v8/test/cctest/compiler/test-structured-machine-assembler.cc

1056 lines
27 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "src/base/utils/random-number-generator.h"
#include "src/compiler/structured-machine-assembler.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/value-helper.h"
#if V8_TURBOFAN_TARGET
using namespace v8::internal::compiler;
typedef StructuredMachineAssembler::IfBuilder IfBuilder;
typedef StructuredMachineAssembler::LoopBuilder Loop;
namespace v8 {
namespace internal {
namespace compiler {
class StructuredMachineAssemblerFriend {
public:
static bool VariableAlive(StructuredMachineAssembler* m,
const Variable& var) {
CHECK(m->current_environment_ != NULL);
int offset = var.offset_;
return offset < static_cast<int>(m->CurrentVars()->size()) &&
m->CurrentVars()->at(offset) != NULL;
}
};
}
}
} // namespace v8::internal::compiler
TEST(RunVariable) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x86c2bb16;
Variable v1 = m.NewVariable(m.Int32Constant(constant));
Variable v2 = m.NewVariable(v1.Get());
m.Return(v2.Get());
CHECK_EQ(constant, m.Call());
}
TEST(RunSimpleIf) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xc4a3e3a6;
{
IfBuilder cond(&m);
cond.If(m.Parameter(0)).Then();
m.Return(m.Int32Constant(constant));
}
m.Return(m.Word32Not(m.Int32Constant(constant)));
CHECK_EQ(~constant, m.Call(0));
CHECK_EQ(constant, m.Call(1));
}
TEST(RunSimpleIfVariable) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xdb6f20c2;
Variable var = m.NewVariable(m.Int32Constant(constant));
{
IfBuilder cond(&m);
cond.If(m.Parameter(0)).Then();
var.Set(m.Word32Not(var.Get()));
}
m.Return(var.Get());
CHECK_EQ(constant, m.Call(0));
CHECK_EQ(~constant, m.Call(1));
}
TEST(RunSimpleElse) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xfc5eadf4;
{
IfBuilder cond(&m);
cond.If(m.Parameter(0)).Else();
m.Return(m.Int32Constant(constant));
}
m.Return(m.Word32Not(m.Int32Constant(constant)));
CHECK_EQ(constant, m.Call(0));
CHECK_EQ(~constant, m.Call(1));
}
TEST(RunSimpleIfElse) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xaa9c8cd3;
{
IfBuilder cond(&m);
cond.If(m.Parameter(0)).Then();
m.Return(m.Int32Constant(constant));
cond.Else();
m.Return(m.Word32Not(m.Int32Constant(constant)));
}
CHECK_EQ(~constant, m.Call(0));
CHECK_EQ(constant, m.Call(1));
}
TEST(RunSimpleIfElseVariable) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0x67b6f39c;
Variable var = m.NewVariable(m.Int32Constant(constant));
{
IfBuilder cond(&m);
cond.If(m.Parameter(0)).Then();
var.Set(m.Word32Not(m.Word32Not(var.Get())));
cond.Else();
var.Set(m.Word32Not(var.Get()));
}
m.Return(var.Get());
CHECK_EQ(~constant, m.Call(0));
CHECK_EQ(constant, m.Call(1));
}
TEST(RunSimpleIfNoThenElse) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xd5e550ed;
{
IfBuilder cond(&m);
cond.If(m.Parameter(0));
}
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call(0));
CHECK_EQ(constant, m.Call(1));
}
TEST(RunSimpleConjunctionVariable) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0xf8fb9ec6;
Variable var = m.NewVariable(m.Int32Constant(constant));
{
IfBuilder cond(&m);
cond.If(m.Int32Constant(1)).And();
var.Set(m.Word32Not(var.Get()));
cond.If(m.Parameter(0)).Then();
var.Set(m.Word32Not(m.Word32Not(var.Get())));
cond.Else();
var.Set(m.Word32Not(var.Get()));
}
m.Return(var.Get());
CHECK_EQ(constant, m.Call(0));
CHECK_EQ(~constant, m.Call(1));
}
