v8/src/builtins/builtins-number.cc

1605 lines
59 KiB
C++
Raw Normal View History

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-utils.h"
#include "src/builtins/builtins.h"
#include "src/code-factory.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// ES6 section 20.1 Number Objects
// ES6 section 20.1.2.2 Number.isFinite ( number )
void Builtins::Generate_NumberIsFinite(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* number = assembler->Parameter(1);
Label return_true(assembler), return_false(assembler);
// Check if {number} is a Smi.
assembler->GotoIf(assembler->WordIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
assembler->GotoUnless(
assembler->WordEqual(assembler->LoadMap(number),
assembler->HeapNumberMapConstant()),
&return_false);
// Check if {number} contains a finite, non-NaN value.
Node* number_value = assembler->LoadHeapNumberValue(number);
assembler->BranchIfFloat64IsNaN(
assembler->Float64Sub(number_value, number_value), &return_false,
&return_true);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
}
// ES6 section 20.1.2.3 Number.isInteger ( number )
void Builtins::Generate_NumberIsInteger(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* number = assembler->Parameter(1);
Label return_true(assembler), return_false(assembler);
// Check if {number} is a Smi.
assembler->GotoIf(assembler->WordIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
assembler->GotoUnless(
assembler->WordEqual(assembler->LoadMap(number),
assembler->HeapNumberMapConstant()),
&return_false);
// Load the actual value of {number}.
Node* number_value = assembler->LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
Node* integer = assembler->Float64Trunc(number_value);
// Check if {number}s value matches the integer (ruling out the infinities).
assembler->BranchIfFloat64Equal(assembler->Float64Sub(number_value, integer),
assembler->Float64Constant(0.0), &return_true,
&return_false);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
}
// ES6 section 20.1.2.4 Number.isNaN ( number )
void Builtins::Generate_NumberIsNaN(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* number = assembler->Parameter(1);
Label return_true(assembler), return_false(assembler);
// Check if {number} is a Smi.
assembler->GotoIf(assembler->WordIsSmi(number), &return_false);
// Check if {number} is a HeapNumber.
assembler->GotoUnless(
assembler->WordEqual(assembler->LoadMap(number),
assembler->HeapNumberMapConstant()),
&return_false);
// Check if {number} contains a NaN value.
Node* number_value = assembler->LoadHeapNumberValue(number);
assembler->BranchIfFloat64IsNaN(number_value, &return_true, &return_false);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
}
// ES6 section 20.1.2.5 Number.isSafeInteger ( number )
void Builtins::Generate_NumberIsSafeInteger(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* number = assembler->Parameter(1);
Label return_true(assembler), return_false(assembler);
// Check if {number} is a Smi.
assembler->GotoIf(assembler->WordIsSmi(number), &return_true);
// Check if {number} is a HeapNumber.
assembler->GotoUnless(
assembler->WordEqual(assembler->LoadMap(number),
assembler->HeapNumberMapConstant()),
&return_false);
// Load the actual value of {number}.
Node* number_value = assembler->LoadHeapNumberValue(number);
// Truncate the value of {number} to an integer (or an infinity).
Node* integer = assembler->Float64Trunc(number_value);
// Check if {number}s value matches the integer (ruling out the infinities).
assembler->GotoUnless(
assembler->Float64Equal(assembler->Float64Sub(number_value, integer),
assembler->Float64Constant(0.0)),
&return_false);
// Check if the {integer} value is in safe integer range.
assembler->BranchIfFloat64LessThanOrEqual(
assembler->Float64Abs(integer),
assembler->Float64Constant(kMaxSafeInteger), &return_true, &return_false);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
}
// ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits )
BUILTIN(NumberPrototypeToExponential) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toExponential")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toExponential()")));
}
int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate)
? -1
: static_cast<int>(fraction_digits_number);
char* const str = DoubleToExponentialCString(value_number, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits )
BUILTIN(NumberPrototypeToFixed) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toFixed")));
}
double const value_number = value->Number();
// Convert the {fraction_digits} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits));
double const fraction_digits_number = fraction_digits->Number();
// Check if the {fraction_digits} are in the supported range.
if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kNumberFormatRange,
isolate->factory()->NewStringFromAsciiChecked(
"toFixed() digits")));
}
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str = DoubleToFixedCString(
value_number, static_cast<int>(fraction_digits_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] )
BUILTIN(NumberPrototypeToLocaleString) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toLocaleString")));
}
// Turn the {value} into a String.
