v8/src/arm/full-codegen-arm.cc

4910 lines
164 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "v8.h"
#if V8_TARGET_ARCH_ARM
#include "code-stubs.h"
#include "codegen.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "isolate-inl.h"
#include "parser.h"
#include "scopes.h"
#include "stub-cache.h"
#include "arm/code-stubs-arm.h"
#include "arm/macro-assembler-arm.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// A patch site is a location in the code which it is possible to patch. This
// class has a number of methods to emit the code which is patchable and the
// method EmitPatchInfo to record a marker back to the patchable code. This
// marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit
// immediate value is used) is the delta from the pc to the first instruction of
// the patchable code.
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
ASSERT(patch_site_.is_bound() == info_emitted_);
}
// When initially emitting this ensure that a jump is always generated to skip
// the inlined smi code.
void EmitJumpIfNotSmi(Register reg, Label* target) {
ASSERT(!patch_site_.is_bound() && !info_emitted_);
Assembler::BlockConstPoolScope block_const_pool(masm_);
__ bind(&patch_site_);
__ cmp(reg, Operand(reg));
__ b(eq, target); // Always taken before patched.
}
// When initially emitting this ensure that a jump is never generated to skip
// the inlined smi code.
void EmitJumpIfSmi(Register reg, Label* target) {
ASSERT(!patch_site_.is_bound() && !info_emitted_);
Assembler::BlockConstPoolScope block_const_pool(masm_);
__ bind(&patch_site_);
__ cmp(reg, Operand(reg));
__ b(ne, target); // Never taken before patched.
}
void EmitPatchInfo() {
// Block literal pool emission whilst recording patch site information.
Assembler::BlockConstPoolScope block_const_pool(masm_);
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
Register reg;
reg.set_code(delta_to_patch_site / kOff12Mask);
__ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask);
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
static void EmitStackCheck(MacroAssembler* masm_,
Register stack_limit_scratch,
int pointers = 0,
Register scratch = sp) {
Isolate* isolate = masm_->isolate();
Label ok;
ASSERT(scratch.is(sp) == (pointers == 0));
Heap::RootListIndex index;
if (pointers != 0) {
__ sub(scratch, sp, Operand(pointers * kPointerSize));
index = Heap::kRealStackLimitRootIndex;
} else {
index = Heap::kStackLimitRootIndex;
}
__ LoadRoot(stack_limit_scratch, index);
__ cmp(scratch, Operand(stack_limit_scratch));
__ b(hs, &ok);
Handle<Code> stack_check = isolate->builtins()->StackCheck();
PredictableCodeSizeScope predictable(masm_,
masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
__ Call(stack_check, RelocInfo::CODE_TARGET);
__ bind(&ok);
}
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// o r1: the JS function object being called (i.e., ourselves)
// o cp: our context
// o pp: our caller's constant pool pointer (if FLAG_enable_ool_constant_pool)
// o fp: our caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-arm.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
handler_table_ =
isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(function());
Comment cmnt(masm_, "[ function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop-at");
}
#endif
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info->strict_mode() == SLOPPY && !info->is_native()) {
Label ok;
int receiver_offset = info->scope()->num_parameters() * kPointerSize;
__ ldr(r2, MemOperand(sp, receiver_offset));
__ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
__ b(ne, &ok);
__ ldr(r2, GlobalObjectOperand());
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
__ str(r2, MemOperand(sp, receiver_offset));
__ bind(&ok);
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
info->set_prologue_offset(masm_->pc_offset());
__ Prologue(BUILD_FUNCTION_FRAME);
info->AddNoFrameRange(0, masm_->pc_offset());
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
// Generators allocate locals, if any, in context slots.
ASSERT(!info->function()->is_generator() || locals_count == 0);
if (locals_count > 0) {
if (locals_count >= 128) {
EmitStackCheck(masm_, r2, locals_count, r9);
}
__ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ mov(r2, Operand(loop_iterations));
Label loop_header;
__ bind(&loop_header);
// Do pushes.
for (int i = 0; i < kMaxPushes; i++) {
__ push(r9);
}
// Continue loop if not done.
__ sub(r2, r2, Operand(1), SetCC);
__ b(&loop_header, ne);
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
for (int i = 0; i < remaining; i++) {
__ push(r9);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
// Argument to NewContext is the function, which is still in r1.
Comment cmnt(masm_, "[ Allocate context");
if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
__ push(r1);
__ Push(info->scope()->GetScopeInfo());
__ CallRuntime(Runtime::kHiddenNewGlobalContext, 2);
} else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
} else {
__ push(r1);
__ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
}
function_in_register = false;
// Context is returned in r0. It replaces the context passed to us.
// It's saved in the stack and kept live in cp.
__ mov(cp, r0);
__ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ str(r0, target);
// Update the write barrier.
__ RecordWriteContextSlot(
cp, target.offset(), r0, r3, kLRHasBeenSaved, kDontSaveFPRegs);
}
}
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register) {
// Load this again, if it's used by the local context below.
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ mov(r3, r1);
}
// Receiver is just before the parameters on the caller's stack.
int num_parameters = info->scope()->num_parameters();
int offset = num_parameters * kPointerSize;
__ add(r2, fp,
Operand(StandardFrameConstants::kCallerSPOffset + offset));
__ mov(r1, Operand(Smi::FromInt(num_parameters)));
__ Push(r3, r2, r1);
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiever and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub::Type type;
if (strict_mode() == STRICT) {
type = ArgumentsAccessStub::NEW_STRICT;
} else if (function()->has_duplicate_parameters()) {
type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
} else {
type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
}
ArgumentsAccessStub stub(isolate(), type);
__ CallStub(&stub);
SetVar(arguments, r0, r1, r2);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
scope()->VisitIllegalRedeclaration(this);
} else {
PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
{ Comment cmnt(masm_, "[ Declarations");
// For named function expressions, declare the function name as a
// constant.
if (scope()->is_function_scope() && scope()->function() != NULL) {
VariableDeclaration* function = scope()->function();
ASSERT(function->proxy()->var()->mode() == CONST ||
function->proxy()->var()->mode() == CONST_LEGACY);
ASSERT(function->proxy()->var()->location() != Variable::UNALLOCATED);
VisitVariableDeclaration(function);
}
VisitDeclarations(scope()->declarations());
}
{ Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
EmitStackCheck(masm_, ip);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
// Force emit the constant pool, so it doesn't get emitted in the middle
// of the back edge table.
masm()->CheckConstPool(true, false);
}
void FullCodeGenerator::ClearAccumulator() {
__ mov(r0, Operand(Smi::FromInt(0)));
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ mov(r2, Operand(profiling_counter_));
__ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
__ sub(r3, r3, Operand(Smi::FromInt(delta)), SetCC);
__ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
if (isolate()->IsDebuggerActive()) {
// Detect debug break requests as soon as possible.
reset_value = FLAG_interrupt_budget >> 4;
}
__ mov(r2, Operand(profiling_counter_));
__ mov(r3, Operand(Smi::FromInt(reset_value)));
__ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
Comment cmnt(masm_, "[ Back edge bookkeeping");
// Block literal pools whilst emitting back edge code.
Assembler::BlockConstPoolScope block_const_pool(masm_);
Label ok;
ASSERT(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
int weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
__ b(pl, &ok);
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
EmitProfilingCounterReset();
__ bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ b(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r0.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ b(pl, &ok);
__ push(r0);
__ Call(isolate()->builtins()->InterruptCheck(),
RelocInfo::CODE_TARGET);
__ pop(r0);
EmitProfilingCounterReset();
__ bind(&ok);
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
__ bind(&check_exit_codesize);
#endif
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
// TODO(svenpanne) The code below is sometimes 4 words, sometimes 5!
PredictableCodeSizeScope predictable(masm_, -1);
__ RecordJSReturn();
int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ add(sp, sp, Operand(sp_delta));
__ Jump(lr);
info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
}
#ifdef DEBUG
// Check that the size of the code used for returning is large enough
// for the debugger's requirements.
ASSERT(Assembler::kJSReturnSequenceInstructions <=
masm_->InstructionsGeneratedSince(&check_exit_codesize));
#endif
}
}
void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
}
void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
// For simplicity we always test the accumulator register.
codegen()->GetVar(result_register(), var);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ b(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ b(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
__ mov(result_register(), Operand(lit));
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
// Immediates cannot be pushed directly.
__ mov(result_register(), Operand(lit));
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ b(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ b(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ b(false_label_);
} else {
if (true_label_ != fall_through_) __ b(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ b(false_label_);
} else {
if (true_label_ != fall_through_) __ b(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ mov(result_register(), Operand(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
if (count > 1) __ Drop(count - 1);
__ str(reg, MemOperand(sp, 0));
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(materialize_false);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ bind(&done);
__ push(ip);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == true_label_);
ASSERT(materialize_false == false_label_);
}
void FullCodeGenerator::EffectContext::Plug(bool flag) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(ip, value_root_index);
__ push(ip);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) __ b(true_label_);
} else {
if (false_label_ != fall_through_) __ b(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(ic, condition->test_id());
__ tst(result_register(), result_register());
Split(ne, if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cond,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ b(cond, if_true);
} else if (if_true == fall_through) {
__ b(NegateCondition(cond), if_false);
} else {
__ b(cond, if_true);
__ b(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
ASSERT(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return MemOperand(fp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
// Use destination as scratch.
MemOperand location = VarOperand(var, dest);
__ ldr(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
ASSERT(!scratch0.is(src));
ASSERT(!scratch0.is(scratch1));
ASSERT(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ str(src, location);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
__ RecordWriteContextSlot(scratch0,
location.offset(),
src,
scratch1,
kLRHasBeenSaved,
kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest() || !info_->IsOptimizable()) return;
Label skip;
if (should_normalize) __ b(&skip);
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, NULL);
__ bind(&skip);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current function
// context.
ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
if (generate_debug_code_) {
// Check that we're not inside a with or catch context.
__ ldr(r1, FieldMemOperand(cp, HeapObject::kMapOffset));
__ CompareRoot(r1, Heap::kWithContextMapRootIndex);
__ Check(ne, kDeclarationInWithContext);
__ CompareRoot(r1, Heap::kCatchContextMapRootIndex);
__ Check(ne, kDeclarationInCatchContext);
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_->Add(variable->name(), zone());
globals_->Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(),
zone());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ str(ip, StackOperand(variable));
}
break;
case Variable::CONTEXT:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ str(ip, ContextOperand(cp, variable->index()));
// No write barrier since the_hole_value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ VariableDeclaration");
__ mov(r2, Operand(variable->name()));
// Declaration nodes are always introduced in one of four modes.