TEST(RunSimpleDisjunctionVariable) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0x118f6ffc;
Variable var = m.NewVariable(m.Int32Constant(constant));
{
IfBuilder cond(&m);
cond.If(m.Int32Constant(0)).Or();
var.Set(m.Word32Not(var.Get()));
cond.If(m.Parameter(0)).Then();
var.Set(m.Word32Not(m.Word32Not(var.Get())));
cond.Else();
var.Set(m.Word32Not(var.Get()));
}
m.Return(var.Get());
CHECK_EQ(constant, m.Call(0));
CHECK_EQ(~constant, m.Call(1));
}
TEST(RunIfElse) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
{
IfBuilder cond(&m);
bool first = true;
FOR_INT32_INPUTS(i) {
Node* c = m.Int32Constant(*i);
if (first) {
cond.If(m.Word32Equal(m.Parameter(0), c)).Then();
m.Return(c);
first = false;
} else {
cond.Else();
cond.If(m.Word32Equal(m.Parameter(0), c)).Then();
m.Return(c);
}
}
}
m.Return(m.Int32Constant(333));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, m.Call(*i)); }
}
enum IfBuilderBranchType { kSkipBranch, kBranchFallsThrough, kBranchReturns };
static IfBuilderBranchType all_branch_types[] = {
kSkipBranch, kBranchFallsThrough, kBranchReturns};
static void RunIfBuilderDisjunction(size_t max, IfBuilderBranchType then_type,
IfBuilderBranchType else_type) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
std::vector<int32_t> inputs = ValueHelper::int32_vector();
std::vector<int32_t>::const_iterator i = inputs.begin();
int32_t hit = 0x8c723c9a;
int32_t miss = 0x88a6b9f3;
{
Node* p0 = m.Parameter(0);
IfBuilder cond(&m);
for (size_t j = 0; j < max; j++, ++i) {
CHECK(i != inputs.end()); // Thank you STL.
if (j > 0) cond.Or();
cond.If(m.Word32Equal(p0, m.Int32Constant(*i)));
}
switch (then_type) {
case kSkipBranch:
break;
case kBranchFallsThrough:
cond.Then();
break;
case kBranchReturns:
cond.Then();
m.Return(m.Int32Constant(hit));
break;
}
switch (else_type) {
case kSkipBranch:
break;
case kBranchFallsThrough:
cond.Else();
break;
case kBranchReturns:
cond.Else();
m.Return(m.Int32Constant(miss));
break;
}
}
if (then_type != kBranchReturns || else_type != kBranchReturns) {
m.Return(m.Int32Constant(miss));
}
if (then_type != kBranchReturns) hit = miss;
i = inputs.begin();
for (size_t j = 0; i != inputs.end(); j++, ++i) {
int32_t result = m.Call(*i);
CHECK_EQ(j < max ? hit : miss, result);
}
}
TEST(RunIfBuilderDisjunction) {
size_t len = ValueHelper::int32_vector().size() - 1;
size_t max = len > 10 ? 10 : len - 1;
for (size_t i = 0; i < ARRAY_SIZE(all_branch_types); i++) {
for (size_t j = 0; j < ARRAY_SIZE(all_branch_types); j++) {
for (size_t size = 1; size < max; size++) {
RunIfBuilderDisjunction(size, all_branch_types[i], all_branch_types[j]);
}
RunIfBuilderDisjunction(len, all_branch_types[i], all_branch_types[j]);
}
}
}
static void RunIfBuilderConjunction(size_t max, IfBuilderBranchType then_type,
IfBuilderBranchType else_type) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
std::vector<int32_t> inputs = ValueHelper::int32_vector();
std::vector<int32_t>::const_iterator i = inputs.begin();
int32_t hit = 0xa0ceb9ca;
int32_t miss = 0x226cafaa;
{
IfBuilder cond(&m);
Node* p0 = m.Parameter(0);
for (size_t j = 0; j < max; j++, ++i) {
if (j > 0) cond.And();
cond.If(m.Word32NotEqual(p0, m.Int32Constant(*i)));
}
switch (then_type) {
case kSkipBranch:
break;
case kBranchFallsThrough:
cond.Then();
break;
case kBranchReturns:
cond.Then();
m.Return(m.Int32Constant(hit));
break;
}
switch (else_type) {
case kSkipBranch:
break;
case kBranchFallsThrough:
cond.Else();
break;