return *isolate->factory()->NumberToString(value);
}
// ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision )
BUILTIN(NumberPrototypeToPrecision) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> precision = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toPrecision")));
}
double const value_number = value->Number();
// If no {precision} was specified, just return ToString of {value}.
if (precision->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {precision} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision,
Object::ToInteger(isolate, precision));
double const precision_number = precision->Number();
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
if (precision_number < 1.0 || precision_number > 21.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange));
}
char* const str = DoubleToPrecisionCString(
value_number, static_cast<int>(precision_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] )
BUILTIN(NumberPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Object> radix = args.atOrUndefined(isolate, 1);
// Unwrap the receiver {value}.
if (value->IsJSValue()) {
value = handle(Handle<JSValue>::cast(value)->value(), isolate);
}
if (!value->IsNumber()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Number.prototype.toString")));
}
double const value_number = value->Number();
// If no {radix} was specified, just return ToString of {value}.
if (radix->IsUndefined(isolate)) {
return *isolate->factory()->NumberToString(value);
}
// Convert the {radix} to an integer first.
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix,
Object::ToInteger(isolate, radix));
double const radix_number = radix->Number();
// If {radix} is 10, just return ToString of {value}.
if (radix_number == 10.0) return *isolate->factory()->NumberToString(value);
// Make sure the {radix} is within the valid range.
if (radix_number < 2.0 || radix_number > 36.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kToRadixFormatRange));
}
// Fast case where the result is a one character string.
if (IsUint32Double(value_number) && value_number < radix_number) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return *isolate->factory()->LookupSingleCharacterStringFromCode(
kCharTable[static_cast<uint32_t>(value_number)]);
}
// Slow case.
if (std::isnan(value_number)) return isolate->heap()->nan_string();
if (std::isinf(value_number)) {
return (value_number < 0.0) ? isolate->heap()->minus_infinity_string()
: isolate->heap()->infinity_string();
}
char* const str =
DoubleToRadixCString(value_number, static_cast<int>(radix_number));
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
// ES6 section 20.1.3.7 Number.prototype.valueOf ( )
void Builtins::Generate_NumberPrototypeValueOf(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
Node* result = assembler->ToThisValue(
context, receiver, PrimitiveType::kNumber, "Number.prototype.valueOf");
assembler->Return(result);
}
// static
void Builtins::Generate_Add(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* left = assembler->Parameter(0);
Node* right = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
// Shared entry for floating point addition.
Label do_fadd(assembler);
Variable var_fadd_lhs(assembler, MachineRepresentation::kFloat64),
var_fadd_rhs(assembler, MachineRepresentation::kFloat64);
// We might need to loop several times due to ToPrimitive, ToString and/or
// ToNumber conversions.
Variable var_lhs(assembler, MachineRepresentation::kTagged),
var_rhs(assembler, MachineRepresentation::kTagged),
var_result(assembler, MachineRepresentation::kTagged);
Variable* loop_vars[2] = {&var_lhs, &var_rhs};
Label loop(assembler, 2, loop_vars), end(assembler),
string_add_convert_left(assembler, Label::kDeferred),
string_add_convert_right(assembler, Label::kDeferred);
var_lhs.Bind(left);
var_rhs.Bind(right);
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {lhs} and {rhs} values.
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(assembler), if_lhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
assembler->Bind(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(assembler), if_rhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &if_rhsissmi,
&if_rhsisnotsmi);
assembler->Bind(&if_rhsissmi);
{
// Try fast Smi addition first.
Node* pair = assembler->SmiAddWithOverflow(lhs, rhs);
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi additon overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_overflow);
{
var_fadd_lhs.Bind(assembler->SmiToFloat64(lhs));
var_fadd_rhs.Bind(assembler->SmiToFloat64(rhs));
assembler->Goto(&do_fadd);
}
assembler->Bind(&if_notoverflow);
var_result.Bind(assembler->Projection(0, pair));
assembler->Goto(&end);
}
assembler->Bind(&if_rhsisnotsmi);
{
// Load the map of {rhs}.
Node* rhs_map = assembler->LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
Label if_rhsisnumber(assembler),
if_rhsisnotnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->IsHeapNumberMap(rhs_map), &if_rhsisnumber,
&if_rhsisnotnumber);
assembler->Bind(&if_rhsisnumber);
{
var_fadd_lhs.Bind(assembler->SmiToFloat64(lhs));
var_fadd_rhs.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fadd);
}
assembler->Bind(&if_rhsisnotnumber);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = assembler->LoadMapInstanceType(rhs_map);
// Check if the {rhs} is a String.