ASSERT(IsDeclaredVariableMode(mode));
PropertyAttributes attr =
IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
__ mov(r1, Operand(Smi::FromInt(attr)));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (hole_init) {
__ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
__ Push(cp, r2, r1, r0);
} else {
__ mov(r0, Operand(Smi::FromInt(0))); // Indicates no initial value.
__ Push(cp, r2, r1, r0);
}
__ CallRuntime(Runtime::kHiddenDeclareContextSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_->Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(declaration->fun(), script());
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
Comment cmnt(masm_, "[ FunctionDeclaration");
VisitForAccumulatorValue(declaration->fun());
__ str(result_register(), StackOperand(variable));
break;
}
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ FunctionDeclaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ str(result_register(), ContextOperand(cp, variable->index()));
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(cp,
offset,
result_register(),
r2,
kLRHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
break;
}
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ FunctionDeclaration");
__ mov(r2, Operand(variable->name()));
__ mov(r1, Operand(Smi::FromInt(NONE)));
__ Push(cp, r2, r1);
// Push initial value for function declaration.
VisitForStackValue(declaration->fun());
__ CallRuntime(Runtime::kHiddenDeclareContextSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
Get rid of static module allocation, do it in code. Modules now have their own local scope, represented by their own context. Module instance objects have an accessor for every export that forwards access to the respective slot from the module's context. (Exports that are modules themselves, however, are simple data properties.) All modules have a _hosting_ scope/context, which (currently) is the (innermost) enclosing global scope. To deal with recursion, nested modules are hosted by the same scope as global ones. For every (global or nested) module literal, the hosting context has an internal slot that points directly to the respective module context. This enables quick access to (statically resolved) module members by 2-dimensional access through the hosting context. For example, module A { let x; module B { let y; } } module C { let z; } allocates contexts as follows: [header| .A | .B | .C | A | C ] (global) | | | | | +-- [header| z ] (module) | | | +------- [header| y ] (module) | +------------ [header| x | B ] (module) Here, .A, .B, .C are the internal slots pointing to the hosted module contexts, whereas A, B, C hold the actual instance objects (note that every module context also points to the respective instance object through its extension slot in the header). To deal with arbitrary recursion and aliases between modules, they are created and initialized in several stages. Each stage applies to all modules in the hosting global scope, including nested ones. 1. Allocate: for each module _literal_, allocate the module contexts and respective instance object and wire them up. This happens in the PushModuleContext runtime function, as generated by AllocateModules (invoked by VisitDeclarations in the hosting scope). 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), assign the respective instance object to respective local variables. This happens in VisitModuleDeclaration, and uses the instance objects created in the previous stage. For each module _literal_, this phase also constructs a module descriptor for the next stage. This happens in VisitModuleLiteral. 3. Populate: invoke the DeclareModules runtime function to populate each _instance_ object with accessors for it exports. This is generated by DeclareModules (invoked by VisitDeclarations in the hosting scope again), and uses the descriptors generated in the previous stage. 4. Initialize: execute the module bodies (and other code) in sequence. This happens by the separate statements generated for module bodies. To reenter the module scopes properly, the parser inserted ModuleStatements. R=mstarzinger@chromium.org,svenpanne@chromium.org BUG= Review URL: https://codereview.chromium.org/11093074 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13033 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-11-22 10:25:22 +00:00
Variable* variable = declaration->proxy()->var();
ASSERT(variable->location() == Variable::CONTEXT);
ASSERT(variable->interface()->IsFrozen());
Comment cmnt(masm_, "[ ModuleDeclaration");
EmitDebugCheckDeclarationContext(variable);
// Load instance object.
__ LoadContext(r1, scope_->ContextChainLength(scope_->GlobalScope()));
__ ldr(r1, ContextOperand(r1, variable->interface()->Index()));
__ ldr(r1, ContextOperand(r1, Context::EXTENSION_INDEX));
// Assign it.
__ str(r1, ContextOperand(cp, variable->index()));
// We know that we have written a module, which is not a smi.
__ RecordWriteContextSlot(cp,
Context::SlotOffset(variable->index()),
r1,
r3,
kLRHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
// Traverse into body.
Visit(declaration->module());
}
void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED:
// TODO(rossberg)
break;
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ ImportDeclaration");
EmitDebugCheckDeclarationContext(variable);
// TODO(rossberg)
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::LOOKUP:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
// TODO(rossberg)
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
// The context is the first argument.
__ mov(r1, Operand(pairs));
__ mov(r0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
__ Push(cp, r1, r0);
__ CallRuntime(Runtime::kHiddenDeclareGlobals, 3);
// Return value is ignored.
}
Get rid of static module allocation, do it in code. Modules now have their own local scope, represented by their own context. Module instance objects have an accessor for every export that forwards access to the respective slot from the module's context. (Exports that are modules themselves, however, are simple data properties.) All modules have a _hosting_ scope/context, which (currently) is the (innermost) enclosing global scope. To deal with recursion, nested modules are hosted by the same scope as global ones. For every (global or nested) module literal, the hosting context has an internal slot that points directly to the respective module context. This enables quick access to (statically resolved) module members by 2-dimensional access through the hosting context. For example, module A { let x; module B { let y; } } module C { let z; } allocates contexts as follows: [header| .A | .B | .C | A | C ] (global) | | | | | +-- [header| z ] (module) | | | +------- [header| y ] (module) | +------------ [header| x | B ] (module) Here, .A, .B, .C are the internal slots pointing to the hosted module contexts, whereas A, B, C hold the actual instance objects (note that every module context also points to the respective instance object through its extension slot in the header). To deal with arbitrary recursion and aliases between modules, they are created and initialized in several stages. Each stage applies to all modules in the hosting global scope, including nested ones. 1. Allocate: for each module _literal_, allocate the module contexts and respective instance object and wire them up. This happens in the PushModuleContext runtime function, as generated by AllocateModules (invoked by VisitDeclarations in the hosting scope). 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), assign the respective instance object to respective local variables. This happens in VisitModuleDeclaration, and uses the instance objects created in the previous stage. For each module _literal_, this phase also constructs a module descriptor for the next stage. This happens in VisitModuleLiteral. 3. Populate: invoke the DeclareModules runtime function to populate each _instance_ object with accessors for it exports. This is generated by DeclareModules (invoked by VisitDeclarations in the hosting scope again), and uses the descriptors generated in the previous stage. 4. Initialize: execute the module bodies (and other code) in sequence. This happens by the separate statements generated for module bodies. To reenter the module scopes properly, the parser inserted ModuleStatements. R=mstarzinger@chromium.org,svenpanne@chromium.org BUG= Review URL: https://codereview.chromium.org/11093074 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13033 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-11-22 10:25:22 +00:00
void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
// Call the runtime to declare the modules.
__ Push(descriptions);
__ CallRuntime(Runtime::kHiddenDeclareModules, 1);
Get rid of static module allocation, do it in code. Modules now have their own local scope, represented by their own context. Module instance objects have an accessor for every export that forwards access to the respective slot from the module's context. (Exports that are modules themselves, however, are simple data properties.) All modules have a _hosting_ scope/context, which (currently) is the (innermost) enclosing global scope. To deal with recursion, nested modules are hosted by the same scope as global ones. For every (global or nested) module literal, the hosting context has an internal slot that points directly to the respective module context. This enables quick access to (statically resolved) module members by 2-dimensional access through the hosting context. For example, module A { let x; module B { let y; } } module C { let z; } allocates contexts as follows: [header| .A | .B | .C | A | C ] (global) | | | | | +-- [header| z ] (module) | | | +------- [header| y ] (module) | +------------ [header| x | B ] (module) Here, .A, .B, .C are the internal slots pointing to the hosted module contexts, whereas A, B, C hold the actual instance objects (note that every module context also points to the respective instance object through its extension slot in the header). To deal with arbitrary recursion and aliases between modules, they are created and initialized in several stages. Each stage applies to all modules in the hosting global scope, including nested ones. 1. Allocate: for each module _literal_, allocate the module contexts and respective instance object and wire them up. This happens in the PushModuleContext runtime function, as generated by AllocateModules (invoked by VisitDeclarations in the hosting scope). 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), assign the respective instance object to respective local variables. This happens in VisitModuleDeclaration, and uses the instance objects created in the previous stage. For each module _literal_, this phase also constructs a module descriptor for the next stage. This happens in VisitModuleLiteral. 3. Populate: invoke the DeclareModules runtime function to populate each _instance_ object with accessors for it exports. This is generated by DeclareModules (invoked by VisitDeclarations in the hosting scope again), and uses the descriptors generated in the previous stage. 4. Initialize: execute the module bodies (and other code) in sequence. This happens by the separate statements generated for module bodies. To reenter the module scopes properly, the parser inserted ModuleStatements. R=mstarzinger@chromium.org,svenpanne@chromium.org BUG= Review URL: https://codereview.chromium.org/11093074 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13033 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-11-22 10:25:22 +00:00
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
// Perform the comparison as if via '==='.
__ ldr(r1, MemOperand(sp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ orr(r2, r1, r0);
patch_site.EmitJumpIfNotSmi(r2, &slow_case);
__ cmp(r1, r0);
__ b(ne, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target());
__ bind(&slow_case);
}
// Record position before stub call for type feedback.
SetSourcePosition(clause->position());
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
CallIC(ic, clause->CompareId());
patch_site.EmitPatchInfo();
Label skip;
__ b(&skip);
PrepareForBailout(clause, TOS_REG);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
__ b(ne, &next_test);
__ Drop(1);
__ jmp(clause->body_target());
__ bind(&skip);
__ cmp(r0, Operand::Zero());
__ b(ne, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ b(nested_statement.break_label());
} else {
__ b(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
int slot = stmt->ForInFeedbackSlot();
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. If the object is null or undefined, skip
// over the loop. See ECMA-262 version 5, section 12.6.4.
VisitForAccumulatorValue(stmt->enumerable());
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
__ b(eq, &exit);
Register null_value = r5;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ cmp(r0, null_value);
__ b(eq, &exit);
PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(r0, &convert);
__ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &done_convert);
__ bind(&convert);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ bind(&done_convert);
__ push(r0);
// Check for proxies.
Label call_runtime;
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
__ b(le, &call_runtime);
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
__ CheckEnumCache(null_value, &call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ b(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(r0); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r2, ip);
__ b(ne, &fixed_array);
// We got a map in register r0. Get the enumeration cache from it.
Label no_descriptors;
__ bind(&use_cache);
__ EnumLength(r1, r0);
__ cmp(r1, Operand(Smi::FromInt(0)));
__ b(eq, &no_descriptors);
__ LoadInstanceDescriptors(r0, r2);
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheOffset));
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ push(r0); // Map.
__ mov(r0, Operand(Smi::FromInt(0)));
// Push enumeration cache, enumeration cache length (as smi) and zero.
__ Push(r2, r1, r0);
__ jmp(&loop);
__ bind(&no_descriptors);
__ Drop(1);
__ jmp(&exit);
// We got a fixed array in register r0. Iterate through that.
Label non_proxy;
__ bind(&fixed_array);
__ Move(r1, FeedbackVector());
__ mov(r2, Operand(TypeFeedbackInfo::MegamorphicSentinel(isolate())));
__ str(r2, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(slot)));
__ mov(r1, Operand(Smi::FromInt(1))); // Smi indicates slow check
__ ldr(r2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CompareObjectType(r2, r3, r3, LAST_JS_PROXY_TYPE);
__ b(gt, &non_proxy);
__ mov(r1, Operand(Smi::FromInt(0))); // Zero indicates proxy
__ bind(&non_proxy);
__ Push(r1, r0); // Smi and array
__ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset));
__ mov(r0, Operand(Smi::FromInt(0)));
__ Push(r1, r0); // Fixed array length (as smi) and initial index.
// Generate code for doing the condition check.