case kBranchReturns:
cond.Else();
m.Return(m.Int32Constant(miss));
break;
}
}
if (then_type != kBranchReturns || else_type != kBranchReturns) {
m.Return(m.Int32Constant(miss));
}
if (then_type != kBranchReturns) hit = miss;
i = inputs.begin();
for (size_t j = 0; i != inputs.end(); j++, ++i) {
int32_t result = m.Call(*i);
CHECK_EQ(j >= max ? hit : miss, result);
}
}
TEST(RunIfBuilderConjunction) {
size_t len = ValueHelper::int32_vector().size() - 1;
size_t max = len > 10 ? 10 : len - 1;
for (size_t i = 0; i < ARRAY_SIZE(all_branch_types); i++) {
for (size_t j = 0; j < ARRAY_SIZE(all_branch_types); j++) {
for (size_t size = 1; size < max; size++) {
RunIfBuilderConjunction(size, all_branch_types[i], all_branch_types[j]);
}
RunIfBuilderConjunction(len, all_branch_types[i], all_branch_types[j]);
}
}
}
static void RunDisjunctionVariables(int disjunctions, bool explicit_then,
bool explicit_else) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0x65a09535;
Node* cmp_val = m.Int32Constant(constant);
Node* one = m.Int32Constant(1);
Variable var = m.NewVariable(m.Parameter(0));
{
IfBuilder cond(&m);
cond.If(m.Word32Equal(var.Get(), cmp_val));
for (int i = 0; i < disjunctions; i++) {
cond.Or();
var.Set(m.Int32Add(var.Get(), one));
cond.If(m.Word32Equal(var.Get(), cmp_val));
}
if (explicit_then) {
cond.Then();
}
if (explicit_else) {
cond.Else();
var.Set(m.Int32Add(var.Get(), one));
}
}
m.Return(var.Get());
int adds = disjunctions + (explicit_else ? 1 : 0);
int32_t input = constant - 2 * adds;
for (int i = 0; i < adds; i++) {
CHECK_EQ(input + adds, m.Call(input));
input++;
}
for (int i = 0; i < adds + 1; i++) {
CHECK_EQ(constant, m.Call(input));
input++;
}
for (int i = 0; i < adds; i++) {
CHECK_EQ(input + adds, m.Call(input));
input++;
}
}
TEST(RunDisjunctionVariables) {
for (int disjunctions = 0; disjunctions < 10; disjunctions++) {
RunDisjunctionVariables(disjunctions, false, false);
RunDisjunctionVariables(disjunctions, false, true);
RunDisjunctionVariables(disjunctions, true, false);
RunDisjunctionVariables(disjunctions, true, true);
}
}
static void RunConjunctionVariables(int conjunctions, bool explicit_then,
bool explicit_else) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
int32_t constant = 0x2c7f4b45;
Node* cmp_val = m.Int32Constant(constant);
Node* one = m.Int32Constant(1);
Variable var = m.NewVariable(m.Parameter(0));
{
IfBuilder cond(&m);
cond.If(m.Word32NotEqual(var.Get(), cmp_val));
for (int i = 0; i < conjunctions; i++) {
cond.And();
var.Set(m.Int32Add(var.Get(), one));
cond.If(m.Word32NotEqual(var.Get(), cmp_val));
}
if (explicit_then) {
cond.Then();
var.Set(m.Int32Add(var.Get(), one));
}
if (explicit_else) {
cond.Else();
}
}
m.Return(var.Get());
int adds = conjunctions + (explicit_then ? 1 : 0);
int32_t input = constant - 2 * adds;
for (int i = 0; i < adds; i++) {
CHECK_EQ(input + adds, m.Call(input));
input++;
}
for (int i = 0; i < adds + 1; i++) {
CHECK_EQ(constant, m.Call(input));
input++;
}
for (int i = 0; i < adds; i++) {
CHECK_EQ(input + adds, m.Call(input));
input++;
}
}
TEST(RunConjunctionVariables) {
for (int conjunctions = 0; conjunctions < 10; conjunctions++) {
RunConjunctionVariables(conjunctions, false, false);
RunConjunctionVariables(conjunctions, false, true);
RunConjunctionVariables(conjunctions, true, false);
RunConjunctionVariables(conjunctions, true, true);
}
}
TEST(RunSimpleNestedIf) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32, kMachineWord32);