Label if_rhsisstring(assembler, Label::kDeferred),
if_rhsisnotstring(assembler, Label::kDeferred);
assembler->Branch(assembler->IsStringInstanceType(rhs_instance_type),
&if_rhsisstring, &if_rhsisnotstring);
assembler->Bind(&if_rhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
assembler->Goto(&string_add_convert_left);
}
assembler->Bind(&if_rhsisnotstring);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(assembler, Label::kDeferred),
if_rhsisnotreceiver(assembler, Label::kDeferred);
assembler->Branch(
assembler->IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
assembler->Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
assembler->Bind(&if_rhsisnotreceiver);
{
// Convert {rhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
}
}
}
}
assembler->Bind(&if_lhsisnotsmi);
{
// Load the map and instance type of {lhs}.
Node* lhs_instance_type = assembler->LoadInstanceType(lhs);
// Check if {lhs} is a String.
Label if_lhsisstring(assembler), if_lhsisnotstring(assembler);
assembler->Branch(assembler->IsStringInstanceType(lhs_instance_type),
&if_lhsisstring, &if_lhsisnotstring);
assembler->Bind(&if_lhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
assembler->Goto(&string_add_convert_right);
}
assembler->Bind(&if_lhsisnotstring);
{
// Check if {rhs} is a Smi.
Label if_rhsissmi(assembler), if_rhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &if_rhsissmi,
&if_rhsisnotsmi);
assembler->Bind(&if_rhsissmi);
{
// Check if {lhs} is a Number.
Label if_lhsisnumber(assembler),
if_lhsisnotnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->Word32Equal(
lhs_instance_type,
assembler->Int32Constant(HEAP_NUMBER_TYPE)),
&if_lhsisnumber, &if_lhsisnotnumber);
assembler->Bind(&if_lhsisnumber);
{
// The {lhs} is a HeapNumber, the {rhs} is a Smi, just add them.
var_fadd_lhs.Bind(assembler->LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(assembler->SmiToFloat64(rhs));
assembler->Goto(&do_fadd);
}
assembler->Bind(&if_lhsisnotnumber);
{
// The {lhs} is neither a Number nor a String, and the {rhs} is a
// Smi.
Label if_lhsisreceiver(assembler, Label::kDeferred),
if_lhsisnotreceiver(assembler, Label::kDeferred);
assembler->Branch(
assembler->IsJSReceiverInstanceType(lhs_instance_type),
&if_lhsisreceiver, &if_lhsisnotreceiver);
assembler->Bind(&if_lhsisreceiver);
{
// Convert {lhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
assembler->Bind(&if_lhsisnotreceiver);
{
// Convert {lhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&if_rhsisnotsmi);
{
// Load the instance type of {rhs}.
Node* rhs_instance_type = assembler->LoadInstanceType(rhs);
// Check if {rhs} is a String.
Label if_rhsisstring(assembler), if_rhsisnotstring(assembler);
assembler->Branch(assembler->IsStringInstanceType(rhs_instance_type),
&if_rhsisstring, &if_rhsisnotstring);
assembler->Bind(&if_rhsisstring);
{
var_lhs.Bind(lhs);
var_rhs.Bind(rhs);
assembler->Goto(&string_add_convert_left);
}
assembler->Bind(&if_rhsisnotstring);
{
// Check if {lhs} is a HeapNumber.
Label if_lhsisnumber(assembler), if_lhsisnotnumber(assembler);
assembler->Branch(assembler->Word32Equal(
lhs_instance_type,
assembler->Int32Constant(HEAP_NUMBER_TYPE)),
&if_lhsisnumber, &if_lhsisnotnumber);
assembler->Bind(&if_lhsisnumber);
{
// Check if {rhs} is also a HeapNumber.
Label if_rhsisnumber(assembler),
if_rhsisnotnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->Word32Equal(
rhs_instance_type,
assembler->Int32Constant(HEAP_NUMBER_TYPE)),
&if_rhsisnumber, &if_rhsisnotnumber);
assembler->Bind(&if_rhsisnumber);
{
// Perform a floating point addition.
var_fadd_lhs.Bind(assembler->LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fadd);
}
assembler->Bind(&if_rhsisnotnumber);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(assembler, Label::kDeferred),
if_rhsisnotreceiver(assembler, Label::kDeferred);
assembler->Branch(
assembler->IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
assembler->Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
assembler->Bind(&if_rhsisnotreceiver);
{
// Convert {rhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&if_lhsisnotnumber);
{
// Check if {lhs} is a JSReceiver.