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ bind(&loop);
// Load the current count to r0, load the length to r1.
__ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize));
__ cmp(r0, r1); // Compare to the array length.
__ b(hs, loop_statement.break_label());
// Get the current entry of the array into register r3.
__ ldr(r2, MemOperand(sp, 2 * kPointerSize));
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand::PointerAddressFromSmiKey(r2, r0));
// Get the expected map from the stack or a smi in the
// permanent slow case into register r2.
__ ldr(r2, MemOperand(sp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ ldr(r1, MemOperand(sp, 4 * kPointerSize));
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r4, Operand(r2));
__ b(eq, &update_each);
// For proxies, no filtering is done.
// TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
__ cmp(r2, Operand(Smi::FromInt(0)));
__ b(eq, &update_each);
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ push(r1); // Enumerable.
__ push(r3); // Current entry.
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
__ mov(r3, Operand(r0), SetCC);
__ b(eq, loop_statement.continue_label());
// Update the 'each' property or variable from the possibly filtered
// entry in register r3.
__ bind(&update_each);
__ mov(result_register(), r3);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each());
}
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for the going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ pop(r0);
__ add(r0, r0, Operand(Smi::FromInt(1)));
__ push(r0);
EmitBackEdgeBookkeeping(stmt, &loop);
__ b(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
__ Drop(5);
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
Comment cmnt(masm_, "[ ForOfStatement");
SetStatementPosition(stmt);
Iteration loop_statement(this, stmt);
increment_loop_depth();
// var iterator = iterable[@@iterator]()
VisitForAccumulatorValue(stmt->assign_iterator());
// As with for-in, skip the loop if the iterator is null or undefined.
__ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
__ b(eq, loop_statement.break_label());
__ CompareRoot(r0, Heap::kNullValueRootIndex);
__ b(eq, loop_statement.break_label());
// Convert the iterator to a JS object.
Label convert, done_convert;
__ JumpIfSmi(r0, &convert);
__ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &done_convert);
__ bind(&convert);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ bind(&done_convert);
__ push(r0);
// Loop entry.
__ bind(loop_statement.continue_label());
// result = iterator.next()
VisitForEffect(stmt->next_result());
// if (result.done) break;
Label result_not_done;
VisitForControl(stmt->result_done(),
loop_statement.break_label(),
&result_not_done,
&result_not_done);
__ bind(&result_not_done);
// each = result.value
VisitForEffect(stmt->assign_each());
// Generate code for the body of the loop.
Visit(stmt->body());
// Check stack before looping.
PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
__ jmp(loop_statement.continue_label());
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning. If
// we're running with the --always-opt or the --prepare-always-opt
// flag, we need to use the runtime function so that the new function
// we are creating here gets a chance to have its code optimized and
// doesn't just get a copy of the existing unoptimized code.
if (!FLAG_always_opt &&
!FLAG_prepare_always_opt &&
!pretenure &&
scope()->is_function_scope() &&
info->num_literals() == 0) {
FastNewClosureStub stub(isolate(),
info->strict_mode(),
info->is_generator());
__ mov(r2, Operand(info));
__ CallStub(&stub);
} else {
__ mov(r0, Operand(info));
__ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex
: Heap::kFalseValueRootIndex);
__ Push(cp, r0, r1);
__ CallRuntime(Runtime::kHiddenNewClosure, 3);
}
context()->Plug(r0);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr);
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
TypeofState typeof_state,
Label* slow) {
Register current = cp;
Register next = r1;
Register temp = r2;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX));
__ tst(temp, temp);
__ b(ne, slow);
}
// Load next context in chain.
__ ldr(next, ContextOperand(current, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
current = next;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label loop, fast;
if (!current.is(next)) {
__ Move(next, current);
}
__ bind(&loop);
// Terminate at native context.
__ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
__ cmp(temp, ip);
__ b(eq, &fast);
// Check that extension is NULL.
__ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX));
__ tst(temp, temp);
__ b(ne, slow);
// Load next context in chain.
__ ldr(next, ContextOperand(next, Context::PREVIOUS_INDEX));
__ b(&loop);
__ bind(&fast);
}
__ ldr(r0, GlobalObjectOperand());
__ mov(r2, Operand(var->name()));
ContextualMode mode = (typeof_state == INSIDE_TYPEOF)
? NOT_CONTEXTUAL
: CONTEXTUAL;
CallLoadIC(mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
ASSERT(var->IsContextSlot());
Register context = cp;
Register next = r3;
Register temp = r4;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(temp, temp);
__ b(ne, slow);
}
__ ldr(next, ContextOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
context = next;
}
}
// Check that last extension is NULL.
__ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(temp, temp);
__ b(ne, slow);
// This function is used only for loads, not stores, so it's safe to
// return an cp-based operand (the write barrier cannot be allowed to
// destroy the cp register).
return ContextOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
TypeofState typeof_state,
Label* slow,
Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
__ jmp(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ ldr(r0, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == LET || local->mode() == CONST ||
local->mode() == CONST_LEGACY) {
__ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
if (local->mode() == CONST_LEGACY) {
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
} else { // LET || CONST
__ b(ne, done);
__ mov(r0, Operand(var->name()));
__ push(r0);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
}
}
__ jmp(done);
}
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
// Record position before possible IC call.
SetSourcePosition(proxy->position());
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case Variable::UNALLOCATED: {
Comment cmnt(masm_, "[ Global variable");
// Use inline caching. Variable name is passed in r2 and the global
// object (receiver) in r0.
__ ldr(r0, GlobalObjectOperand());
__ mov(r2, Operand(var->name()));
CallLoadIC(CONTEXTUAL);
context()->Plug(r0);
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::CONTEXT: {
Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
: "[ Stack variable");
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
if (var->binding_needs_init()) {
// var->scope() may be NULL when the proxy is located in eval code and
// refers to a potential outside binding. Currently those bindings are
// always looked up dynamically, i.e. in that case
// var->location() == LOOKUP.
// always holds.
ASSERT(var->scope() != NULL);
// Check if the binding really needs an initialization check. The check
// can be skipped in the following situation: we have a LET or CONST
// binding in harmony mode, both the Variable and the VariableProxy have
// the same declaration scope (i.e. they are both in global code, in the
// same function or in the same eval code) and the VariableProxy is in
// the source physically located after the initializer of the variable.
//
// We cannot skip any initialization checks for CONST in non-harmony
// mode because const variables may be declared but never initialized:
// if (false) { const x; }; var y = x;
//
// The condition on the declaration scopes is a conservative check for
// nested functions that access a binding and are called before the
// binding is initialized:
// function() { f(); let x = 1; function f() { x = 2; } }
//
bool skip_init_check;
if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
skip_init_check = false;
} else {
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
// Check that we always have valid source position.
ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
ASSERT(proxy->position() != RelocInfo::kNoPosition);
skip_init_check = var->mode() != CONST_LEGACY &&
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
var->initializer_position() < proxy->position();
}
if (!skip_init_check) {
// Let and const need a read barrier.
GetVar(r0, var);
__ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
if (var->mode() == LET || var->mode() == CONST) {
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
Label done;
__ b(ne, &done);
__ mov(r0, Operand(var->name()));
__ push(r0);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
__ bind(&done);
} else {
// Uninitalized const bindings outside of harmony mode are unholed.
ASSERT(var->mode() == CONST_LEGACY);
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
}
context()->Plug(r0);
break;
}
}
Reapply r9870 "Remove some initialization checks based on source positions.". This reverts r9896 "Revert r9870 due to browser-test failures." See below for the diff from the previous version for the ia32 platform. The code for other platforms has been changed accordingly. TEST=mjsunit/compiler/lazy-const-lookup.js diff --git a/src/ia32/full-codegen-ia32.cc b/src/ia32/full-codegen-ia32.cc index 2cbf518..1990f2f 100644 --- a/src/ia32/full-codegen-ia32.cc +++ b/src/ia32/full-codegen-ia32.cc @@ -1258,13 +1258,17 @@ void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // - // Check that we always have valid source position. - ASSERT(var->initializer_position() != RelocInfo::kNoPosition); - ASSERT(proxy->position() != RelocInfo::kNoPosition); - bool skip_init_check = - var->mode() != CONST && - var->scope()->DeclarationScope() == scope()->DeclarationScope() && - var->initializer_position() < proxy->position(); + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else { + // Check that we always have valid source position. + ASSERT(var->initializer_position() != RelocInfo::kNoPosition); + ASSERT(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST && + var->initializer_position() < proxy->position(); + } + if (!skip_init_check) { // Let and const need a read barrier. Label done; Review URL: http://codereview.chromium.org/8479034 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-08 13:28:53 +00:00
context()->Plug(var);
break;
}
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ Lookup variable");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
__ mov(r1, Operand(var->name()));
__ Push(cp, r1); // Context and name.
__ CallRuntime(Runtime::kHiddenLoadContextSlot, 2);
__ bind(&done);
context()->Plug(r0);
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// r5 = materialized value (RegExp literal)
// r4 = JS function, literals array
// r3 = literal index
// r2 = RegExp pattern
// r1 = RegExp flags
// r0 = RegExp literal clone
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ ldr(r5, FieldMemOperand(r4, literal_offset));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r5, ip);
__ b(ne, &materialized);
// Create regexp literal using runtime function.
// Result will be in r0.
__ mov(r3, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r2, Operand(expr->pattern()));
__ mov(r1, Operand(expr->flags()));
__ Push(r4, r3, r2, r1);
__ CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4);
__ mov(r5, r0);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ mov(r0, Operand(Smi::FromInt(size)));
__ Push(r5, r0);
__ CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1);
__ pop(r5);
__ bind(&allocated);
// After this, registers are used as follows:
// r0: Newly allocated regexp.
// r5: Materialized regexp.
// r2: temp.
__ CopyFields(r0, r5, d0, size / kPointerSize);
context()->Plug(r0);
}
void FullCodeGenerator::EmitAccessor(Expression* expression) {
if (expression == NULL) {
__ LoadRoot(r1, Heap::kNullValueRootIndex);
__ push(r1);
} else {
VisitForStackValue(expression);
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
expr->BuildConstantProperties(isolate());
Handle<FixedArray> constant_properties = expr->constant_properties();
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r1, Operand(constant_properties));
int flags = expr->fast_elements()
? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
flags |= expr->has_function()
? ObjectLiteral::kHasFunction
: ObjectLiteral::kNoFlags;
__ mov(r0, Operand(Smi::FromInt(flags)));
int properties_count = constant_properties->length() / 2;
if (expr->may_store_doubles() || expr->depth() > 1 ||
Serializer::enabled(isolate()) || flags != ObjectLiteral::kFastElements ||
properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
__ Push(r3, r2, r1, r0);
__ CallRuntime(Runtime::kHiddenCreateObjectLiteral, 4);
} else {
FastCloneShallowObjectStub stub(isolate(), properties_count);
__ CallStub(&stub);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in r0.
bool result_saved = false;
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
expr->CalculateEmitStore(zone());
AccessorTable accessor_table(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(r0); // Save result on stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
__ mov(r2, Operand(key->value()));
__ ldr(r1, MemOperand(sp));
CallStoreIC(key->LiteralFeedbackId());
PrepareForBailoutForId(key->id(), NO_REGISTERS);
} else {
VisitForEffect(value);
}
break;
}
// Duplicate receiver on stack.