const size_t NUM_VALUES = 7;
std::vector<int32_t> inputs = ValueHelper::int32_vector();
CHECK(inputs.size() >= NUM_VALUES);
Node* values[NUM_VALUES];
for (size_t j = 0; j < NUM_VALUES; j++) {
values[j] = m.Int32Constant(inputs[j]);
}
{
IfBuilder if_0(&m);
if_0.If(m.Word32Equal(m.Parameter(0), values[0])).Then();
{
IfBuilder if_1(&m);
if_1.If(m.Word32Equal(m.Parameter(1), values[1])).Then();
{ m.Return(values[3]); }
if_1.Else();
{ m.Return(values[4]); }
}
if_0.Else();
{
IfBuilder if_1(&m);
if_1.If(m.Word32Equal(m.Parameter(1), values[2])).Then();
{ m.Return(values[5]); }
if_1.Else();
{ m.Return(values[6]); }
}
}
int32_t result = m.Call(inputs[0], inputs[1]);
CHECK_EQ(inputs[3], result);
result = m.Call(inputs[0], inputs[1] + 1);
CHECK_EQ(inputs[4], result);
result = m.Call(inputs[0] + 1, inputs[2]);
CHECK_EQ(inputs[5], result);
result = m.Call(inputs[0] + 1, inputs[2] + 1);
CHECK_EQ(inputs[6], result);
}
TEST(RunUnreachableBlockAfterIf) {
StructuredMachineAssemblerTester<int32_t> m;
{
IfBuilder cond(&m);
cond.If(m.Int32Constant(0)).Then();
m.Return(m.Int32Constant(1));
cond.Else();
m.Return(m.Int32Constant(2));
}
// This is unreachable.
m.Return(m.Int32Constant(3));
CHECK_EQ(2, m.Call());
}
TEST(RunUnreachableBlockAfterLoop) {
StructuredMachineAssemblerTester<int32_t> m;
{
Loop loop(&m);
m.Return(m.Int32Constant(1));
}
// This is unreachable.
m.Return(m.Int32Constant(3));
CHECK_EQ(1, m.Call());
}
TEST(RunSimpleLoop) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x120c1f85;
{
Loop loop(&m);
m.Return(m.Int32Constant(constant));
}
CHECK_EQ(constant, m.Call());
}
TEST(RunSimpleLoopBreak) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x10ddb0a6;
{
Loop loop(&m);
loop.Break();
}
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunCountToTen) {
StructuredMachineAssemblerTester<int32_t> m;
Variable i = m.NewVariable(m.Int32Constant(0));
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
{
Loop loop(&m);
{
IfBuilder cond(&m);
cond.If(m.Word32Equal(i.Get(), ten)).Then();
loop.Break();
}
i.Set(m.Int32Add(i.Get(), one));
}
m.Return(i.Get());
CHECK_EQ(10, m.Call());
}
TEST(RunCountToTenAcc) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0xf27aed64;
Variable i = m.NewVariable(m.Int32Constant(0));
Variable var = m.NewVariable(m.Int32Constant(constant));
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
{
Loop loop(&m);
{
IfBuilder cond(&m);
cond.If(m.Word32Equal(i.Get(), ten)).Then();
loop.Break();
}
i.Set(m.Int32Add(i.Get(), one));
var.Set(m.Int32Add(var.Get(), i.Get()));
}
m.Return(var.Get());
CHECK_EQ(constant + 10 + 9 * 5, m.Call());
}
TEST(RunSimpleNestedLoop) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
Node* two = m.Int32Constant(2);
Node* three = m.Int32Constant(3);
{
Loop l1(&m);
{
Loop l2(&m);
{
IfBuilder cond(&m);
cond.If(m.Word32Equal(m.Parameter(0), one)).Then();
l1.Break();
}
{
Loop l3(&m);
{
IfBuilder cond(&m);
cond.If(m.Word32Equal(m.Parameter(0), two)).Then();
l2.Break();
cond.Else();
cond.If(m.Word32Equal(m.Parameter(0), three)).Then();
l3.Break();
}
m.Return(three);
}
m.Return(two);
}
m.Return(one);
}
m.Return(zero);
CHECK_EQ(0, m.Call(1));
CHECK_EQ(1, m.Call(2));
CHECK_EQ(2, m.Call(3));
CHECK_EQ(3, m.Call(4));
}
TEST(RunFib) {
StructuredMachineAssemblerTester<int32_t> m(kMachineWord32);
// Constants.
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
Node* two = m.Int32Constant(2);
// Variables.