Label if_lhsisreceiver(assembler, Label::kDeferred),
if_lhsisnotreceiver(assembler);
assembler->Branch(
assembler->IsJSReceiverInstanceType(lhs_instance_type),
&if_lhsisreceiver, &if_lhsisnotreceiver);
assembler->Bind(&if_lhsisreceiver);
{
// Convert {lhs} to a primitive first passing no hint.
Callable callable =
CodeFactory::NonPrimitiveToPrimitive(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
assembler->Bind(&if_lhsisnotreceiver);
{
// Check if {rhs} is a JSReceiver.
Label if_rhsisreceiver(assembler, Label::kDeferred),
if_rhsisnotreceiver(assembler, Label::kDeferred);
assembler->Branch(
assembler->IsJSReceiverInstanceType(rhs_instance_type),
&if_rhsisreceiver, &if_rhsisnotreceiver);
assembler->Bind(&if_rhsisreceiver);
{
// Convert {rhs} to a primitive first passing no hint.
Callable callable = CodeFactory::NonPrimitiveToPrimitive(
assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
assembler->Bind(&if_rhsisnotreceiver);
{
// Convert {lhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
}
}
}
}
}
}
}
assembler->Bind(&string_add_convert_left);
{
// Convert {lhs}, which is a Smi, to a String and concatenate the
// resulting string with the String {rhs}.
Callable callable = CodeFactory::StringAdd(
assembler->isolate(), STRING_ADD_CONVERT_LEFT, NOT_TENURED);
var_result.Bind(assembler->CallStub(callable, context, var_lhs.value(),
var_rhs.value()));
assembler->Goto(&end);
}
assembler->Bind(&string_add_convert_right);
{
// Convert {lhs}, which is a Smi, to a String and concatenate the
// resulting string with the String {rhs}.
Callable callable = CodeFactory::StringAdd(
assembler->isolate(), STRING_ADD_CONVERT_RIGHT, NOT_TENURED);
var_result.Bind(assembler->CallStub(callable, context, var_lhs.value(),
var_rhs.value()));
assembler->Goto(&end);
}
assembler->Bind(&do_fadd);
{
Node* lhs_value = var_fadd_lhs.value();
Node* rhs_value = var_fadd_rhs.value();
Node* value = assembler->Float64Add(lhs_value, rhs_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
var_result.Bind(result);
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->Return(var_result.value());
}
void Builtins::Generate_Subtract(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* left = assembler->Parameter(0);
Node* right = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
// Shared entry for floating point subtraction.
Label do_fsub(assembler), end(assembler);
Variable var_fsub_lhs(assembler, MachineRepresentation::kFloat64),
var_fsub_rhs(assembler, MachineRepresentation::kFloat64);
// We might need to loop several times due to ToPrimitive and/or ToNumber
// conversions.
Variable var_lhs(assembler, MachineRepresentation::kTagged),
var_rhs(assembler, MachineRepresentation::kTagged),
var_result(assembler, MachineRepresentation::kTagged);
Variable* loop_vars[2] = {&var_lhs, &var_rhs};
Label loop(assembler, 2, loop_vars);
var_lhs.Bind(left);
var_rhs.Bind(right);
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {lhs} and {rhs} values.
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(assembler), if_lhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
assembler->Bind(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(assembler), if_rhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &if_rhsissmi,
&if_rhsisnotsmi);
assembler->Bind(&if_rhsissmi);
{
// Try a fast Smi subtraction first.
Node* pair = assembler->SmiSubWithOverflow(lhs, rhs);
Node* overflow = assembler->Projection(1, pair);
// Check if the Smi subtraction overflowed.
Label if_overflow(assembler), if_notoverflow(assembler);
assembler->Branch(overflow, &if_overflow, &if_notoverflow);
assembler->Bind(&if_overflow);
{
// The result doesn't fit into Smi range.
var_fsub_lhs.Bind(assembler->SmiToFloat64(lhs));
var_fsub_rhs.Bind(assembler->SmiToFloat64(rhs));
assembler->Goto(&do_fsub);
}
assembler->Bind(&if_notoverflow);
var_result.Bind(assembler->Projection(0, pair));
assembler->Goto(&end);
}
assembler->Bind(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = assembler->LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label if_rhsisnumber(assembler),
if_rhsisnotnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->IsHeapNumberMap(rhs_map), &if_rhsisnumber,
&if_rhsisnotnumber);
assembler->Bind(&if_rhsisnumber);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(assembler->SmiToFloat64(lhs));
var_fsub_rhs.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fsub);
}
assembler->Bind(&if_rhsisnotnumber);
{
// Convert the {rhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&if_lhsisnotsmi);
{
// Load the map of the {lhs}.
