
const uint32_t call_index = call.function_index();
BUILD(r,
WASM_TABLE_COPY(table_dst, table_src, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
auto table =
handle(WasmTableObject::cast(
r.builder().instance_object()->tables().get(table_dst)),
isolate);
if (table_dst == table_src) {
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 3, 4);
r.CheckCallViaJS(0, 0, 1, 1);
CheckTableCall(isolate, table, r, call_index, 1, 1, 2, 3, 4);
r.CheckCallViaJS(0, 0, 1, 2);
CheckTableCall(isolate, table, r, call_index, 1, 2, 2, 3, 4);
r.CheckCallViaJS(0, 3, 0, 2);
CheckTableCall(isolate, table, r, call_index, 1, 2, 2, 1, 2);
} else {
CheckTableCall(isolate, table, r, call_index, 0, 1, 2, 3, 4);
r.CheckCallViaJS(0, 0, 1, 1);
CheckTableCall(isolate, table, r, call_index, 1, 1, 2, 3, 4);
r.CheckCallViaJS(0, 0, 1, 2);
CheckTableCall(isolate, table, r, call_index, 1, 2, 2, 3, 4);
r.CheckCallViaJS(0, 3, 0, 2);
CheckTableCall(isolate, table, r, call_index, 1, 2, 2, 0, 1);
}
}
WASM_EXEC_TEST(TableCopyCallsFrom0To0) {
TestTableCopyCalls(execution_tier, 0, 0);
}
WASM_EXEC_TEST(TableCopyCallsFrom3To0) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyCalls(execution_tier, 3, 0);
}
WASM_EXEC_TEST(TableCopyCallsFrom5To9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyCalls(execution_tier, 5, 9);
}
WASM_EXEC_TEST(TableCopyCallsFrom6To6) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyCalls(execution_tier, 6, 6);
}
void TestTableCopyOobWrites(ExecutionTier execution_tier, int table_dst,
int table_src) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
TestSignatures sigs;
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
uint16_t function_indexes[kTableSize];
const uint32_t sig_index = r.builder().AddSignature(sigs.i_v());
for (uint32_t i = 0; i < kTableSize; ++i) {
WasmFunctionCompiler& fn = r.NewFunction(sigs.i_v(), "f");
BUILD(fn, WASM_I32V_1(i));
fn.SetSigIndex(sig_index);
function_indexes[i] = fn.function_index();
}
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(function_indexes, kTableSize);
}
BUILD(r,
WASM_TABLE_COPY(table_dst, table_src, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
r.builder().FreezeSignatureMapAndInitializeWrapperCache();
auto table =
handle(WasmTableObject::cast(
r.builder().instance_object()->tables().get(table_dst)),
isolate);
// Fill the dst table with values from the src table, to make checks easier.
r.CheckCallViaJS(0, 0, 0, kTableSize);
auto f0 = WasmTableObject::Get(isolate, table, 0);
auto f1 = WasmTableObject::Get(isolate, table, 1);
auto f2 = WasmTableObject::Get(isolate, table, 2);
auto f3 = WasmTableObject::Get(isolate, table, 3);
auto f4 = WasmTableObject::Get(isolate, table, 4);
CheckTable(isolate, table, f0, f1, f2, f3, f4);
// Non-overlapping, src < dst. Because of src < dst, we copy backwards.