__ ldr(r0, MemOperand(sp));
__ push(r0);
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
__ mov(r0, Operand(Smi::FromInt(NONE))); // PropertyAttributes
__ push(r0);
__ CallRuntime(Runtime::kSetProperty, 4);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
// Duplicate receiver on stack.
__ ldr(r0, MemOperand(sp));
__ push(r0);
VisitForStackValue(value);
if (property->emit_store()) {
__ CallRuntime(Runtime::kSetPrototype, 2);
} else {
__ Drop(2);
}
break;
case ObjectLiteral::Property::GETTER:
accessor_table.lookup(key)->second->getter = value;
break;
case ObjectLiteral::Property::SETTER:
accessor_table.lookup(key)->second->setter = value;
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
__ ldr(r0, MemOperand(sp)); // Duplicate receiver.
__ push(r0);
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ mov(r0, Operand(Smi::FromInt(NONE)));
__ push(r0);
__ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
}
if (expr->has_function()) {
ASSERT(result_saved);
__ ldr(r0, MemOperand(sp));
__ push(r0);
__ CallRuntime(Runtime::kToFastProperties, 1);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(r0);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
expr->BuildConstantElements(isolate());
int flags = expr->depth() == 1
? ArrayLiteral::kShallowElements
: ArrayLiteral::kNoFlags;
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
Handle<FixedArray> constant_elements = expr->constant_elements();
ASSERT_EQ(2, constant_elements->length());
ElementsKind constant_elements_kind =
static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
Handle<FixedArrayBase> constant_elements_values(
FixedArrayBase::cast(constant_elements->get(1)));
AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
// If the only customer of allocation sites is transitioning, then
// we can turn it off if we don't have anywhere else to transition to.
allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
}
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r1, Operand(constant_elements));
if (has_fast_elements && constant_elements_values->map() ==
isolate()->heap()->fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
isolate(),
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS,
allocation_site_mode,
length);
__ CallStub(&stub);
__ IncrementCounter(
isolate()->counters()->cow_arrays_created_stub(), 1, r1, r2);
} else if (expr->depth() > 1 || Serializer::enabled(isolate()) ||
length > FastCloneShallowArrayStub::kMaximumClonedLength) {
__ mov(r0, Operand(Smi::FromInt(flags)));
__ Push(r3, r2, r1, r0);
__ CallRuntime(Runtime::kHiddenCreateArrayLiteral, 4);
} else {
ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind) ||
FLAG_smi_only_arrays);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
if (has_fast_elements) {
mode = FastCloneShallowArrayStub::CLONE_ELEMENTS;
}
FastCloneShallowArrayStub stub(isolate(), mode, allocation_site_mode,
length);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
__ push(r0);
__ Push(Smi::FromInt(expr->literal_index()));
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
if (IsFastObjectElementsKind(constant_elements_kind)) {
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ ldr(r6, MemOperand(sp, kPointerSize)); // Copy of array literal.
__ ldr(r1, FieldMemOperand(r6, JSObject::kElementsOffset));
__ str(result_register(), FieldMemOperand(r1, offset));
// Update the write barrier for the array store.
__ RecordWriteField(r1, offset, result_register(), r2,
kLRHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
} else {
__ mov(r3, Operand(Smi::FromInt(i)));
StoreArrayLiteralElementStub stub(isolate());
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
}
if (result_saved) {
__ pop(); // literal index
context()->PlugTOS();
} else {
context()->Plug(r0);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
ASSERT(expr->target()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ Assignment");
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* property = expr->target()->AsProperty();
if (property != NULL) {
assign_type = (property->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForAccumulatorValue(property->obj());
__ push(result_register());
} else {
VisitForStackValue(property->obj());
}
break;
case KEYED_PROPERTY:
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForAccumulatorValue(property->key());
__ ldr(r1, MemOperand(sp, 0));
__ push(r0);
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{ AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ push(r0); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
? OVERWRITE_RIGHT
: NO_OVERWRITE;
SetSourcePosition(expr->position() + 1);
AccumulatorValueContext context(this);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(),
op,
mode,
expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op, mode);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r0);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::VisitYield(Yield* expr) {
Comment cmnt(masm_, "[ Yield");
// Evaluate yielded value first; the initial iterator definition depends on
// this. It stays on the stack while we update the iterator.
VisitForStackValue(expr->expression());
switch (expr->yield_kind()) {
case Yield::SUSPEND:
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(false);
__ push(result_register());
// Fall through.
case Yield::INITIAL: {
Label suspend, continuation, post_runtime, resume;
__ jmp(&suspend);
__ bind(&continuation);
__ jmp(&resume);
__ bind(&suspend);
VisitForAccumulatorValue(expr->generator_object());
ASSERT(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
__ mov(r1, Operand(Smi::FromInt(continuation.pos())));
__ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
__ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
__ mov(r1, cp);
__ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
kLRHasBeenSaved, kDontSaveFPRegs);
__ add(r1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
__ cmp(sp, r1);
__ b(eq, &post_runtime);
__ push(r0); // generator object
__ CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject, 1);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&post_runtime);
__ pop(result_register());
EmitReturnSequence();
__ bind(&resume);
context()->Plug(result_register());
break;
}
case Yield::FINAL: {
VisitForAccumulatorValue(expr->generator_object());
__ mov(r1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
__ str(r1, FieldMemOperand(result_register(),
JSGeneratorObject::kContinuationOffset));
// Pop value from top-of-stack slot, box result into result register.
EmitCreateIteratorResult(true);
EmitUnwindBeforeReturn();
EmitReturnSequence();
break;
}
case Yield::DELEGATING: {
VisitForStackValue(expr->generator_object());
// Initial stack layout is as follows:
// [sp + 1 * kPointerSize] iter
// [sp + 0 * kPointerSize] g
Label l_catch, l_try, l_suspend, l_continuation, l_resume;
Label l_next, l_call, l_loop;
// Initial send value is undefined.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ b(&l_next);
// catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
__ bind(&l_catch);
handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
__ LoadRoot(r2, Heap::kthrow_stringRootIndex); // "throw"
__ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter
__ Push(r2, r3, r0); // "throw", iter, except
__ jmp(&l_call);
// try { received = %yield result }
// Shuffle the received result above a try handler and yield it without
// re-boxing.
__ bind(&l_try);
__ pop(r0); // result
__ PushTryHandler(StackHandler::CATCH, expr->index());
const int handler_size = StackHandlerConstants::kSize;
__ push(r0); // result
__ jmp(&l_suspend);
__ bind(&l_continuation);
__ jmp(&l_resume);
__ bind(&l_suspend);
const int generator_object_depth = kPointerSize + handler_size;
__ ldr(r0, MemOperand(sp, generator_object_depth));
__ push(r0); // g
ASSERT(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
__ mov(r1, Operand(Smi::FromInt(l_continuation.pos())));
__ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
__ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
__ mov(r1, cp);
__ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
kLRHasBeenSaved, kDontSaveFPRegs);
__ CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject, 1);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ pop(r0); // result
EmitReturnSequence();
__ bind(&l_resume); // received in r0
__ PopTryHandler();
// receiver = iter; f = 'next'; arg = received;
__ bind(&l_next);
__ LoadRoot(r2, Heap::knext_stringRootIndex); // "next"
__ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter
__ Push(r2, r3, r0); // "next", iter, received
// result = receiver[f](arg);
__ bind(&l_call);
__ ldr(r1, MemOperand(sp, kPointerSize));
__ ldr(r0, MemOperand(sp, 2 * kPointerSize));
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallIC(ic, TypeFeedbackId::None());
__ mov(r1, r0);
__ str(r1, MemOperand(sp, 2 * kPointerSize));
CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
__ CallStub(&stub);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Drop(1); // The function is still on the stack; drop it.
// if (!result.done) goto l_try;
__ bind(&l_loop);
__ push(r0); // save result
__ LoadRoot(r2, Heap::kdone_stringRootIndex); // "done"
CallLoadIC(NOT_CONTEXTUAL); // result.done in r0
Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(bool_ic);
__ cmp(r0, Operand(0));
__ b(eq, &l_try);
// result.value
__ pop(r0); // result
__ LoadRoot(r2, Heap::kvalue_stringRootIndex); // "value"
CallLoadIC(NOT_CONTEXTUAL); // result.value in r0
context()->DropAndPlug(2, r0); // drop iter and g
break;
}
}
}
void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
Expression *value,
JSGeneratorObject::ResumeMode resume_mode) {
// The value stays in r0, and is ultimately read by the resumed generator, as
// if CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject) returned it. Or it
// is read to throw the value when the resumed generator is already closed.
// r1 will hold the generator object until the activation has been resumed.
VisitForStackValue(generator);
VisitForAccumulatorValue(value);
__ pop(r1);
// Check generator state.
Label wrong_state, closed_state, done;
__ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
__ cmp(r3, Operand(Smi::FromInt(0)));
__ b(eq, &closed_state);
__ b(lt, &wrong_state);
// Load suspended function and context.
__ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset));
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
// Load receiver and store as the first argument.
__ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
__ push(r2);
// Push holes for the rest of the arguments to the generator function.
__ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3,
FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Label push_argument_holes, push_frame;
__ bind(&push_argument_holes);
__ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC);
__ b(mi, &push_frame);
__ push(r2);
__ jmp(&push_argument_holes);
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
Label resume_frame;
__ bind(&push_frame);
__ bl(&resume_frame);
__ jmp(&done);
__ bind(&resume_frame);
// lr = return address.
// fp = caller's frame pointer.
// pp = caller's constant pool (if FLAG_enable_ool_constant_pool),
// cp = callee's context,
// r4 = callee's JS function.
__ PushFixedFrame(r4);
// Adjust FP to point to saved FP.
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Load the operand stack size.
__ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kOperandStackOffset));
__ ldr(r3, FieldMemOperand(r3, FixedArray::kLengthOffset));
__ SmiUntag(r3);
// If we are sending a value and there is no operand stack, we can jump back
// in directly.
if (resume_mode == JSGeneratorObject::NEXT) {
Label slow_resume;
__ cmp(r3, Operand(0));
__ b(ne, &slow_resume);
__ ldr(r3, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
{ ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
if (FLAG_enable_ool_constant_pool) {
// Load the new code object's constant pool pointer.
__ ldr(pp,
MemOperand(r3, Code::kConstantPoolOffset - Code::kHeaderSize));
}
__ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
__ SmiUntag(r2);
__ add(r3, r3, r2);
__ mov(r2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
__ str(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
__ Jump(r3);
}
__ bind(&slow_resume);
}
// Otherwise, we push holes for the operand stack and call the runtime to fix
// up the stack and the handlers.