Node* lhs_map = assembler->LoadMap(lhs);
// Check if the {lhs} is a HeapNumber.
Label if_lhsisnumber(assembler),
if_lhsisnotnumber(assembler, Label::kDeferred);
Node* number_map = assembler->HeapNumberMapConstant();
assembler->Branch(assembler->WordEqual(lhs_map, number_map),
&if_lhsisnumber, &if_lhsisnotnumber);
assembler->Bind(&if_lhsisnumber);
{
// Check if the {rhs} is a Smi.
Label if_rhsissmi(assembler), if_rhsisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &if_rhsissmi,
&if_rhsisnotsmi);
assembler->Bind(&if_rhsissmi);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(assembler->LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(assembler->SmiToFloat64(rhs));
assembler->Goto(&do_fsub);
}
assembler->Bind(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = assembler->LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
Label if_rhsisnumber(assembler),
if_rhsisnotnumber(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(rhs_map, number_map),
&if_rhsisnumber, &if_rhsisnotnumber);
assembler->Bind(&if_rhsisnumber);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(assembler->LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fsub);
}
assembler->Bind(&if_rhsisnotnumber);
{
// Convert the {rhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_rhs.Bind(assembler->CallStub(callable, context, rhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&if_lhsisnotnumber);
{
// Convert the {lhs} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_fsub);
{
Node* lhs_value = var_fsub_lhs.value();
Node* rhs_value = var_fsub_rhs.value();
Node* value = assembler->Float64Sub(lhs_value, rhs_value);
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->Return(var_result.value());
}
void Builtins::Generate_Multiply(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* left = assembler->Parameter(0);
Node* right = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
// Shared entry point for floating point multiplication.
Label do_fmul(assembler), return_result(assembler);
Variable var_lhs_float64(assembler, MachineRepresentation::kFloat64),
var_rhs_float64(assembler, MachineRepresentation::kFloat64);
Node* number_map = assembler->HeapNumberMapConstant();
// We might need to loop one or two times due to ToNumber conversions.
Variable var_lhs(assembler, MachineRepresentation::kTagged),
var_rhs(assembler, MachineRepresentation::kTagged),
var_result(assembler, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_lhs, &var_rhs};
Label loop(assembler, 2, loop_variables);
var_lhs.Bind(left);
var_rhs.Bind(right);
assembler->Goto(&loop);
assembler->Bind(&loop);
{
Node* lhs = var_lhs.value();
Node* rhs = var_rhs.value();
Label lhs_is_smi(assembler), lhs_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
assembler->Bind(&lhs_is_smi);
{
Label rhs_is_smi(assembler), rhs_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &rhs_is_smi,
&rhs_is_not_smi);
assembler->Bind(&rhs_is_smi);
{
// Both {lhs} and {rhs} are Smis. The result is not necessarily a smi,
// in case of overflow.
var_result.Bind(assembler->SmiMul(lhs, rhs));
assembler->Goto(&return_result);
}
assembler->Bind(&rhs_is_not_smi);
{
Node* rhs_map = assembler->LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label rhs_is_number(assembler),
rhs_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(rhs_map, number_map),
&rhs_is_number, &rhs_is_not_number);
assembler->Bind(&rhs_is_number);
{
// Convert {lhs} to a double and multiply it with the value of {rhs}.
var_lhs_float64.Bind(assembler->SmiToFloat64(lhs));
var_rhs_float64.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fmul);
}
assembler->Bind(&rhs_is_not_number);
{
// Multiplication is commutative, swap {lhs} with {rhs} and loop.
var_lhs.Bind(rhs);
var_rhs.Bind(lhs);
assembler->Goto(&loop);
}
}
}
assembler->Bind(&lhs_is_not_smi);
{
Node* lhs_map = assembler->LoadMap(lhs);
// Check if {lhs} is a HeapNumber.
Label lhs_is_number(assembler),
lhs_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(lhs_map, number_map),
&lhs_is_number, &lhs_is_not_number);
assembler->Bind(&lhs_is_number);
{
// Check if {rhs} is a Smi.
