v8/test/cctest/compiler/test-graph-reducer.cc

662 lines
17 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "graph-tester.h"
#include "src/compiler/generic-node-inl.h"
#include "src/compiler/graph-reducer.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
const uint8_t OPCODE_A0 = 10;
const uint8_t OPCODE_A1 = 11;
const uint8_t OPCODE_A2 = 12;
const uint8_t OPCODE_B0 = 20;
const uint8_t OPCODE_B1 = 21;
const uint8_t OPCODE_B2 = 22;
const uint8_t OPCODE_C0 = 30;
const uint8_t OPCODE_C1 = 31;
const uint8_t OPCODE_C2 = 32;
static SimpleOperator OPA0(OPCODE_A0, Operator::kNoWrite, 0, 0, "opa0");
static SimpleOperator OPA1(OPCODE_A1, Operator::kNoWrite, 1, 0, "opa1");
static SimpleOperator OPA2(OPCODE_A2, Operator::kNoWrite, 2, 0, "opa2");
static SimpleOperator OPB0(OPCODE_B0, Operator::kNoWrite, 0, 0, "opa0");
static SimpleOperator OPB1(OPCODE_B1, Operator::kNoWrite, 1, 0, "opa1");
static SimpleOperator OPB2(OPCODE_B2, Operator::kNoWrite, 2, 0, "opa2");
static SimpleOperator OPC0(OPCODE_C0, Operator::kNoWrite, 0, 0, "opc0");
static SimpleOperator OPC1(OPCODE_C1, Operator::kNoWrite, 1, 0, "opc1");
static SimpleOperator OPC2(OPCODE_C2, Operator::kNoWrite, 2, 0, "opc2");
// Replaces all "A" operators with "B" operators without creating new nodes.
class InPlaceABReducer : public Reducer {
public:
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_A0:
CHECK_EQ(0, node->InputCount());
node->set_op(&OPB0);
return Replace(node);
case OPCODE_A1:
CHECK_EQ(1, node->InputCount());
node->set_op(&OPB1);
return Replace(node);
case OPCODE_A2:
CHECK_EQ(2, node->InputCount());
node->set_op(&OPB2);
return Replace(node);
}
return NoChange();
}
};
// Replaces all "A" operators with "B" operators by allocating new nodes.
class NewABReducer : public Reducer {
public:
explicit NewABReducer(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_A0:
CHECK_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&OPB0));
case OPCODE_A1:
CHECK_EQ(1, node->InputCount());
return Replace(graph_->NewNode(&OPB1, node->InputAt(0)));
case OPCODE_A2:
CHECK_EQ(2, node->InputCount());
return Replace(
graph_->NewNode(&OPB2, node->InputAt(0), node->InputAt(1)));
}
return NoChange();
}
Graph* graph_;
};
// Replaces all "B" operators with "C" operators without creating new nodes.
class InPlaceBCReducer : public Reducer {
public:
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_B0:
CHECK_EQ(0, node->InputCount());
node->set_op(&OPC0);
return Replace(node);
case OPCODE_B1:
CHECK_EQ(1, node->InputCount());
node->set_op(&OPC1);
return Replace(node);
case OPCODE_B2:
CHECK_EQ(2, node->InputCount());
node->set_op(&OPC2);
return Replace(node);
}
return NoChange();
}
};
// Wraps all "OPA0" nodes in "OPB1" operators by allocating new nodes.
class A0Wrapper FINAL : public Reducer {
public:
explicit A0Wrapper(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) OVERRIDE {
switch (node->op()->opcode()) {
case OPCODE_A0:
CHECK_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&OPB1, node));
}
return NoChange();
}
Graph* graph_;
};
// Wraps all "OPB0" nodes in two "OPC1" operators by allocating new nodes.
class B0Wrapper FINAL : public Reducer {
public:
explicit B0Wrapper(Graph* graph) : graph_(graph) {}
virtual Reduction Reduce(Node* node) OVERRIDE {
switch (node->op()->opcode()) {
case OPCODE_B0:
CHECK_EQ(0, node->InputCount());
return Replace(graph_->NewNode(&OPC1, graph_->NewNode(&OPC1, node)));
}
return NoChange();
}
Graph* graph_;
};
// Replaces all "OPA1" nodes with the first input.