Label push_operand_holes, call_resume;
__ bind(&push_operand_holes);
__ sub(r3, r3, Operand(1), SetCC);
__ b(mi, &call_resume);
__ push(r2);
__ b(&push_operand_holes);
__ bind(&call_resume);
ASSERT(!result_register().is(r1));
__ Push(r1, result_register());
__ Push(Smi::FromInt(resume_mode));
__ CallRuntime(Runtime::kHiddenResumeJSGeneratorObject, 3);
// Not reached: the runtime call returns elsewhere.
__ stop("not-reached");
// Reach here when generator is closed.
__ bind(&closed_state);
if (resume_mode == JSGeneratorObject::NEXT) {
// Return completed iterator result when generator is closed.
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ push(r2);
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(true);
} else {
// Throw the provided value.
__ push(r0);
__ CallRuntime(Runtime::kHiddenThrow, 1);
}
__ jmp(&done);
// Throw error if we attempt to operate on a running generator.
__ bind(&wrong_state);
__ push(r1);
__ CallRuntime(Runtime::kHiddenThrowGeneratorStateError, 1);
__ bind(&done);
context()->Plug(result_register());
}
void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
Label gc_required;
Label allocated;
ES6: Add support for Map/Set forEach This implements MapIterator and SetIterator which matches the same constructs in the ES6 spec. However, these 2 iterators are not exposed to user code yet. They are only used internally to implement Map.prototype.forEach and Set.prototype.forEach. Each iterator has a reference to the OrderedHashTable where it directly accesses the hash table's entries. The OrderedHashTable has a reference to the newest iterator and each iterator has a reference to the next and previous iterator, effectively creating a double linked list. When the OrderedHashTable is mutated (or replaced) all the iterators are updated. When the iterator iterates passed the end of the data table it closes itself. Closed iterators no longer have a reference to the OrderedHashTable and they are removed from the double linked list. In the case of Map/Set forEach, we manually call Close on the iterator in case an exception was thrown so that the iterator never reached the end. At this point the OrderedHashTable keeps all the non finished iterators alive but since the only thing we currently expose is forEach there are no unfinished iterators outside a forEach call. Once we expose the iterators to user code we will need to make the references from the OrderedHashTable to the iterators weak and have some mechanism to close an iterator when it is garbage collected. BUG=1793, 2323 LOG=Y R=adamk@chromium.org TBR=mstarzinger@chromium.org Review URL: https://codereview.chromium.org/238063009 Patch from Erik Arvidsson <arv@chromium.org>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20857 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-04-17 17:45:32 +00:00
Handle<Map> map(isolate()->native_context()->iterator_result_map());
__ Allocate(map->instance_size(), r0, r2, r3, &gc_required, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&gc_required);
__ Push(Smi::FromInt(map->instance_size()));
__ CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1);
__ ldr(context_register(),
MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&allocated);
__ mov(r1, Operand(map));
__ pop(r2);
__ mov(r3, Operand(isolate()->factory()->ToBoolean(done)));
__ mov(r4, Operand(isolate()->factory()->empty_fixed_array()));
ASSERT_EQ(map->instance_size(), 5 * kPointerSize);
__ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
__ str(r2,
FieldMemOperand(r0, JSGeneratorObject::kResultValuePropertyOffset));
__ str(r3,
FieldMemOperand(r0, JSGeneratorObject::kResultDonePropertyOffset));
// Only the value field needs a write barrier, as the other values are in the
// root set.
__ RecordWriteField(r0, JSGeneratorObject::kResultValuePropertyOffset,
r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ mov(r2, Operand(key->value()));
// Call load IC. It has arguments receiver and property name r0 and r2.
CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
// Call keyed load IC. It has arguments key and receiver in r0 and r1.
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallIC(ic, prop->PropertyFeedbackId());
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode,
Expression* left_expr,
Expression* right_expr) {
Label done, smi_case, stub_call;
Register scratch1 = r2;
Register scratch2 = r3;
// Get the arguments.
Register left = r1;
Register right = r0;
__ pop(left);
// Perform combined smi check on both operands.
__ orr(scratch1, left, Operand(right));
STATIC_ASSERT(kSmiTag == 0);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(scratch1, &smi_case);
__ bind(&stub_call);
BinaryOpICStub stub(isolate(), op, mode);
CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
__ jmp(&done);
__ bind(&smi_case);
// Smi case. This code works the same way as the smi-smi case in the type
// recording binary operation stub, see
switch (op) {
case Token::SAR:
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ mov(right, Operand(left, ASR, scratch1));
__ bic(right, right, Operand(kSmiTagMask));
break;
case Token::SHL: {
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ mov(scratch1, Operand(scratch1, LSL, scratch2));
__ TrySmiTag(right, scratch1, &stub_call);
break;
}
case Token::SHR: {
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ mov(scratch1, Operand(scratch1, LSR, scratch2));
__ tst(scratch1, Operand(0xc0000000));
__ b(ne, &stub_call);
__ SmiTag(right, scratch1);
break;
}
case Token::ADD:
__ add(scratch1, left, Operand(right), SetCC);
__ b(vs, &stub_call);
__ mov(right, scratch1);
break;
case Token::SUB:
__ sub(scratch1, left, Operand(right), SetCC);
__ b(vs, &stub_call);
__ mov(right, scratch1);
break;
case Token::MUL: {
__ SmiUntag(ip, right);
__ smull(scratch1, scratch2, left, ip);
__ mov(ip, Operand(scratch1, ASR, 31));
__ cmp(ip, Operand(scratch2));
__ b(ne, &stub_call);
__ cmp(scratch1, Operand::Zero());
__ mov(right, Operand(scratch1), LeaveCC, ne);
__ b(ne, &done);
__ add(scratch2, right, Operand(left), SetCC);
__ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
__ b(mi, &stub_call);
break;
}
case Token::BIT_OR:
__ orr(right, left, Operand(right));
break;
case Token::BIT_AND:
__ and_(right, left, Operand(right));
break;
case Token::BIT_XOR:
__ eor(right, left, Operand(right));
break;
default:
UNREACHABLE();
}
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode) {
__ pop(r1);
BinaryOpICStub stub(isolate(), op, mode);
JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
context()->Plug(r0);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
ASSERT(expr->IsValidReferenceExpression());
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->AsProperty();
if (prop != NULL) {
assign_type = (prop->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN);
break;
}
case NAMED_PROPERTY: {
__ push(r0); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ mov(r1, r0);
__ pop(r0); // Restore value.
__ mov(r2, Operand(prop->key()->AsLiteral()->value()));
CallStoreIC();
break;
}
case KEYED_PROPERTY: {
__ push(r0); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ mov(r1, r0);
__ Pop(r0, r2); // r0 = restored value.
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic);
break;
}
}
context()->Plug(r0);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ str(result_register(), location);
if (var->IsContextSlot()) {
// RecordWrite may destroy all its register arguments.
__ mov(r3, result_register());
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(
r1, offset, r3, r2, kLRHasBeenSaved, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitCallStoreContextSlot(
Handle<String> name, StrictMode strict_mode) {
__ push(r0); // Value.
__ mov(r1, Operand(name));
__ mov(r0, Operand(Smi::FromInt(strict_mode)));
__ Push(cp, r1, r0); // Context, name, strict mode.
__ CallRuntime(Runtime::kHiddenStoreContextSlot, 4);
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ mov(r2, Operand(var->name()));
__ ldr(r1, GlobalObjectOperand());
CallStoreIC();
} else if (op == Token::INIT_CONST_LEGACY) {
// Const initializers need a write barrier.
ASSERT(!var->IsParameter()); // No const parameters.
if (var->IsLookupSlot()) {
__ push(r0);
__ mov(r0, Operand(var->name()));
__ Push(cp, r0); // Context and name.
__ CallRuntime(Runtime::kHiddenInitializeConstContextSlot, 3);
} else {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
Label skip;
MemOperand location = VarOperand(var, r1);
__ ldr(r2, location);
__ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
__ b(ne, &skip);
EmitStoreToStackLocalOrContextSlot(var, location);
__ bind(&skip);
}
} else if (var->mode() == LET && op != Token::INIT_LET) {
// Non-initializing assignment to let variable needs a write barrier.
if (var->IsLookupSlot()) {
EmitCallStoreContextSlot(var->name(), strict_mode());
} else {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, r1);
__ ldr(r3, location);
__ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
__ b(ne, &assign);
__ mov(r3, Operand(var->name()));
__ push(r3);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
// Perform the assignment.
__ bind(&assign);
EmitStoreToStackLocalOrContextSlot(var, location);
}
} else if (!var->is_const_mode() || op == Token::INIT_CONST) {
// Assignment to var or initializing assignment to let/const
// in harmony mode.
if (var->IsLookupSlot()) {
EmitCallStoreContextSlot(var->name(), strict_mode());
} else {
ASSERT((var->IsStackAllocated() || var->IsContextSlot()));
MemOperand location = VarOperand(var, r1);
if (generate_debug_code_ && op == Token::INIT_LET) {
// Check for an uninitialized let binding.
__ ldr(r2, location);
__ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
__ Check(eq, kLetBindingReInitialization);
}
EmitStoreToStackLocalOrContextSlot(var, location);
}
}
// Non-initializing assignments to consts are ignored.
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ mov(r2, Operand(prop->key()->AsLiteral()->value()));
__ pop(r1);
CallStoreIC(expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r0);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ Pop(r2, r1); // r1 = key.
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r0);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
VisitForAccumulatorValue(expr->obj());
EmitNamedPropertyLoad(expr);
PrepareForBailoutForId(expr->LoadId(), TOS_REG);
context()->Plug(r0);
} else {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ pop(r1);
EmitKeyedPropertyLoad(expr);
context()->Plug(r0);
}
}
void FullCodeGenerator::CallIC(Handle<Code> code,
TypeFeedbackId ast_id) {
ic_total_count_++;
// All calls must have a predictable size in full-codegen code to ensure that
// the debugger can patch them correctly.
__ Call(code, RelocInfo::CODE_TARGET, ast_id, al,
NEVER_INLINE_TARGET_ADDRESS);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithIC(Call* expr) {
Expression* callee = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
CallFunctionFlags flags;
// Get the target function.
if (callee->IsVariableProxy()) {
{ StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
PrepareForBailout(callee, NO_REGISTERS);
}
// Push undefined as receiver. This is patched in the method prologue if it
// is a sloppy mode method.
__ Push(isolate()->factory()->undefined_value());
flags = NO_CALL_FUNCTION_FLAGS;
} else {
// Load the function from the receiver.
ASSERT(callee->IsProperty());
__ ldr(r0, MemOperand(sp, 0));
EmitNamedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ ldr(ip, MemOperand(sp, 0));
__ push(ip);
__ str(r0, MemOperand(sp, kPointerSize));
flags = CALL_AS_METHOD;
}
// Load the arguments.
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, flags);
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r0);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
// Load the function from the receiver.