// Therefore the first access already traps, and the table is not changed.
r.CheckCallViaJS(0xDEADBEEF, 3, 0, 3);
CheckTable(isolate, table, f0, f1, f2, f3, f4);
// Non-overlapping, dst < src.
r.CheckCallViaJS(0xDEADBEEF, 0, 4, 2);
CheckTable(isolate, table, f4, f1, f2, f3, f4);
// Overlapping, src < dst. This is required to copy backward, but the first
// access will be out-of-bounds, so nothing changes.
r.CheckCallViaJS(0xDEADBEEF, 3, 0, 99);
CheckTable(isolate, table, f4, f1, f2, f3, f4);
// Overlapping, dst < src.
r.CheckCallViaJS(0xDEADBEEF, 0, 1, 99);
CheckTable(isolate, table, f1, f2, f3, f4, f4);
}
WASM_EXEC_TEST(TableCopyOobWritesFrom0To0) {
TestTableCopyOobWrites(execution_tier, 0, 0);
}
WASM_EXEC_TEST(TableCopyOobWritesFrom3To0) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOobWrites(execution_tier, 3, 0);
}
WASM_EXEC_TEST(TableCopyOobWritesFrom5To9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOobWrites(execution_tier, 5, 9);
}
WASM_EXEC_TEST(TableCopyOobWritesFrom6To6) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOobWrites(execution_tier, 6, 6);
}
void TestTableCopyOob1(ExecutionTier execution_tier, int table_dst,
int table_src) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t, uint32_t, uint32_t, uint32_t> r(execution_tier);
const uint32_t kTableSize = 5;
for (int i = 0; i < 10; ++i) {
r.builder().AddIndirectFunctionTable(nullptr, kTableSize);
}
BUILD(r,
WASM_TABLE_COPY(table_dst, table_src, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)),
kExprI32Const, 0);
r.CheckCallViaJS(0, 0, 0, 1); // nop
r.CheckCallViaJS(0, 0, 0, kTableSize); // nop
r.CheckCallViaJS(0xDEADBEEF, 0, 0, kTableSize + 1);
r.CheckCallViaJS(0xDEADBEEF, 1, 0, kTableSize);
r.CheckCallViaJS(0xDEADBEEF, 0, 1, kTableSize);
{
const uint32_t big = 1000000;
r.CheckCallViaJS(0, big, 0, 0);
r.CheckCallViaJS(0, 0, big, 0);
}
for (uint32_t big = 4294967295; big > 1000; big >>= 1) {
r.CheckCallViaJS(0xDEADBEEF, big, 0, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, big, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, 0, big);
}
for (uint32_t big = -1000; big != 0; big <<= 1) {
r.CheckCallViaJS(0xDEADBEEF, big, 0, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, big, 1);
r.CheckCallViaJS(0xDEADBEEF, 0, 0, big);
}
}
WASM_EXEC_TEST(TableCopyOob1From0To0) {
TestTableCopyOob1(execution_tier, 0, 0);
}
WASM_EXEC_TEST(TableCopyOob1From3To0) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOob1(execution_tier, 3, 0);
}
WASM_EXEC_TEST(TableCopyOob1From5To9) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOob1(execution_tier, 5, 9);
}
WASM_EXEC_TEST(TableCopyOob1From6To6) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
TestTableCopyOob1(execution_tier, 6, 6);
}
WASM_EXEC_TEST(ElemDropTwice) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t> r(execution_tier);
r.builder().AddIndirectFunctionTable(nullptr, 1);
r.builder().AddPassiveElementSegment({});
BUILD(r, WASM_ELEM_DROP(0), kExprI32Const, 0);
r.CheckCallViaJS(0);
r.CheckCallViaJS(0xDEADBEEF);
}
WASM_EXEC_TEST(ElemDropThenTableInit) {
EXPERIMENTAL_FLAG_SCOPE(bulk_memory);
WasmRunner<uint32_t> r(execution_tier);
r.builder().AddIndirectFunctionTable(nullptr, 1);
r.builder().AddPassiveElementSegment({});
BUILD(r, WASM_ELEM_DROP(0),
WASM_TABLE_INIT(0, 0, WASM_I32V_1(0), WASM_I32V_1(0), WASM_I32V_1(0)),
kExprI32Const, 0);
r.CheckCallViaJS(0xDEADBEEF);
}
} // namespace test_run_wasm_bulk_memory
} // namespace wasm
} // namespace internal
} // namespace v8