class A1Forwarder : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_A1:
CHECK_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Replaces all "OPB1" nodes with the first input.
class B1Forwarder : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_B1:
CHECK_EQ(1, node->InputCount());
return Replace(node->InputAt(0));
}
return NoChange();
}
};
// Swaps the inputs to "OP2A" and "OP2B" nodes based on ids.
class AB2Sorter : public Reducer {
virtual Reduction Reduce(Node* node) {
switch (node->op()->opcode()) {
case OPCODE_A2:
case OPCODE_B2:
CHECK_EQ(2, node->InputCount());
Node* x = node->InputAt(0);
Node* y = node->InputAt(1);
if (x->id() > y->id()) {
node->ReplaceInput(0, y);
node->ReplaceInput(1, x);
return Replace(node);
}
}
return NoChange();
}
};
// Simply records the nodes visited.
class ReducerRecorder : public Reducer {
public:
explicit ReducerRecorder(Zone* zone)
: set(NodeSet::key_compare(), NodeSet::allocator_type(zone)) {}
virtual Reduction Reduce(Node* node) {
set.insert(node);
return NoChange();
}
void CheckContains(Node* node) {
CHECK_EQ(1, static_cast<int>(set.count(node)));
}
NodeSet set;
};
TEST(ReduceGraphFromEnd1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = graph.NewNode(&OPA1, n1);
graph.SetEnd(end);
GraphReducer reducer(&graph);
ReducerRecorder recorder(graph.zone());
reducer.AddReducer(&recorder);
reducer.ReduceGraph();
recorder.CheckContains(n1);
recorder.CheckContains(end);
}
TEST(ReduceGraphFromEnd2) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = graph.NewNode(&OPA2, n2, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
ReducerRecorder recorder(graph.zone());
reducer.AddReducer(&recorder);
reducer.ReduceGraph();
recorder.CheckContains(n1);
recorder.CheckContains(n2);
recorder.CheckContains(n3);
recorder.CheckContains(end);
}
TEST(ReduceInPlace1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = graph.NewNode(&OPA1, n1);
graph.SetEnd(end);
GraphReducer reducer(&graph);
InPlaceABReducer r;
reducer.AddReducer(&r);
// Tests A* => B* with in-place updates.
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPB0, n1->op());
CHECK_EQ(&OPB1, end->op());
CHECK_EQ(n1, end->InputAt(0));
}
}
TEST(ReduceInPlace2) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = graph.NewNode(&OPA2, n2, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
InPlaceABReducer r;
reducer.AddReducer(&r);
// Tests A* => B* with in-place updates.
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPB0, n1->op());
CHECK_EQ(&OPB1, n2->op());
CHECK_EQ(n1, n2->InputAt(0));
CHECK_EQ(&OPB1, n3->op());
CHECK_EQ(n1, n3->InputAt(0));
CHECK_EQ(&OPB2, end->op());
CHECK_EQ(n2, end->InputAt(0));
CHECK_EQ(n3, end->InputAt(1));
}
}
TEST(ReduceNew1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = graph.NewNode(&OPA2, n2, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
NewABReducer r(&graph);
reducer.AddReducer(&r);
// Tests A* => B* while creating new nodes.
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
if (i == 0) {
CHECK_NE(before, graph.NodeCount());
} else {
CHECK_EQ(before, graph.NodeCount());
}
Node* nend = graph.end();
CHECK_NE(end, nend); // end() should be updated too.