Label rhs_is_smi(assembler), rhs_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(rhs), &rhs_is_smi,
&rhs_is_not_smi);
assembler->Bind(&rhs_is_smi);
{
// Convert {rhs} to a double and multiply it with the value of {lhs}.
var_lhs_float64.Bind(assembler->LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(assembler->SmiToFloat64(rhs));
assembler->Goto(&do_fmul);
}
assembler->Bind(&rhs_is_not_smi);
{
Node* rhs_map = assembler->LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Label rhs_is_number(assembler),
rhs_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(rhs_map, number_map),
&rhs_is_number, &rhs_is_not_number);
assembler->Bind(&rhs_is_number);
{
// Both {lhs} and {rhs} are HeapNumbers. Load their values and
// multiply them.
var_lhs_float64.Bind(assembler->LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(assembler->LoadHeapNumberValue(rhs));
assembler->Goto(&do_fmul);
}
assembler->Bind(&rhs_is_not_number);
{
// Multiplication is commutative, swap {lhs} with {rhs} and loop.
var_lhs.Bind(rhs);
var_rhs.Bind(lhs);
assembler->Goto(&loop);
}
}
}
assembler->Bind(&lhs_is_not_number);
{
// Convert {lhs} to a Number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_lhs.Bind(assembler->CallStub(callable, context, lhs));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_fmul);
{
Node* value =
assembler->Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
Node* result = assembler->ChangeFloat64ToTagged(value);
var_result.Bind(result);
assembler->Goto(&return_result);
}
assembler->Bind(&return_result);
assembler->Return(var_result.value());
}
void Builtins::Generate_Divide(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* left = assembler->Parameter(0);
Node* right = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
// Shared entry point for floating point division.
Label do_fdiv(assembler), end(assembler);
Variable var_dividend_float64(assembler, MachineRepresentation::kFloat64),
var_divisor_float64(assembler, MachineRepresentation::kFloat64);
Node* number_map = assembler->HeapNumberMapConstant();
// We might need to loop one or two times due to ToNumber conversions.
Variable var_dividend(assembler, MachineRepresentation::kTagged),
var_divisor(assembler, MachineRepresentation::kTagged),
var_result(assembler, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_dividend, &var_divisor};
Label loop(assembler, 2, loop_variables);
var_dividend.Bind(left);
var_divisor.Bind(right);
assembler->Goto(&loop);
assembler->Bind(&loop);
{
Node* dividend = var_dividend.value();
Node* divisor = var_divisor.value();
Label dividend_is_smi(assembler), dividend_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(dividend), &dividend_is_smi,
&dividend_is_not_smi);
assembler->Bind(&dividend_is_smi);
{
Label divisor_is_smi(assembler), divisor_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(divisor), &divisor_is_smi,
&divisor_is_not_smi);
assembler->Bind(&divisor_is_smi);
{
Label bailout(assembler);
// Do floating point division if {divisor} is zero.
assembler->GotoIf(
assembler->WordEqual(divisor, assembler->IntPtrConstant(0)),
&bailout);
// Do floating point division {dividend} is zero and {divisor} is
// negative.
Label dividend_is_zero(assembler), dividend_is_not_zero(assembler);
assembler->Branch(
assembler->WordEqual(dividend, assembler->IntPtrConstant(0)),
&dividend_is_zero, &dividend_is_not_zero);
assembler->Bind(&dividend_is_zero);
{
assembler->GotoIf(
assembler->IntPtrLessThan(divisor, assembler->IntPtrConstant(0)),
&bailout);
assembler->Goto(&dividend_is_not_zero);
}
assembler->Bind(&dividend_is_not_zero);
Node* untagged_divisor = assembler->SmiUntag(divisor);
Node* untagged_dividend = assembler->SmiUntag(dividend);
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
// if the Smi size is 31) and {divisor} is -1.
Label divisor_is_minus_one(assembler),
divisor_is_not_minus_one(assembler);
assembler->Branch(assembler->Word32Equal(untagged_divisor,
assembler->Int32Constant(-1)),
&divisor_is_minus_one, &divisor_is_not_minus_one);
assembler->Bind(&divisor_is_minus_one);
{
assembler->GotoIf(
assembler->Word32Equal(
untagged_dividend,
assembler->Int32Constant(
kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))),
&bailout);
assembler->Goto(&divisor_is_not_minus_one);
}
assembler->Bind(&divisor_is_not_minus_one);
// TODO(epertoso): consider adding a machine instruction that returns
// both the result and the remainder.