// cnt = input
Variable cnt = m.NewVariable(m.Parameter(0));
// if (cnt < 2) return i
{
IfBuilder lt2(&m);
lt2.If(m.Int32LessThan(cnt.Get(), two)).Then();
m.Return(cnt.Get());
}
// cnt -= 2
cnt.Set(m.Int32Sub(cnt.Get(), two));
// res = 1
Variable res = m.NewVariable(one);
{
// prv_0 = 1
// prv_1 = 1
Variable prv_0 = m.NewVariable(one);
Variable prv_1 = m.NewVariable(one);
// while (cnt != 0) {
Loop main(&m);
{
IfBuilder nz(&m);
nz.If(m.Word32Equal(cnt.Get(), zero)).Then();
main.Break();
}
// res = prv_0 + prv_1
// prv_0 = prv_1
// prv_1 = res
res.Set(m.Int32Add(prv_0.Get(), prv_1.Get()));
prv_0.Set(prv_1.Get());
prv_1.Set(res.Get());
// cnt--
cnt.Set(m.Int32Sub(cnt.Get(), one));
}
m.Return(res.Get());
int32_t values[] = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144};
for (size_t i = 0; i < ARRAY_SIZE(values); i++) {
CHECK_EQ(values[i], m.Call(static_cast<int32_t>(i)));
}
}
static int VariableIntroduction() {
while (true) {
int ret = 0;
for (int i = 0; i < 10; i++) {
for (int j = i; j < 10; j++) {
for (int k = j; k < 10; k++) {
ret++;
}
ret++;
}
ret++;
}
return ret;
}
}
TEST(RunVariableIntroduction) {
StructuredMachineAssemblerTester<int32_t> m;
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
// Use an IfBuilder to get out of start block.
{
IfBuilder i0(&m);
i0.If(zero).Then();
m.Return(one);
}
Node* ten = m.Int32Constant(10);
Variable v0 =
m.NewVariable(zero); // Introduce variable outside of start block.
{
Loop l0(&m);
Variable ret = m.NewVariable(zero); // Introduce loop variable.
{
Loop l1(&m);
{
IfBuilder i1(&m);
i1.If(m.Word32Equal(v0.Get(), ten)).Then();
l1.Break();
}
Variable v1 = m.NewVariable(v0.Get()); // Introduce loop variable.
{
Loop l2(&m);
{
IfBuilder i2(&m);
i2.If(m.Word32Equal(v1.Get(), ten)).Then();
l2.Break();
}
Variable v2 = m.NewVariable(v1.Get()); // Introduce loop variable.
{
Loop l3(&m);
{
IfBuilder i3(&m);
i3.If(m.Word32Equal(v2.Get(), ten)).Then();
l3.Break();
}
ret.Set(m.Int32Add(ret.Get(), one));
v2.Set(m.Int32Add(v2.Get(), one));
}
ret.Set(m.Int32Add(ret.Get(), one));
v1.Set(m.Int32Add(v1.Get(), one));
}
ret.Set(m.Int32Add(ret.Get(), one));
v0.Set(m.Int32Add(v0.Get(), one));
}
m.Return(ret.Get()); // Return loop variable.