Node* nn2 = nend->InputAt(0);
Node* nn3 = nend->InputAt(1);
Node* nn1 = nn2->InputAt(0);
CHECK_EQ(nn1, nn3->InputAt(0));
CHECK_EQ(&OPB0, nn1->op());
CHECK_EQ(&OPB1, nn2->op());
CHECK_EQ(&OPB1, nn3->op());
CHECK_EQ(&OPB2, nend->op());
}
}
TEST(Wrapping1) {
GraphTester graph;
Node* end = graph.NewNode(&OPA0);
graph.SetEnd(end);
CHECK_EQ(1, graph.NodeCount());
GraphReducer reducer(&graph);
A0Wrapper r(&graph);
reducer.AddReducer(&r);
reducer.ReduceGraph();
CHECK_EQ(2, graph.NodeCount());
Node* nend = graph.end();
CHECK_NE(end, nend);
CHECK_EQ(&OPB1, nend->op());
CHECK_EQ(1, nend->InputCount());
CHECK_EQ(end, nend->InputAt(0));
}
TEST(Wrapping2) {
GraphTester graph;
Node* end = graph.NewNode(&OPB0);
graph.SetEnd(end);
CHECK_EQ(1, graph.NodeCount());
GraphReducer reducer(&graph);
B0Wrapper r(&graph);
reducer.AddReducer(&r);
reducer.ReduceGraph();
CHECK_EQ(3, graph.NodeCount());
Node* nend = graph.end();
CHECK_NE(end, nend);
CHECK_EQ(&OPC1, nend->op());
CHECK_EQ(1, nend->InputCount());
Node* n1 = nend->InputAt(0);
CHECK_NE(end, n1);
CHECK_EQ(&OPC1, n1->op());
CHECK_EQ(1, n1->InputCount());
CHECK_EQ(end, n1->InputAt(0));
}
TEST(Forwarding1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = graph.NewNode(&OPA1, n1);
graph.SetEnd(end);
GraphReducer reducer(&graph);
A1Forwarder r;
reducer.AddReducer(&r);
// Tests A1(x) => x
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPA0, n1->op());
CHECK_EQ(n1, graph.end());
}
}
TEST(Forwarding2) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = graph.NewNode(&OPA2, n2, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
A1Forwarder r;
reducer.AddReducer(&r);
// Tests reducing A2(A1(x), A1(y)) => A2(x, y).
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPA0, n1->op());
CHECK_EQ(n1, end->InputAt(0));
CHECK_EQ(n1, end->InputAt(1));
CHECK_EQ(&OPA2, end->op());
CHECK_EQ(0, n2->UseCount());
CHECK_EQ(0, n3->UseCount());
}
}
TEST(Forwarding3) {
// Tests reducing a chain of A1(A1(A1(A1(x)))) => x.
for (int i = 0; i < 8; i++) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = n1;
for (int j = 0; j < i; j++) {
end = graph.NewNode(&OPA1, end);
}
graph.SetEnd(end);
GraphReducer reducer(&graph);
A1Forwarder r;
reducer.AddReducer(&r);
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPA0, n1->op());
CHECK_EQ(n1, graph.end());
}
}
}
TEST(ReduceForward1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = graph.NewNode(&OPA2, n2, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
InPlaceABReducer r;
B1Forwarder f;
reducer.AddReducer(&r);
reducer.AddReducer(&f);
// Tests first reducing A => B, then B1(x) => x.
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPB0, n1->op());
CHECK(n2->IsDead());
CHECK_EQ(n1, end->InputAt(0));
CHECK(n3->IsDead());
CHECK_EQ(n1, end->InputAt(0));
CHECK_EQ(&OPB2, end->op());
CHECK_EQ(0, n2->UseCount());
CHECK_EQ(0, n3->UseCount());
}
}
TEST(Sorter1) {
HandleAndZoneScope scope;
AB2Sorter r;
for (int i = 0; i < 6; i++) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* n2 = graph.NewNode(&OPA1, n1);
Node* n3 = graph.NewNode(&OPA1, n1);
Node* end = NULL; // Initialize to please the compiler.
if (i == 0) end = graph.NewNode(&OPA2, n2, n3);
if (i == 1) end = graph.NewNode(&OPA2, n3, n2);
if (i == 2) end = graph.NewNode(&OPA2, n2, n1);
if (i == 3) end = graph.NewNode(&OPA2, n1, n2);
if (i == 4) end = graph.NewNode(&OPA2, n3, n1);
if (i == 5) end = graph.NewNode(&OPA2, n1, n3);
graph.SetEnd(end);
GraphReducer reducer(&graph);
reducer.AddReducer(&r);
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPA0, n1->op());
CHECK_EQ(&OPA1, n2->op());
CHECK_EQ(&OPA1, n3->op());
CHECK_EQ(&OPA2, end->op());
CHECK_EQ(end, graph.end());
CHECK(end->InputAt(0)->id() <= end->InputAt(1)->id());
}
}
// Generate a node graph with the given permutations.