ASSERT(callee->IsProperty());
__ ldr(r1, MemOperand(sp, 0));
EmitKeyedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ ldr(ip, MemOperand(sp, 0));
__ push(ip);
__ str(r0, MemOperand(sp, kPointerSize));
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, CALL_AS_METHOD);
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r0);
}
void FullCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
__ Move(r2, FeedbackVector());
__ mov(r3, Operand(Smi::FromInt(expr->CallFeedbackSlot())));
// Record call targets in unoptimized code.
CallFunctionStub stub(isolate(), arg_count, RECORD_CALL_TARGET);
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r0);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
// r4: copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ ldr(r4, MemOperand(sp, arg_count * kPointerSize));
} else {
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
}
// r3: the receiver of the enclosing function.
int receiver_offset = 2 + info_->scope()->num_parameters();
__ ldr(r3, MemOperand(fp, receiver_offset * kPointerSize));
// r2: strict mode.
__ mov(r2, Operand(Smi::FromInt(strict_mode())));
// r1: the start position of the scope the calls resides in.
__ mov(r1, Operand(Smi::FromInt(scope()->start_position())));
// Do the runtime call.
__ Push(r4, r3, r2, r1);
__ CallRuntime(Runtime::kHiddenResolvePossiblyDirectEval, 5);
}
void FullCodeGenerator::VisitCall(Call* expr) {
#ifdef DEBUG
// We want to verify that RecordJSReturnSite gets called on all paths
// through this function. Avoid early returns.
expr->return_is_recorded_ = false;
#endif
Comment cmnt(masm_, "[ Call");
Expression* callee = expr->expression();
Call::CallType call_type = expr->GetCallType(isolate());
if (call_type == Call::POSSIBLY_EVAL_CALL) {
// In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
// to resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope pos_scope(masm()->positions_recorder());
VisitForStackValue(callee);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ push(r2); // Reserved receiver slot.
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ push(r1);
EmitResolvePossiblyDirectEval(arg_count);
// The runtime call returns a pair of values in r0 (function) and
// r1 (receiver). Touch up the stack with the right values.
__ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ str(r1, MemOperand(sp, arg_count * kPointerSize));
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r0);
} else if (call_type == Call::GLOBAL_CALL) {
EmitCallWithIC(expr);
} else if (call_type == Call::LOOKUP_SLOT_CALL) {
// Call to a lookup slot (dynamically introduced variable).
VariableProxy* proxy = callee->AsVariableProxy();
Label slow, done;
{ PreservePositionScope scope(masm()->positions_recorder());
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
}
__ bind(&slow);
// Call the runtime to find the function to call (returned in r0)
// and the object holding it (returned in edx).
ASSERT(!context_register().is(r2));
__ mov(r2, Operand(proxy->name()));
__ Push(context_register(), r2);
__ CallRuntime(Runtime::kHiddenLoadContextSlot, 2);
__ Push(r0, r1); // Function, receiver.
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
Label call;
__ b(&call);
__ bind(&done);
// Push function.
__ push(r0);
// The receiver is implicitly the global receiver. Indicate this
// by passing the hole to the call function stub.
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ push(r1);
__ bind(&call);
}
// The receiver is either the global receiver or an object found
// by LoadContextSlot.
EmitCallWithStub(expr);
} else if (call_type == Call::PROPERTY_CALL) {
Property* property = callee->AsProperty();
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(property->obj());
}
if (property->key()->IsPropertyName()) {
EmitCallWithIC(expr);
} else {
EmitKeyedCallWithIC(expr, property->key());
}
} else {
ASSERT(call_type == Call::OTHER_CALL);
// Call to an arbitrary expression not handled specially above.
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(callee);
}
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ push(r1);
// Emit function call.
EmitCallWithStub(expr);
}
#ifdef DEBUG
// RecordJSReturnSite should have been called.
ASSERT(expr->return_is_recorded_);
#endif
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function and argument count into r1 and r0.
__ mov(r0, Operand(arg_count));
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
// Record call targets in unoptimized code.
if (FLAG_pretenuring_call_new) {
EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
ASSERT(expr->AllocationSiteFeedbackSlot() ==
expr->CallNewFeedbackSlot() + 1);
}
__ Move(r2, FeedbackVector());
__ mov(r3, Operand(Smi::FromInt(expr->CallNewFeedbackSlot())));
CallConstructStub stub(isolate(), RECORD_CALL_TARGET);
__ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
context()->Plug(r0);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ SmiTst(r0);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ NonNegativeSmiTst(r0);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
__ b(eq, if_true);
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
__ b(ne, if_false);
__ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ b(lt, if_false);
__ cmp(r1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(le, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ge, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ne, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false, skip_lookup;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ AssertNotSmi(r0);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset));
__ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ b(ne, &skip_lookup);
// Check for fast case object. Generate false result for slow case object.
__ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r2, ip);
__ b(eq, if_false);
// Look for valueOf name in the descriptor array, and indicate false if
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
// found. Since we omit an enumeration index check, if it is added via a
// transition that shares its descriptor array, this is a false positive.
Label entry, loop, done;
// Skip loop if no descriptors are valid.
__ NumberOfOwnDescriptors(r3, r1);
__ cmp(r3, Operand::Zero());
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
__ b(eq, &done);
__ LoadInstanceDescriptors(r1, r4);
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
// r4: descriptor array.
// r3: valid entries in the descriptor array.
__ mov(ip, Operand(DescriptorArray::kDescriptorSize));
__ mul(r3, r3, ip);
// Calculate location of the first key name.
__ add(r4, r4, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
// Calculate the end of the descriptor array.
__ mov(r2, r4);
__ add(r2, r2, Operand::PointerOffsetFromSmiKey(r3));
// Loop through all the keys in the descriptor array. If one of these is the
// string "valueOf" the result is false.
// The use of ip to store the valueOf string assumes that it is not otherwise
// used in the loop below.
__ mov(ip, Operand(isolate()->factory()->value_of_string()));
__ jmp(&entry);
__ bind(&loop);
__ ldr(r3, MemOperand(r4, 0));
__ cmp(r3, ip);
__ b(eq, if_false);
__ add(r4, r4, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
__ bind(&entry);
__ cmp(r4, Operand(r2));
__ b(ne, &loop);
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
__ bind(&done);
// Set the bit in the map to indicate that there is no local valueOf field.
__ ldrb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
__ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ strb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
__ bind(&skip_lookup);
Sharing of descriptor arrays. This CL adds multiple things: Transition arrays do not directly point at their descriptor array anymore, but rather do so via an indirect pointer (a JSGlobalPropertyCell). An ownership bit is added to maps indicating whether it owns its own descriptor array or not. Maps owning a descriptor array can pass on ownership if a transition from that map is generated; but only if the descriptor array stays exactly the same; or if a descriptor is added. Maps that don't have ownership get ownership back if their direct child to which ownership was passed is cleared in ClearNonLiveTransitions. To detect which descriptors in an array are valid, each map knows its own NumberOfOwnDescriptors. Since the descriptors are sorted in order of addition, if we search and find a descriptor with index bigger than this number, it is not valid for the given map. We currently still build up an enumeration cache (although this may disappear). The enumeration cache is always built for the entire descriptor array, even if not all descriptors are owned by the map. Once a descriptor array has an enumeration cache for a given map; this invariant will always be true, even if the descriptor array was extended. The extended array will inherit the enumeration cache from the smaller descriptor array. If a map with more descriptors needs an enumeration cache, it's EnumLength will still be set to invalid, so it will have to recompute the enumeration cache. This new cache will also be valid for smaller maps since they have their own enumlength; and use this to loop over the cache. If the EnumLength is still invalid, but there is already a cache present that is big enough; we just initialize the EnumLength field for the map. When we apply ClearNonLiveTransitions and descriptor ownership is passed back to a parent map, the descriptor array is trimmed in-place and resorted. At the same time, the enumeration cache is trimmed in-place. Only transition arrays contain descriptor arrays. If we transition to a map and pass ownership of the descriptor array along, the child map will not store the descriptor array it owns. Rather its parent will keep the pointer. So for every leaf-map, we find the descriptor array by following the back pointer, reading out the transition array, and fetching the descriptor array from the JSGlobalPropertyCell. If a map has a transition array, we fetch it from there. If a map has undefined as its back-pointer and has no transition array; it is considered to have an empty descriptor array. When we modify properties, we cannot share the descriptor array. To accommodate this, the child map will get its own transition array; even if there are not necessarily any transitions leaving from the child map. This is necessary since it's the only way to store its own descriptor array. Review URL: https://chromiumcodereview.appspot.com/10909007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12492 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-12 16:43:57 +00:00
// If a valueOf property is not found on the object check that its
// prototype is the un-modified String prototype. If not result is false.
__ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
__ JumpIfSmi(r2, if_false);
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ ldr(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
__ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
__ cmp(r2, r3);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ cmp(r2, Operand(0x80000000));
__ cmp(r1, Operand(0x00000000), eq);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Get the frame pointer for the calling frame.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset), eq);
// Check the marker in the calling frame.
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ pop(r1);
__ cmp(r0, r1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in edx and the formal
// parameter count in r0.
VisitForAccumulatorValue(args->at(0));
__ mov(r1, r0);
__ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
// Get the number of formal parameters.
__ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
// Check if the calling frame is an arguments adaptor frame.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset), eq);
context()->Plug(r0);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is a smi, we return null.
__ JumpIfSmi(r0, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
// Assume that there are only two callable types, and one of them is at
// either end of the type range for JS object types. Saves extra comparisons.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CompareObjectType(r0, r0, r1, FIRST_SPEC_OBJECT_TYPE);
// Map is now in r0.
__ b(lt, &null);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
__ b(eq, &function);
__ cmp(r1, Operand(LAST_SPEC_OBJECT_TYPE));
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
__ b(eq, &function);
// Assume that there is no larger type.
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
// Check if the constructor in the map is a JS function.
__ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
__ b(ne, &non_function_constructor);
// r0 now contains the constructor function. Grab the
// instance class name from there.
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
__ b(&done);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(r0, Heap::kfunction_class_stringRootIndex);
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(r0, Heap::kObject_stringRootIndex);
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(r0, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitLog(CallRuntime* expr) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 3);
if (CodeGenerator::ShouldGenerateLog(isolate(), args->at(0))) {
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallRuntime(Runtime::kHiddenLog, 2);
}
// Finally, we're expected to leave a value on the top of the stack.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
context()->Plug(r0);
}
void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
SubStringStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 4);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
VisitForStackValue(args->at(3));
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(r0, &done);
// If the object is not a value type, return the object.
__ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset), eq);
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
ASSERT_NE(NULL, args->at(1)->AsLiteral());
Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label runtime, done, not_date_object;
Register object = r0;
Register result = r0;
Register scratch0 = r9;
Register scratch1 = r1;
__ JumpIfSmi(object, &not_date_object);
__ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
__ b(ne, &not_date_object);
if (index->value() == 0) {
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
__ jmp(&done);
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch1, Operand(stamp));
__ ldr(scratch1, MemOperand(scratch1));
__ ldr(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch1, scratch0);
__ b(ne, &runtime);
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch1);
__ mov(r1, Operand(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ jmp(&done);
}
__ bind(&not_date_object);
__ CallRuntime(Runtime::kHiddenThrowNotDateError, 0);
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(3, args->length());
Register string = r0;
Register index = r1;
Register value = r2;
VisitForStackValue(args->at(1)); // index
VisitForStackValue(args->at(2)); // value
VisitForAccumulatorValue(args->at(0)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ SmiTst(value);
__ Check(eq, kNonSmiValue);
__ SmiTst(index);
__ Check(eq, kNonSmiIndex);
__ SmiUntag(index, index);
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value, value);
__ add(ip,
string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ strb(value, MemOperand(ip, index, LSR, kSmiTagSize));
context()->Plug(string);
}
void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(3, args->length());
Register string = r0;
Register index = r1;
Register value = r2;
VisitForStackValue(args->at(1)); // index
VisitForStackValue(args->at(2)); // value
VisitForAccumulatorValue(args->at(0)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ SmiTst(value);
__ Check(eq, kNonSmiValue);
__ SmiTst(index);
__ Check(eq, kNonSmiIndex);
__ SmiUntag(index, index);
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value, value);
__ add(ip,
string,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ strh(value, MemOperand(ip, index));
context()->Plug(string);
}
void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
// Load the arguments on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
MathPowStub stub(isolate(), MathPowStub::ON_STACK);
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0)); // Load the object.
VisitForAccumulatorValue(args->at(1)); // Load the value.
__ pop(r1); // r0 = value. r1 = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(r1, &done);
// If the object is not a value type, return the value.
__ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
__ b(ne, &done);
// Store the value.
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ mov(r2, r0);
__ RecordWriteField(
r1, JSValue::kValueOffset, r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 1);
// Load the argument into r0 and call the stub.
VisitForAccumulatorValue(args->at(0));
NumberToStringStub stub(isolate());
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
StringCharFromCodeGenerator generator(r0, r1);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(r1);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = r1;
Register index = r0;
Register result = r3;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = r1;
Register index = r0;
Register scratch = r3;
Register result = r0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kempty_stringRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ mov(result, Operand(Smi::FromInt(0)));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ pop(r1);
StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
StringCompareStub stub(isolate());
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() >= 2);
int arg_count = args->length() - 2; // 2 ~ receiver and function.
for (int i = 0; i < arg_count + 1; i++) {
VisitForStackValue(args->at(i));
}
VisitForAccumulatorValue(args->last()); // Function.
Label runtime, done;
// Check for non-function argument (including proxy).
__ JumpIfSmi(r0, &runtime);
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
__ b(ne, &runtime);
// InvokeFunction requires the function in r1. Move it in there.
__ mov(r1, result_register());
ParameterCount count(arg_count);
__ InvokeFunction(r1, count, CALL_FUNCTION, NullCallWrapper());
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ jmp(&done);
__ bind(&runtime);
__ push(r0);
__ CallRuntime(Runtime::kCall, args->length());
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
RegExpConstructResultStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(2));
__ pop(r1);
__ pop(r2);
__ CallStub(&stub);
context()->Plug(r0);
}
void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
Handle<FixedArray> jsfunction_result_caches(
isolate()->native_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort(kAttemptToUseUndefinedCache);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
context()->Plug(r0);
return;
}
VisitForAccumulatorValue(args->at(1));
Register key = r0;
Register cache = r1;
__ ldr(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
__ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ ldr(cache,
FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
Label done, not_found;
__ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
// r2 now holds finger offset as a smi.
__ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// r3 now points to the start of fixed array elements.
__ ldr(r2, MemOperand::PointerAddressFromSmiKey(r3, r2, PreIndex));
// Note side effect of PreIndex: r3 now points to the key of the pair.
__ cmp(key, r2);
__ b(ne, &not_found);
__ ldr(r0, MemOperand(r3, kPointerSize));
__ b(&done);
__ bind(&not_found);
// Call runtime to perform the lookup.
__ Push(cache, key);
__ CallRuntime(Runtime::kHiddenGetFromCache, 2);
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
__ tst(r0, Operand(String::kContainsCachedArrayIndexMask));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(r0);
__ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
__ IndexFromHash(r0, r0);
context()->Plug(r0);
}
void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator, non_trivial_array,
not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(0));
// All aliases of the same register have disjoint lifetimes.
Register array = r0;
Register elements = no_reg; // Will be r0.
Register result = no_reg; // Will be r0.
Register separator = r1;
Register array_length = r2;
Register result_pos = no_reg; // Will be r2
Register string_length = r3;
Register string = r4;
Register element = r5;
Register elements_end = r6;
Register scratch = r9;
// Separator operand is on the stack.
__ pop(separator);
// Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout);
__ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE);
__ b(ne, &bailout);
// Check that the array has fast elements.
__ CheckFastElements(scratch, array_length, &bailout);
// If the array has length zero, return the empty string.
__ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
__ SmiUntag(array_length, SetCC);
__ b(ne, &non_trivial_array);
__ LoadRoot(r0, Heap::kempty_stringRootIndex);
__ b(&done);
__ bind(&non_trivial_array);
// Get the FixedArray containing array's elements.
elements = array;
__ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
array = no_reg; // End of array's live range.
// Check that all array elements are sequential ASCII strings, and
// accumulate the sum of their lengths, as a smi-encoded value.
__ mov(string_length, Operand::Zero());
__ add(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
// Loop condition: while (element < elements_end).
// Live values in registers:
// elements: Fixed array of strings.
// array_length: Length of the fixed array of strings (not smi)
// separator: Separator string
// string_length: Accumulated sum of string lengths (smi).
// element: Current array element.
// elements_end: Array end.
if (generate_debug_code_) {
__ cmp(array_length, Operand::Zero());
__ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin);
}
__ bind(&loop);
__ ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ JumpIfSmi(string, &bailout);
__ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout);
__ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
__ add(string_length, string_length, Operand(scratch), SetCC);
__ b(vs, &bailout);
__ cmp(element, elements_end);
__ b(lt, &loop);
// If array_length is 1, return elements[0], a string.
__ cmp(array_length, Operand(1));
__ b(ne, &not_size_one_array);
__ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize));
__ b(&done);
__ bind(&not_size_one_array);
// Live values in registers:
// separator: Separator string
// array_length: Length of the array.
// string_length: Sum of string lengths (smi).
// elements: FixedArray of strings.
// Check that the separator is a flat ASCII string.
__ JumpIfSmi(separator, &bailout);
__ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout);
// Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string. array_length is not
// smi but the other values are, so the result is a smi
__ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ sub(string_length, string_length, Operand(scratch));
__ smull(scratch, ip, array_length, scratch);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero.
__ cmp(ip, Operand::Zero());
__ b(ne, &bailout);
__ tst(scratch, Operand(0x80000000));
__ b(ne, &bailout);
__ add(string_length, string_length, Operand(scratch), SetCC);
__ b(vs, &bailout);
__ SmiUntag(string_length);
// Get first element in the array to free up the elements register to be used
// for the result.
__ add(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
result = elements; // End of live range for elements.
elements = no_reg;
// Live values in registers:
// element: First array element
// separator: Separator string
// string_length: Length of result string (not smi)
// array_length: Length of the array.
__ AllocateAsciiString(result,
string_length,
scratch,
string, // used as scratch
elements_end, // used as scratch
&bailout);
// Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first
// character.
__ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
result_pos = array_length; // End of live range for array_length.
array_length = no_reg;
__ add(result_pos,
result,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// Check the length of the separator.
__ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ cmp(scratch, Operand(Smi::FromInt(1)));
__ b(eq, &one_char_separator);
__ b(gt, &long_separator);
// Empty separator case
__ bind(&empty_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// Copy next array element to the result.
__ ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ add(string,
string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end);
__ b(lt, &empty_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0));
__ b(&done);
// One-character separator case
__ bind(&one_char_separator);
// Replace separator with its ASCII character value.
__ ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator
__ jmp(&one_char_separator_loop_entry);
__ bind(&one_char_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Single separator ASCII char (in lower byte).
// Copy the separator character to the result.
__ strb(separator, MemOperand(result_pos, 1, PostIndex));
// Copy next array element to the result.
__ bind(&one_char_separator_loop_entry);
__ ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ add(string,
string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end);
__ b(lt, &one_char_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0));
__ b(&done);
// Long separator case (separator is more than one character). Entry is at the
// label long_separator below.
__ bind(&long_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Separator string.
// Copy the separator to the result.
__ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset));
__ SmiUntag(string_length);
__ add(string,
separator,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch);
__ bind(&long_separator);
__ ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ add(string,
string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end);
__ b(lt, &long_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0));
__ b(&done);
__ bind(&bailout);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ bind(&done);
context()->Plug(r0);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
if (expr->function() != NULL &&
expr->function()->intrinsic_type == Runtime::INLINE) {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
if (expr->is_jsruntime()) {
// Push the builtins object as the receiver.
__ ldr(r0, GlobalObjectOperand());
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kBuiltinsOffset));
__ push(r0);
// Load the function from the receiver.
__ mov(r2, Operand(expr->name()));
CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
// Push the target function under the receiver.
__ ldr(ip, MemOperand(sp, 0));
__ push(ip);
__ str(r0, MemOperand(sp, kPointerSize));
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Record source position of the IC call.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r0);
} else {
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the C runtime function.
__ CallRuntime(expr->function(), arg_count);
context()->Plug(r0);
}
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ mov(r1, Operand(Smi::FromInt(strict_mode())));
__ push(r1);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(r0);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode
// but "delete this" is allowed.
ASSERT(strict_mode() == SLOPPY || var->is_this());
if (var->IsUnallocated()) {
__ ldr(r2, GlobalObjectOperand());
__ mov(r1, Operand(var->name()));
__ mov(r0, Operand(Smi::FromInt(SLOPPY)));
__ Push(r2, r1, r0);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(r0);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
context()->Plug(var->is_this());
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
ASSERT(!context_register().is(r2));
__ mov(r2, Operand(var->name()));
__ Push(context_register(), r2);
__ CallRuntime(Runtime::kHiddenDeleteContextSlot, 2);
context()->Plug(r0);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
__ bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
if (context()->IsStackValue()) __ push(r0);
__ jmp(&done);
__ bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
if (context()->IsStackValue()) __ push(r0);
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{ StackValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ CallRuntime(Runtime::kTypeof, 1);
context()->Plug(r0);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
ASSERT(expr->expression()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ CountOperation");
SetSourcePosition(expr->position());
// Expression can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ mov(ip, Operand(Smi::FromInt(0)));
__ push(ip);
}
if (assign_type == NAMED_PROPERTY) {
// Put the object both on the stack and in the accumulator.
VisitForAccumulatorValue(prop->obj());
__ push(r0);
EmitNamedPropertyLoad(prop);
} else {
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ ldr(r1, MemOperand(sp, 0));
__ push(r0);
EmitKeyedPropertyLoad(prop);
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(prop->LoadId(), TOS_REG);
}
// Inline smi case if we are in a loop.