}
CHECK_EQ(VariableIntroduction(), m.Call());
}
TEST(RunIfBuilderVariableLiveness) {
StructuredMachineAssemblerTester<int32_t> m;
typedef i::compiler::StructuredMachineAssemblerFriend F;
Node* zero = m.Int32Constant(0);
Variable v_outer = m.NewVariable(zero);
IfBuilder cond(&m);
cond.If(zero).Then();
Variable v_then = m.NewVariable(zero);
CHECK(F::VariableAlive(&m, v_outer));
CHECK(F::VariableAlive(&m, v_then));
cond.Else();
Variable v_else = m.NewVariable(zero);
CHECK(F::VariableAlive(&m, v_outer));
CHECK(F::VariableAlive(&m, v_else));
CHECK(!F::VariableAlive(&m, v_then));
cond.End();
CHECK(F::VariableAlive(&m, v_outer));
CHECK(!F::VariableAlive(&m, v_then));
CHECK(!F::VariableAlive(&m, v_else));
}
TEST(RunSimpleExpression1) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x0c2974ef;
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
{
// if (((1 && 1) && 1) && 1) return constant; return 0;
IfBuilder cond(&m);
cond.OpenParen();
cond.OpenParen().If(one).And();
cond.If(one).CloseParen().And();
cond.If(one).CloseParen().And();
cond.If(one).Then();
m.Return(m.Int32Constant(constant));
}
m.Return(zero);
CHECK_EQ(constant, m.Call());
}
TEST(RunSimpleExpression2) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x2eddc11b;
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
{
// if (((0 || 1) && 1) && 1) return constant; return 0;
IfBuilder cond(&m);
cond.OpenParen();
cond.OpenParen().If(zero).Or();
cond.If(one).CloseParen().And();
cond.If(one).CloseParen().And();
cond.If(one).Then();
m.Return(m.Int32Constant(constant));
}
m.Return(zero);
CHECK_EQ(constant, m.Call());
}
TEST(RunSimpleExpression3) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x9ed5e9ef;
Node* zero = m.Int32Constant(0);
Node* one = m.Int32Constant(1);
{
// if (1 && ((0 || 1) && 1) && 1) return constant; return 0;
IfBuilder cond(&m);
cond.If(one).And();
cond.OpenParen();
cond.OpenParen().If(zero).Or();
cond.If(one).CloseParen().And();
cond.If(one).CloseParen().And();
cond.If(one).Then();
m.Return(m.Int32Constant(constant));
}
m.Return(zero);
CHECK_EQ(constant, m.Call());
}
TEST(RunSimpleExpressionVariable1) {
StructuredMachineAssemblerTester<int32_t> m;
int32_t constant = 0x4b40a986;
Node* one = m.Int32Constant(1);
Variable var = m.NewVariable(m.Int32Constant(constant));
{
// if (var.Get() && ((!var || var) && var) && var) {} return var;
// incrementing var in each environment.
IfBuilder cond(&m);
cond.If(var.Get()).And();
var.Set(m.Int32Add(var.Get(), one));
cond.OpenParen().OpenParen().If(m.Word32BinaryNot(var.Get())).Or();
var.Set(m.Int32Add(var.Get(), one));
cond.If(var.Get()).CloseParen().And();
var.Set(m.Int32Add(var.Get(), one));
cond.If(var.Get()).CloseParen().And();
var.Set(m.Int32Add(var.Get(), one));
cond.If(var.Get());
}
m.Return(var.Get());
CHECK_EQ(constant + 4, m.Call());
}
class QuicksortHelper : public StructuredMachineAssemblerTester<int32_t> {
public:
QuicksortHelper()
: StructuredMachineAssemblerTester(
MachineOperatorBuilder::pointer_rep(), kMachineWord32,
MachineOperatorBuilder::pointer_rep(), kMachineWord32),
input_(NULL),
stack_limit_(NULL),
one_(Int32Constant(1)),
stack_frame_size_(Int32Constant(kFrameVariables * 4)),
left_offset_(Int32Constant(0 * 4)),
right_offset_(Int32Constant(1 * 4)) {
Build();
}
int32_t DoCall(int32_t* input, int32_t input_length) {
int32_t stack_space[20];
// Do call.
int32_t return_val = Call(input, input_length, stack_space,
static_cast<int32_t>(ARRAY_SIZE(stack_space)));
// Ran out of stack space.
if (return_val != 0) return return_val;
// Check sorted.
int32_t last = input[0];
for (int32_t i = 0; i < input_length; i++) {
CHECK(last <= input[i]);
last = input[i];
}
return return_val;
}
private:
void Inc32(const Variable& var) { var.Set(Int32Add(var.Get(), one_)); }
Node* Index(Node* index) { return Word32Shl(index, Int32Constant(2)); }
Node* ArrayLoad(Node* index) {
return Load(kMachineWord32, input_, Index(index));
}
void Swap(Node* a_index, Node* b_index) {
Node* a = ArrayLoad(a_index);
Node* b = ArrayLoad(b_index);
Store(kMachineWord32, input_, Index(a_index), b);
Store(kMachineWord32, input_, Index(b_index), a);
}
void AddToCallStack(const Variable& fp, Node* left, Node* right) {
{
// Stack limit check.
IfBuilder cond(this);
cond.If(IntPtrLessThanOrEqual(fp.Get(), stack_limit_)).Then();
Return(Int32Constant(-1));
}
Store(kMachineWord32, fp.Get(), left_offset_, left);
Store(kMachineWord32, fp.Get(), right_offset_, right);
fp.Set(IntPtrAdd(fp.Get(), ConvertInt32ToIntPtr(stack_frame_size_)));
}
void Build() {
Variable left = NewVariable(Int32Constant(0));
Variable right =
NewVariable(Int32Sub(Parameter(kInputLengthParameter), one_));
input_ = Parameter(kInputParameter);
Node* top_of_stack = Parameter(kStackParameter);
stack_limit_ = IntPtrSub(
top_of_stack, ConvertInt32ToIntPtr(Parameter(kStackLengthParameter)));
Variable fp = NewVariable(top_of_stack);
{
Loop outermost(this);
// Edge case - 2 element array.
{
IfBuilder cond(this);
cond.If(Word32Equal(left.Get(), Int32Sub(right.Get(), one_))).And();
cond.If(Int32LessThanOrEqual(ArrayLoad(right.Get()),
ArrayLoad(left.Get()))).Then();
Swap(left.Get(), right.Get());
}
{
IfBuilder cond(this);
// Algorithm complete condition.
cond.If(WordEqual(top_of_stack, fp.Get())).And();
cond.If(Int32LessThanOrEqual(Int32Sub(right.Get(), one_), left.Get()))
.Then();
outermost.Break();
// 'Recursion' exit condition. Pop frame and continue.
cond.Else();
cond.If(Int32LessThanOrEqual(Int32Sub(right.Get(), one_), left.Get()))
.Then();
fp.Set(IntPtrSub(fp.Get(), ConvertInt32ToIntPtr(stack_frame_size_)));
left.Set(Load(kMachineWord32, fp.Get(), left_offset_));
right.Set(Load(kMachineWord32, fp.Get(), right_offset_));
outermost.Continue();
}
// Partition.
Variable store_index = NewVariable(left.Get());
{
Node* pivot_index =
Int32Div(Int32Add(left.Get(), right.Get()), Int32Constant(2));
Node* pivot = ArrayLoad(pivot_index);
Swap(pivot_index, right.Get());
Variable i = NewVariable(left.Get());
{
Loop partition(this);
{
IfBuilder cond(this);
// Parition complete.
cond.If(Word32Equal(i.Get(), right.Get())).Then();
partition.Break();
// Need swap.
cond.Else();
cond.If(Int32LessThanOrEqual(ArrayLoad(i.Get()), pivot)).Then();
Swap(i.Get(), store_index.Get());
Inc32(store_index);
}
Inc32(i);
} // End partition loop.
Swap(store_index.Get(), right.Get());
}
// 'Recurse' left and right halves of partition.
// Tail recurse second one.
AddToCallStack(fp, left.Get(), Int32Sub(store_index.Get(), one_));
left.Set(Int32Add(store_index.Get(), one_));
} // End outermost loop.
Return(Int32Constant(0));
}
static const int kFrameVariables = 2; // left, right
// Parameter offsets.
static const int kInputParameter = 0;
static const int kInputLengthParameter = 1;
static const int kStackParameter = 2;
static const int kStackLengthParameter = 3;
// Function inputs.
Node* input_;
Node* stack_limit_;
// Constants.
Node* const one_;
// Frame constants.
Node* const stack_frame_size_;
Node* const left_offset_;
Node* const right_offset_;
};
TEST(RunSimpleQuicksort) {
QuicksortHelper m;
int32_t inputs[] = {9, 7, 1, 8, 11};
CHECK_EQ(0, m.DoCall(inputs, ARRAY_SIZE(inputs)));
}
TEST(RunRandomQuicksort) {
QuicksortHelper m;
v8::base::RandomNumberGenerator rng;
static const int kMaxLength = 40;
int32_t inputs[kMaxLength];
for (int length = 1; length < kMaxLength; length++) {
for (int i = 0; i < 70; i++) {
// Randomize inputs.
for (int j = 0; j < length; j++) {
inputs[j] = rng.NextInt(10) - 5;
}
CHECK_EQ(0, m.DoCall(inputs, length));
}
}
}
TEST(MultipleScopes) {
StructuredMachineAssemblerTester<int32_t> m;
for (int i = 0; i < 10; i++) {
IfBuilder b(&m);
b.If(m.Int32Constant(0)).Then();
m.NewVariable(m.Int32Constant(0));
}
m.Return(m.Int32Constant(0));
CHECK_EQ(0, m.Call());
}
#endif