void GenDAG(Graph* graph, int* p3, int* p2, int* p1) {
Node* level4 = graph->NewNode(&OPA0);
Node* level3[] = {graph->NewNode(&OPA1, level4),
graph->NewNode(&OPA1, level4)};
Node* level2[] = {graph->NewNode(&OPA1, level3[p3[0]]),
graph->NewNode(&OPA1, level3[p3[1]]),
graph->NewNode(&OPA1, level3[p3[0]]),
graph->NewNode(&OPA1, level3[p3[1]])};
Node* level1[] = {graph->NewNode(&OPA2, level2[p2[0]], level2[p2[1]]),
graph->NewNode(&OPA2, level2[p2[2]], level2[p2[3]])};
Node* end = graph->NewNode(&OPA2, level1[p1[0]], level1[p1[1]]);
graph->SetEnd(end);
}
TEST(SortForwardReduce) {
GraphTester graph;
// Tests combined reductions on a series of DAGs.
for (int j = 0; j < 2; j++) {
int p3[] = {j, 1 - j};
for (int m = 0; m < 2; m++) {
int p1[] = {m, 1 - m};
for (int k = 0; k < 24; k++) { // All permutations of 0, 1, 2, 3
int p2[] = {-1, -1, -1, -1};
int n = k;
for (int d = 4; d >= 1; d--) { // Construct permutation.
int p = n % d;
for (int z = 0; z < 4; z++) {
if (p2[z] == -1) {
if (p == 0) p2[z] = d - 1;
p--;
}
}
n = n / d;
}
GenDAG(&graph, p3, p2, p1);
GraphReducer reducer(&graph);
AB2Sorter r1;
A1Forwarder r2;
InPlaceABReducer r3;
reducer.AddReducer(&r1);
reducer.AddReducer(&r2);
reducer.AddReducer(&r3);
reducer.ReduceGraph();
Node* end = graph.end();
CHECK_EQ(&OPB2, end->op());
Node* n1 = end->InputAt(0);
Node* n2 = end->InputAt(1);
CHECK_NE(n1, n2);
CHECK(n1->id() < n2->id());
CHECK_EQ(&OPB2, n1->op());
CHECK_EQ(&OPB2, n2->op());
Node* n4 = n1->InputAt(0);
CHECK_EQ(&OPB0, n4->op());
CHECK_EQ(n4, n1->InputAt(1));
CHECK_EQ(n4, n2->InputAt(0));
CHECK_EQ(n4, n2->InputAt(1));
}
}
}
}
TEST(Order) {
// Test that the order of reducers doesn't matter, as they should be
// rerun for changed nodes.
for (int i = 0; i < 2; i++) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = graph.NewNode(&OPA1, n1);
graph.SetEnd(end);
GraphReducer reducer(&graph);
InPlaceABReducer abr;
InPlaceBCReducer bcr;
if (i == 0) {
reducer.AddReducer(&abr);
reducer.AddReducer(&bcr);
} else {
reducer.AddReducer(&bcr);
reducer.AddReducer(&abr);
}
// Tests A* => C* with in-place updates.
for (int i = 0; i < 3; i++) {
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPC0, n1->op());
CHECK_EQ(&OPC1, end->op());
CHECK_EQ(n1, end->InputAt(0));
}
}
}
// Tests that a reducer is only applied once.
class OneTimeReducer : public Reducer {
public:
OneTimeReducer(Reducer* reducer, Zone* zone)
: reducer_(reducer),
nodes_(NodeSet::key_compare(), NodeSet::allocator_type(zone)) {}
virtual Reduction Reduce(Node* node) {
CHECK_EQ(0, static_cast<int>(nodes_.count(node)));
nodes_.insert(node);
return reducer_->Reduce(node);
}
Reducer* reducer_;
NodeSet nodes_;
};
TEST(OneTimeReduce1) {
GraphTester graph;
Node* n1 = graph.NewNode(&OPA0);
Node* end = graph.NewNode(&OPA1, n1);
graph.SetEnd(end);
GraphReducer reducer(&graph);
InPlaceABReducer r;
OneTimeReducer once(&r, graph.zone());
reducer.AddReducer(&once);
// Tests A* => B* with in-place updates. Should only be applied once.
int before = graph.NodeCount();
reducer.ReduceGraph();
CHECK_EQ(before, graph.NodeCount());
CHECK_EQ(&OPB0, n1->op());
CHECK_EQ(&OPB1, end->op());
CHECK_EQ(n1, end->InputAt(0));
}