Node* untagged_result =
assembler->Int32Div(untagged_dividend, untagged_divisor);
Node* truncated =
assembler->Int32Mul(untagged_result, untagged_divisor);
// Do floating point division if the remainder is not 0.
assembler->GotoIf(
assembler->Word32NotEqual(untagged_dividend, truncated), &bailout);
var_result.Bind(assembler->SmiTag(untagged_result));
assembler->Goto(&end);
// Bailout: convert {dividend} and {divisor} to double and do double
// division.
assembler->Bind(&bailout);
{
var_dividend_float64.Bind(assembler->SmiToFloat64(dividend));
var_divisor_float64.Bind(assembler->SmiToFloat64(divisor));
assembler->Goto(&do_fdiv);
}
}
assembler->Bind(&divisor_is_not_smi);
{
Node* divisor_map = assembler->LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(assembler),
divisor_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(divisor_map, number_map),
&divisor_is_number, &divisor_is_not_number);
assembler->Bind(&divisor_is_number);
{
// Convert {dividend} to a double and divide it with the value of
// {divisor}.
var_dividend_float64.Bind(assembler->SmiToFloat64(dividend));
var_divisor_float64.Bind(assembler->LoadHeapNumberValue(divisor));
assembler->Goto(&do_fdiv);
}
assembler->Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_divisor.Bind(assembler->CallStub(callable, context, divisor));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&dividend_is_not_smi);
{
Node* dividend_map = assembler->LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
Label dividend_is_number(assembler),
dividend_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(dividend_map, number_map),
&dividend_is_number, &dividend_is_not_number);
assembler->Bind(&dividend_is_number);
{
// Check if {divisor} is a Smi.
Label divisor_is_smi(assembler), divisor_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(divisor), &divisor_is_smi,
&divisor_is_not_smi);
assembler->Bind(&divisor_is_smi);
{
// Convert {divisor} to a double and use it for a floating point
// division.
var_dividend_float64.Bind(assembler->LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(assembler->SmiToFloat64(divisor));
assembler->Goto(&do_fdiv);
}
assembler->Bind(&divisor_is_not_smi);
{
Node* divisor_map = assembler->LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(assembler),
divisor_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(divisor_map, number_map),
&divisor_is_number, &divisor_is_not_number);
assembler->Bind(&divisor_is_number);
{
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and divide them.
var_dividend_float64.Bind(assembler->LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(assembler->LoadHeapNumberValue(divisor));
assembler->Goto(&do_fdiv);
}
assembler->Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_divisor.Bind(assembler->CallStub(callable, context, divisor));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&dividend_is_not_number);
{
// Convert {dividend} to a Number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_dividend.Bind(assembler->CallStub(callable, context, dividend));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_fdiv);
{
Node* value = assembler->Float64Div(var_dividend_float64.value(),
var_divisor_float64.value());
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
assembler->Goto(&end);
}
assembler->Bind(&end);
assembler->Return(var_result.value());
}
void Builtins::Generate_Modulus(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* left = assembler->Parameter(0);
Node* right = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
Variable var_result(assembler, MachineRepresentation::kTagged);
Label return_result(assembler, &var_result);
// Shared entry point for floating point modulus.
Label do_fmod(assembler);
Variable var_dividend_float64(assembler, MachineRepresentation::kFloat64),
var_divisor_float64(assembler, MachineRepresentation::kFloat64);
Node* number_map = assembler->HeapNumberMapConstant();
// We might need to loop one or two times due to ToNumber conversions.
Variable var_dividend(assembler, MachineRepresentation::kTagged),
var_divisor(assembler, MachineRepresentation::kTagged);
Variable* loop_variables[] = {&var_dividend, &var_divisor};
Label loop(assembler, 2, loop_variables);
var_dividend.Bind(left);
var_divisor.Bind(right);
assembler->Goto(&loop);
assembler->Bind(&loop);
{
Node* dividend = var_dividend.value();
Node* divisor = var_divisor.value();
Label dividend_is_smi(assembler), dividend_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(dividend), &dividend_is_smi,
&dividend_is_not_smi);
assembler->Bind(&dividend_is_smi);
{
Label dividend_is_not_zero(assembler);
Label divisor_is_smi(assembler), divisor_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(divisor), &divisor_is_smi,
&divisor_is_not_smi);
assembler->Bind(&divisor_is_smi);
{
// Compute the modulus of two Smis.
var_result.Bind(assembler->SmiMod(dividend, divisor));
assembler->Goto(&return_result);
}
assembler->Bind(&divisor_is_not_smi);
{
Node* divisor_map = assembler->LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(assembler),
divisor_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(divisor_map, number_map),
&divisor_is_number, &divisor_is_not_number);
assembler->Bind(&divisor_is_number);
{
// Convert {dividend} to a double and compute its modulus with the
// value of {dividend}.
var_dividend_float64.Bind(assembler->SmiToFloat64(dividend));
var_divisor_float64.Bind(assembler->LoadHeapNumberValue(divisor));
assembler->Goto(&do_fmod);
}
assembler->Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_divisor.Bind(assembler->CallStub(callable, context, divisor));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&dividend_is_not_smi);
{
Node* dividend_map = assembler->LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
Label dividend_is_number(assembler),
dividend_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(dividend_map, number_map),
&dividend_is_number, &dividend_is_not_number);
assembler->Bind(&dividend_is_number);
{
// Check if {divisor} is a Smi.
Label divisor_is_smi(assembler), divisor_is_not_smi(assembler);
assembler->Branch(assembler->WordIsSmi(divisor), &divisor_is_smi,
&divisor_is_not_smi);
assembler->Bind(&divisor_is_smi);
{
// Convert {divisor} to a double and compute {dividend}'s modulus with
// it.
var_dividend_float64.Bind(assembler->LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(assembler->SmiToFloat64(divisor));
assembler->Goto(&do_fmod);
}
assembler->Bind(&divisor_is_not_smi);
{
Node* divisor_map = assembler->LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Label divisor_is_number(assembler),
divisor_is_not_number(assembler, Label::kDeferred);
assembler->Branch(assembler->WordEqual(divisor_map, number_map),
&divisor_is_number, &divisor_is_not_number);
assembler->Bind(&divisor_is_number);
{
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and compute their modulus.
var_dividend_float64.Bind(assembler->LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(assembler->LoadHeapNumberValue(divisor));
assembler->Goto(&do_fmod);
}
assembler->Bind(&divisor_is_not_number);
{
// Convert {divisor} to a number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_divisor.Bind(assembler->CallStub(callable, context, divisor));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&dividend_is_not_number);
{
// Convert {dividend} to a Number and loop.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_dividend.Bind(assembler->CallStub(callable, context, dividend));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_fmod);
{
Node* value = assembler->Float64Mod(var_dividend_float64.value(),
var_divisor_float64.value());
var_result.Bind(assembler->ChangeFloat64ToTagged(value));
assembler->Goto(&return_result);
}
assembler->Bind(&return_result);
assembler->Return(var_result.value());
}
void Builtins::Generate_ShiftLeft(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* shift_count =
assembler->Word32And(rhs_value, assembler->Int32Constant(0x1f));
Node* value = assembler->Word32Shl(lhs_value, shift_count);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_ShiftRight(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* shift_count =
assembler->Word32And(rhs_value, assembler->Int32Constant(0x1f));
Node* value = assembler->Word32Sar(lhs_value, shift_count);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_ShiftRightLogical(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* shift_count =
assembler->Word32And(rhs_value, assembler->Int32Constant(0x1f));
Node* value = assembler->Word32Shr(lhs_value, shift_count);
Node* result = assembler->ChangeUint32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_BitwiseAnd(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* value = assembler->Word32And(lhs_value, rhs_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_BitwiseOr(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* value = assembler->Word32Or(lhs_value, rhs_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_BitwiseXor(CodeStubAssembler* assembler) {
compiler::Node* left = assembler->Parameter(0);
compiler::Node* right = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
using compiler::Node;
Node* lhs_value = assembler->TruncateTaggedToWord32(context, left);
Node* rhs_value = assembler->TruncateTaggedToWord32(context, right);
Node* value = assembler->Word32Xor(lhs_value, rhs_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
void Builtins::Generate_LessThan(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->RelationalComparison(
CodeStubAssembler::kLessThan, lhs, rhs, context));
}
void Builtins::Generate_LessThanOrEqual(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->RelationalComparison(
CodeStubAssembler::kLessThanOrEqual, lhs, rhs, context));
}
void Builtins::Generate_GreaterThan(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->RelationalComparison(
CodeStubAssembler::kGreaterThan, lhs, rhs, context));
}
void Builtins::Generate_GreaterThanOrEqual(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->RelationalComparison(
CodeStubAssembler::kGreaterThanOrEqual, lhs, rhs, context));
}
void Builtins::Generate_Equal(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->Equal(CodeStubAssembler::kDontNegateResult, lhs,
rhs, context));
}
void Builtins::Generate_NotEqual(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(
assembler->Equal(CodeStubAssembler::kNegateResult, lhs, rhs, context));
}
void Builtins::Generate_StrictEqual(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->StrictEqual(CodeStubAssembler::kDontNegateResult,
lhs, rhs, context));
}
void Builtins::Generate_StrictNotEqual(CodeStubAssembler* assembler) {
compiler::Node* lhs = assembler->Parameter(0);
compiler::Node* rhs = assembler->Parameter(1);
compiler::Node* context = assembler->Parameter(2);
assembler->Return(assembler->StrictEqual(CodeStubAssembler::kNegateResult,
lhs, rhs, context));
}
} // namespace internal
} // namespace v8