Label stub_call, done;
JumpPatchSite patch_site(masm_);
int count_value = expr->op() == Token::INC ? 1 : -1;
if (ShouldInlineSmiCase(expr->op())) {
Label slow;
patch_site.EmitJumpIfNotSmi(r0, &slow);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(r0);
break;
case NAMED_PROPERTY:
__ str(r0, MemOperand(sp, kPointerSize));
break;
case KEYED_PROPERTY:
__ str(r0, MemOperand(sp, 2 * kPointerSize));
break;
}
}
}
__ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC);
__ b(vc, &done);
// Call stub. Undo operation first.
__ sub(r0, r0, Operand(Smi::FromInt(count_value)));
__ jmp(&stub_call);
__ bind(&slow);
}
ToNumberStub convert_stub(isolate());
__ CallStub(&convert_stub);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(r0);
break;
case NAMED_PROPERTY:
__ str(r0, MemOperand(sp, kPointerSize));
break;
case KEYED_PROPERTY:
__ str(r0, MemOperand(sp, 2 * kPointerSize));
break;
}
}
}
__ bind(&stub_call);
__ mov(r1, r0);
__ mov(r0, Operand(Smi::FromInt(count_value)));
// Record position before stub call.
SetSourcePosition(expr->position());
BinaryOpICStub stub(isolate(), Token::ADD, NO_OVERWRITE);
CallIC(stub.GetCode(), expr->CountBinOpFeedbackId());
patch_site.EmitPatchInfo();
__ bind(&done);
// Store the value returned in r0.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
{ EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(r0);
}
// For all contexts except EffectConstant We have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r0);
}
break;
case NAMED_PROPERTY: {
__ mov(r2, Operand(prop->key()->AsLiteral()->value()));
__ pop(r1);
CallStoreIC(expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r0);
}
break;
}
case KEYED_PROPERTY: {
__ Pop(r2, r1); // r1 = key. r2 = receiver.
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r0);
}
break;
}
}
}
void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
ASSERT(!context()->IsEffect());
ASSERT(!context()->IsTest());
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->var()->IsUnallocated()) {
Comment cmnt(masm_, "[ Global variable");
__ ldr(r0, GlobalObjectOperand());
__ mov(r2, Operand(proxy->name()));
// Use a regular load, not a contextual load, to avoid a reference
// error.
CallLoadIC(NOT_CONTEXTUAL);
PrepareForBailout(expr, TOS_REG);
context()->Plug(r0);
} else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
Comment cmnt(masm_, "[ Lookup slot");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
__ mov(r0, Operand(proxy->name()));
__ Push(cp, r0);
__ CallRuntime(Runtime::kHiddenLoadContextSlotNoReferenceError, 2);
PrepareForBailout(expr, TOS_REG);
__ bind(&done);
context()->Plug(r0);
} else {
// This expression cannot throw a reference error at the top level.
VisitInDuplicateContext(expr);
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
2011-09-19 14:50:33 +00:00
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
__ JumpIfSmi(r0, if_true);
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
__ JumpIfSmi(r0, if_false);
// Check for undetectable objects => false.
__ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE);
__ b(ge, if_false);
__ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->symbol_string())) {
__ JumpIfSmi(r0, if_false);
__ CompareObjectType(r0, r0, r1, SYMBOL_TYPE);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
__ CompareRoot(r0, Heap::kTrueValueRootIndex);
__ b(eq, if_true);
__ CompareRoot(r0, Heap::kFalseValueRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (FLAG_harmony_typeof &&
String::Equals(check, factory->null_string())) {
__ CompareRoot(r0, Heap::kNullValueRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
__ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
__ b(eq, if_true);
__ JumpIfSmi(r0, if_false);
// Check for undetectable objects => true.
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
Split(ne, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->function_string())) {
__ JumpIfSmi(r0, if_false);
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CompareObjectType(r0, r0, r1, JS_FUNCTION_TYPE);
__ b(eq, if_true);
__ cmp(r1, Operand(JS_FUNCTION_PROXY_TYPE));
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->object_string())) {
__ JumpIfSmi(r0, if_false);
if (!FLAG_harmony_typeof) {
__ CompareRoot(r0, Heap::kNullValueRootIndex);
__ b(eq, if_true);
}
// Check for JS objects => true.
__ CompareObjectType(r0, r0, r1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ b(lt, if_false);
__ CompareInstanceType(r0, r1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ b(gt, if_false);
// Check for undetectable objects => false.
__ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through);
} else {
if (if_false != fall_through) __ jmp(if_false);
}
2011-09-19 14:50:33 +00:00
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetSourcePosition(expr->position());
2011-09-19 14:50:33 +00:00
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForStackValue(expr->right());
InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
// The stub returns 0 for true.
__ tst(r0, r0);
Split(eq, if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cond = CompareIC::ComputeCondition(op);
__ pop(r1);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ orr(r2, r0, Operand(r1));
patch_site.EmitJumpIfNotSmi(r2, &slow_case);
__ cmp(r1, r0);
Split(cond, if_true, if_false, NULL);
__ bind(&slow_case);
}
// Record position and call the compare IC.
SetSourcePosition(expr->position());
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
CallIC(ic, expr->CompareOperationFeedbackId());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ cmp(r0, Operand::Zero());
Split(cond, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
2011-09-19 14:50:33 +00:00
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
if (expr->op() == Token::EQ_STRICT) {
Heap::RootListIndex nil_value = nil == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ LoadRoot(r1, nil_value);
__ cmp(r0, r1);
Split(eq, if_true, if_false, fall_through);
} else {
Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
CallIC(ic, expr->CompareOperationFeedbackId());
__ cmp(r0, Operand(0));
Split(ne, if_true, if_false, fall_through);
}
2011-09-19 14:50:33 +00:00
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(r0);
}
Register FullCodeGenerator::result_register() {
return r0;
}
Register FullCodeGenerator::context_register() {
return cp;
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
__ str(value, MemOperand(fp, frame_offset));
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ ldr(dst, ContextOperand(cp, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* declaration_scope = scope()->DeclarationScope();
if (declaration_scope->is_global_scope() ||
declaration_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code. Pass a smi sentinel and let the runtime look up the empty
// function.
__ mov(ip, Operand(Smi::FromInt(0)));
} else if (declaration_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
__ ldr(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
} else {
ASSERT(declaration_scope->is_function_scope());
__ ldr(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
__ push(ip);
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
ASSERT(!result_register().is(r1));
// Store result register while executing finally block.
__ push(result_register());
// Cook return address in link register to stack (smi encoded Code* delta)
__ sub(r1, lr, Operand(masm_->CodeObject()));
__ SmiTag(r1);
// Store result register while executing finally block.
__ push(r1);
// Store pending message while executing finally block.
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(ip, Operand(pending_message_obj));
__ ldr(r1, MemOperand(ip));
__ push(r1);
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
__ mov(ip, Operand(has_pending_message));
STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
__ ldrb(r1, MemOperand(ip));
__ SmiTag(r1);
__ push(r1);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ mov(ip, Operand(pending_message_script));
__ ldr(r1, MemOperand(ip));
__ push(r1);
}
void FullCodeGenerator::ExitFinallyBlock() {
ASSERT(!result_register().is(r1));
// Restore pending message from stack.
__ pop(r1);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ mov(ip, Operand(pending_message_script));
__ str(r1, MemOperand(ip));
__ pop(r1);
__ SmiUntag(r1);
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
__ mov(ip, Operand(has_pending_message));
STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
__ strb(r1, MemOperand(ip));
__ pop(r1);
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(ip, Operand(pending_message_obj));
__ str(r1, MemOperand(ip));
// Restore result register from stack.
__ pop(r1);
// Uncook return address and return.
__ pop(result_register());
__ SmiUntag(r1);
__ add(pc, r1, Operand(masm_->CodeObject()));
}
#undef __
#define __ ACCESS_MASM(masm())
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
int* stack_depth,
int* context_length) {
// The macros used here must preserve the result register.
// Because the handler block contains the context of the finally
// code, we can restore it directly from there for the finally code
// rather than iteratively unwinding contexts via their previous
// links.
__ Drop(*stack_depth); // Down to the handler block.
if (*context_length > 0) {
// Restore the context to its dedicated register and the stack.
__ ldr(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ PopTryHandler();
__ bl(finally_entry_);
*stack_depth = 0;
*context_length = 0;
return previous_;
}
#undef __
static Address GetInterruptImmediateLoadAddress(Address pc) {
Address load_address = pc - 2 * Assembler::kInstrSize;
if (!FLAG_enable_ool_constant_pool) {
ASSERT(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(load_address)));
} else if (Assembler::IsMovT(Memory::int32_at(load_address))) {
load_address -= Assembler::kInstrSize;
ASSERT(Assembler::IsMovW(Memory::int32_at(load_address)));
} else {
ASSERT(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
}
return load_address;
}
void BackEdgeTable::PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code) {
static const int kInstrSize = Assembler::kInstrSize;
Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
Address branch_address = pc_immediate_load_address - kInstrSize;
CodePatcher patcher(branch_address, 1);
switch (target_state) {
case INTERRUPT:
{
// <decrement profiling counter>
// bpl ok
// ; load interrupt stub address into ip - either of:
// ldr ip, [pc/pp, <constant pool offset>] | movw ip, <immed low>
// | movt ip, <immed high>
// blx ip
// ok-label
// Calculate branch offet to the ok-label - this is the difference between
// the branch address and |pc| (which points at <blx ip>) plus one instr.
int branch_offset = pc + kInstrSize - branch_address;
patcher.masm()->b(branch_offset, pl);
break;
}
case ON_STACK_REPLACEMENT:
case OSR_AFTER_STACK_CHECK:
// <decrement profiling counter>
// mov r0, r0 (NOP)
// ; load on-stack replacement address into ip - either of:
// ldr ip, [pc/pp, <constant pool offset>] | movw ip, <immed low>
// | movt ip, <immed high>
// blx ip
// ok-label
patcher.masm()->nop();
break;
}
// Replace the call address.
Assembler::set_target_address_at(pc_immediate_load_address, unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, pc_immediate_load_address, replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate,
Code* unoptimized_code,
Address pc) {
static const int kInstrSize = Assembler::kInstrSize;
ASSERT(Memory::int32_at(pc - kInstrSize) == kBlxIp);
Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
Address branch_address = pc_immediate_load_address - kInstrSize;
Address interrupt_address = Assembler::target_address_at(
pc_immediate_load_address, unoptimized_code);
if (Assembler::IsBranch(Assembler::instr_at(branch_address))) {
ASSERT(interrupt_address ==
isolate->builtins()->InterruptCheck()->entry());
return INTERRUPT;
}
ASSERT(Assembler::IsNop(Assembler::instr_at(branch_address)));
if (interrupt_address ==
isolate->builtins()->OnStackReplacement()->entry()) {
return ON_STACK_REPLACEMENT;
}
ASSERT(interrupt_address ==
isolate->builtins()->OsrAfterStackCheck()->entry());
return OSR_AFTER_STACK_CHECK;
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM