v8/test/cctest/compiler/test-loop-analysis.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1033 lines
29 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/tick-counter.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/graph.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/loop-analysis.h"
#include "src/compiler/node.h"
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/verifier.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
static Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0,
0, 1, 0, 0);
static Operator kIntLt(IrOpcode::kInt32LessThan, Operator::kPure,
"Int32LessThan", 2, 0, 0, 1, 0, 0);
static Operator kStore(IrOpcode::kStore, Operator::kNoProperties, "Store", 1, 1,
1, 0, 1, 0);
static const int kNumLeafs = 4;
// A helper for all tests dealing with LoopFinder.
class LoopFinderTester : HandleAndZoneScope {
public:
LoopFinderTester()
: isolate(main_isolate()),
common(main_zone()),
graph(main_zone()),
jsgraph(main_isolate(), &graph, &common, nullptr, nullptr, nullptr),
start(graph.NewNode(common.Start(1))),
end(graph.NewNode(common.End(1), start)),
p0(graph.NewNode(common.Parameter(0), start)),
zero(jsgraph.Int32Constant(0)),
one(jsgraph.OneConstant()),
half(jsgraph.Constant(0.5)),
self(graph.NewNode(common.Int32Constant(0xAABBCCDD))),
[turbofan] Proper dead code elimination as regular reducer. The three different concerns that the ControlReducer used to deal with are now properly separated into a.) DeadCodeElimination, which is a regular AdvancedReducer, that propagates Dead via control edges, b.) CommonOperatorReducer, which does strength reduction on common operators (i.e. Branch, Phi, and friends), and c.) GraphTrimming, which removes dead->live edges from the graph. This will make it possible to run the DeadCodeElimination together with other passes that actually introduce Dead nodes, i.e. typed lowering; and it opens the door for general inlining without two stage fix point iteration. To make the DeadCodeElimination easier and more uniform, we basically reverted the introduction of DeadValue and DeadEffect, and changed the Dead operator to produce control, value and effect. Note however that this is not a requirement, but merely a way to make dead propagation easier and more uniform. We could always go back and decide to have different Dead operators if some other change requires that. Note that there are several additional opportunities for cleanup now, i.e. OSR deconstruction could be a regular reducer now, and we don't need to use TheHole as dead value marker in the GraphReducer. And we can actually run the dead code elimination together with the other passes instead of using separate passes over the graph. We will do this in follow up CLs. R=jarin@chromium.org, mstarzinger@chromium.org Review URL: https://codereview.chromium.org/1193833002 Cr-Commit-Position: refs/heads/master@{#29146}
2015-06-19 12:07:17 +00:00
dead(graph.NewNode(common.Dead())),
loop_tree(nullptr) {
graph.SetEnd(end);
graph.SetStart(start);
leaf[0] = zero;
leaf[1] = one;
leaf[2] = half;
leaf[3] = p0;
}
Isolate* isolate;
TickCounter tick_counter;
CommonOperatorBuilder common;
Graph graph;
JSGraph jsgraph;
Node* start;
Node* end;
Node* p0;
Node* zero;
Node* one;
Node* half;
Node* self;
Node* dead;
Node* leaf[kNumLeafs];
LoopTree* loop_tree;
Node* Phi(Node* a) {
return SetSelfReferences(graph.NewNode(op(1, false), a, start));
}
Node* Phi(Node* a, Node* b) {
return SetSelfReferences(graph.NewNode(op(2, false), a, b, start));
}
Node* Phi(Node* a, Node* b, Node* c) {
return SetSelfReferences(graph.NewNode(op(3, false), a, b, c, start));
}
Node* Phi(Node* a, Node* b, Node* c, Node* d) {
return SetSelfReferences(graph.NewNode(op(4, false), a, b, c, d, start));
}
Node* EffectPhi(Node* a) {
return SetSelfReferences(graph.NewNode(op(1, true), a, start));
}
Node* EffectPhi(Node* a, Node* b) {
return SetSelfReferences(graph.NewNode(op(2, true), a, b, start));
}
Node* EffectPhi(Node* a, Node* b, Node* c) {
return SetSelfReferences(graph.NewNode(op(3, true), a, b, c, start));
}
Node* EffectPhi(Node* a, Node* b, Node* c, Node* d) {
return SetSelfReferences(graph.NewNode(op(4, true), a, b, c, d, start));
}
Node* SetSelfReferences(Node* node) {
for (Edge edge : node->input_edges()) {
if (edge.to() == self) node->ReplaceInput(edge.index(), node);
}
return node;
}
const Operator* op(int count, bool effect) {
return effect ? common.EffectPhi(count)
: common.Phi(MachineRepresentation::kTagged, count);
}
Node* Return(Node* val, Node* effect, Node* control) {
Node* zero = graph.NewNode(common.Int32Constant(0));
Node* ret = graph.NewNode(common.Return(), zero, val, effect, control);
end->ReplaceInput(0, ret);
return ret;
}
LoopTree* GetLoopTree() {
if (loop_tree == nullptr) {
if (FLAG_trace_turbo_graph) {
StdoutStream{} << AsRPO(graph);
}
Zone zone(main_isolate()->allocator(), ZONE_NAME);
loop_tree = LoopFinder::BuildLoopTree(&graph, &tick_counter, &zone);
}
return loop_tree;
}
void CheckLoop(Node** header, int header_count, Node** body, int body_count) {
LoopTree* tree = GetLoopTree();
LoopTree::Loop* loop = tree->ContainingLoop(header[0]);
CHECK(loop);
CHECK(header_count == static_cast<int>(loop->HeaderSize()));
for (int i = 0; i < header_count; i++) {
// Each header node should be in the loop.
CHECK_EQ(loop, tree->ContainingLoop(header[i]));
CheckRangeContains(tree->HeaderNodes(loop), header[i]);
}
CHECK_EQ(body_count, static_cast<int>(loop->BodySize()));
// TODO(turbofan): O(n^2) set equivalence in this test.
for (int i = 0; i < body_count; i++) {
// Each body node should be contained in the loop.
CHECK(tree->Contains(loop, body[i]));
CheckRangeContains(tree->BodyNodes(loop), body[i]);
}
}
void CheckRangeContains(NodeRange range, Node* node) {
CHECK_NE(range.end(), std::find(range.begin(), range.end(), node));
}
void CheckNestedLoops(Node** chain, int chain_count) {
LoopTree* tree = GetLoopTree();
for (int i = 0; i < chain_count; i++) {
Node* header = chain[i];
// Each header should be in a loop.
LoopTree::Loop* loop = tree->ContainingLoop(header);
CHECK(loop);
// Check parentage.
LoopTree::Loop* parent =
i == 0 ? nullptr : tree->ContainingLoop(chain[i - 1]);
CHECK_EQ(parent, loop->parent());
for (int j = i - 1; j >= 0; j--) {
// This loop should be nested inside all the outer loops.
Node* outer_header = chain[j];
LoopTree::Loop* outer = tree->ContainingLoop(outer_header);
CHECK(tree->Contains(outer, header));
CHECK(!tree->Contains(loop, outer_header));
}
}
}
Zone* zone() { return main_zone(); }
};
struct While {
LoopFinderTester& t;
Node* branch;
Node* if_true;
Node* exit;
Node* loop;
While(LoopFinderTester& R, Node* cond) : t(R) {
loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
branch = t.graph.NewNode(t.common.Branch(), cond, loop);
if_true = t.graph.NewNode(t.common.IfTrue(), branch);
exit = t.graph.NewNode(t.common.IfFalse(), branch);
loop->ReplaceInput(1, if_true);
}
void chain(Node* control) { loop->ReplaceInput(0, control); }
void nest(While* that) {
that->loop->ReplaceInput(1, exit);
this->loop->ReplaceInput(0, that->if_true);
}
};
struct Counter {
Node* base;
Node* inc;
Node* phi;
Node* add;
Counter(While* w, int32_t b, int32_t k)
: base(w->t.jsgraph.Int32Constant(b)),
inc(w->t.jsgraph.Int32Constant(k)) {
Build(w);
}
Counter(While* w, Node* b, Node* k) : base(b), inc(k) { Build(w); }
void Build(While* w) {
phi = w->t.graph.NewNode(w->t.op(2, false), base, base, w->loop);
add = w->t.graph.NewNode(&kIntAdd, phi, inc);
phi->ReplaceInput(1, add);
}
};
struct StoreLoop {
Node* base;
Node* val;
Node* phi;
Node* store;
explicit StoreLoop(While* w)
: base(w->t.graph.start()), val(w->t.jsgraph.Int32Constant(13)) {
Build(w);
}
StoreLoop(While* w, Node* b, Node* v) : base(b), val(v) { Build(w); }
void Build(While* w) {
phi = w->t.graph.NewNode(w->t.op(2, true), base, base, w->loop);
store = w->t.graph.NewNode(&kStore, val, phi, w->loop);
phi->ReplaceInput(1, store);
}
};
TEST(LaLoop1) {
// One loop.
LoopFinderTester t;
While w(t, t.p0);
t.Return(t.p0, t.start, w.exit);
Node* chain[] = {w.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w.loop};
Node* body[] = {w.branch, w.if_true};
t.CheckLoop(header, 1, body, 2);
}
TEST(LaLoop1phi) {
// One loop with a simple phi.
LoopFinderTester t;
While w(t, t.p0);
Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kTagged, 2),
t.zero, t.one, w.loop);
t.Return(phi, t.start, w.exit);
Node* chain[] = {w.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w.loop, phi};
Node* body[] = {w.branch, w.if_true};
t.CheckLoop(header, 2, body, 2);
}
TEST(LaLoop1c) {
// One loop with a counter.
LoopFinderTester t;
While w(t, t.p0);
Counter c(&w, 0, 1);
t.Return(c.phi, t.start, w.exit);
Node* chain[] = {w.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w.loop, c.phi};
Node* body[] = {w.branch, w.if_true, c.add};
t.CheckLoop(header, 2, body, 3);
}
TEST(LaLoop1e) {
// One loop with an effect phi.
LoopFinderTester t;
While w(t, t.p0);
StoreLoop c(&w);
t.Return(t.p0, c.phi, w.exit);
Node* chain[] = {w.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w.loop, c.phi};
Node* body[] = {w.branch, w.if_true, c.store};
t.CheckLoop(header, 2, body, 3);
}
TEST(LaLoop1d) {
// One loop with two counters.
LoopFinderTester t;
While w(t, t.p0);
Counter c1(&w, 0, 1);
Counter c2(&w, 1, 1);
t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w.exit);
Node* chain[] = {w.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w.loop, c1.phi, c2.phi};
Node* body[] = {w.branch, w.if_true, c1.add, c2.add};
t.CheckLoop(header, 3, body, 4);
}
TEST(LaLoop2) {
// One loop following another.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
w2.chain(w1.exit);
t.Return(t.p0, t.start, w2.exit);
{
Node* chain[] = {w1.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w1.loop};
Node* body[] = {w1.branch, w1.if_true};
t.CheckLoop(header, 1, body, 2);
}
{
Node* chain[] = {w2.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w2.loop};
Node* body[] = {w2.branch, w2.if_true};
t.CheckLoop(header, 1, body, 2);
}
}
TEST(LaLoop2c) {
// One loop following another, each with counters.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
Counter c1(&w1, 0, 1);
Counter c2(&w2, 0, 1);
w2.chain(w1.exit);
t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit);
{
Node* chain[] = {w1.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w1.loop, c1.phi};
Node* body[] = {w1.branch, w1.if_true, c1.add};
t.CheckLoop(header, 2, body, 3);
}
{
Node* chain[] = {w2.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w2.loop, c2.phi};
Node* body[] = {w2.branch, w2.if_true, c2.add};
t.CheckLoop(header, 2, body, 3);
}
}
TEST(LaLoop2cc) {
// One loop following another; second loop uses phi from first.
for (int i = 0; i < 8; i++) {
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
Counter c1(&w1, 0, 1);
// various usage scenarios for the second loop.
Counter c2(&w2, i & 1 ? t.p0 : c1.phi, i & 2 ? t.p0 : c1.phi);
if (i & 3) w2.branch->ReplaceInput(0, c1.phi);
w2.chain(w1.exit);
t.Return(t.graph.NewNode(&kIntAdd, c1.phi, c2.phi), t.start, w2.exit);
{
Node* chain[] = {w1.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w1.loop, c1.phi};
Node* body[] = {w1.branch, w1.if_true, c1.add};
t.CheckLoop(header, 2, body, 3);
}
{
Node* chain[] = {w2.loop};
t.CheckNestedLoops(chain, 1);
Node* header[] = {w2.loop, c2.phi};
Node* body[] = {w2.branch, w2.if_true, c2.add};
t.CheckLoop(header, 2, body, 3);
}
}
}
TEST(LaNestedLoop1) {
// One loop nested in another.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
w2.nest(&w1);
t.Return(t.p0, t.start, w1.exit);
Node* chain[] = {w1.loop, w2.loop};
t.CheckNestedLoops(chain, 2);
Node* h1[] = {w1.loop};
Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true, w2.exit};
t.CheckLoop(h1, 1, b1, 6);
Node* h2[] = {w2.loop};
Node* b2[] = {w2.branch, w2.if_true};
t.CheckLoop(h2, 1, b2, 2);
}
TEST(LaNestedLoop1c) {
// One loop nested in another, each with a counter.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
Counter c1(&w1, 0, 1);
Counter c2(&w2, 0, 1);
w2.branch->ReplaceInput(0, c2.phi);
w2.nest(&w1);
t.Return(c1.phi, t.start, w1.exit);
Node* chain[] = {w1.loop, w2.loop};
t.CheckNestedLoops(chain, 2);
Node* h1[] = {w1.loop, c1.phi};
Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
w2.exit, c2.phi, c1.add, c2.add};
t.CheckLoop(h1, 2, b1, 9);
Node* h2[] = {w2.loop, c2.phi};
Node* b2[] = {w2.branch, w2.if_true, c2.add};
t.CheckLoop(h2, 2, b2, 3);
}
TEST(LaNestedLoop1x) {
// One loop nested in another.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
w2.nest(&w1);
const Operator* op = t.common.Phi(MachineRepresentation::kWord32, 2);
Node* p1a = t.graph.NewNode(op, t.p0, t.p0, w1.loop);
Node* p1b = t.graph.NewNode(op, t.p0, t.p0, w1.loop);
Node* p2a = t.graph.NewNode(op, p1a, t.p0, w2.loop);
Node* p2b = t.graph.NewNode(op, p1b, t.p0, w2.loop);
p1a->ReplaceInput(1, p2b);
p1b->ReplaceInput(1, p2a);
p2a->ReplaceInput(1, p2b);
p2b->ReplaceInput(1, p2a);
t.Return(t.p0, t.start, w1.exit);
Node* chain[] = {w1.loop, w2.loop};
t.CheckNestedLoops(chain, 2);
Node* h1[] = {w1.loop, p1a, p1b};
Node* b1[] = {w1.branch, w1.if_true, w2.loop, p2a,
p2b, w2.branch, w2.if_true, w2.exit};
t.CheckLoop(h1, 3, b1, 8);
Node* h2[] = {w2.loop, p2a, p2b};
Node* b2[] = {w2.branch, w2.if_true};
t.CheckLoop(h2, 3, b2, 2);
}
TEST(LaNestedLoop2) {
// Two loops nested in an outer loop.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
While w3(t, t.p0);
w2.nest(&w1);
w3.nest(&w1);
w3.chain(w2.exit);
t.Return(t.p0, t.start, w1.exit);
Node* chain1[] = {w1.loop, w2.loop};
t.CheckNestedLoops(chain1, 2);
Node* chain2[] = {w1.loop, w3.loop};
t.CheckNestedLoops(chain2, 2);
Node* h1[] = {w1.loop};
Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
t.CheckLoop(h1, 1, b1, 10);
Node* h2[] = {w2.loop};
Node* b2[] = {w2.branch, w2.if_true};
t.CheckLoop(h2, 1, b2, 2);
Node* h3[] = {w3.loop};
Node* b3[] = {w3.branch, w3.if_true};
t.CheckLoop(h3, 1, b3, 2);
}
TEST(LaNestedLoop3) {
// Three nested loops.
LoopFinderTester t;
While w1(t, t.p0);
While w2(t, t.p0);
While w3(t, t.p0);
w2.loop->ReplaceInput(0, w1.if_true);
w3.loop->ReplaceInput(0, w2.if_true);
w2.loop->ReplaceInput(1, w3.exit);
w1.loop->ReplaceInput(1, w2.exit);
t.Return(t.p0, t.start, w1.exit);
Node* chain[] = {w1.loop, w2.loop, w3.loop};
t.CheckNestedLoops(chain, 3);
Node* h1[] = {w1.loop};
Node* b1[] = {w1.branch, w1.if_true, w2.loop, w2.branch, w2.if_true,
w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
t.CheckLoop(h1, 1, b1, 10);
Node* h2[] = {w2.loop};
Node* b2[] = {w2.branch, w2.if_true, w3.loop, w3.branch, w3.if_true, w3.exit};
t.CheckLoop(h2, 1, b2, 6);
Node* h3[] = {w3.loop};
Node* b3[] = {w3.branch, w3.if_true};
t.CheckLoop(h3, 1, b3, 2);
}
TEST(LaNestedLoop3c) {
// Three nested loops with counters.
LoopFinderTester t;
While w1(t, t.p0);
Counter c1(&w1, 0, 1);
While w2(t, t.p0);
Counter c2(&w2, 0, 1);
While w3(t, t.p0);
Counter c3(&w3, 0, 1);
w2.loop->ReplaceInput(0, w1.if_true);
w3.loop->ReplaceInput(0, w2.if_true);
w2.loop->ReplaceInput(1, w3.exit);
w1.loop->ReplaceInput(1, w2.exit);
w1.branch->ReplaceInput(0, c1.phi);
w2.branch->ReplaceInput(0, c2.phi);
w3.branch->ReplaceInput(0, c3.phi);
t.Return(c1.phi, t.start, w1.exit);
Node* chain[] = {w1.loop, w2.loop, w3.loop};
t.CheckNestedLoops(chain, 3);
Node* h1[] = {w1.loop, c1.phi};
Node* b1[] = {w1.branch, w1.if_true, c1.add, c2.add, c2.add,
c2.phi, c3.phi, w2.loop, w2.branch, w2.if_true,
w2.exit, w3.loop, w3.branch, w3.if_true, w3.exit};
t.CheckLoop(h1, 2, b1, 15);
Node* h2[] = {w2.loop, c2.phi};
Node* b2[] = {w2.branch, w2.if_true, c2.add, c3.add, c3.phi,
w3.loop, w3.branch, w3.if_true, w3.exit};
t.CheckLoop(h2, 2, b2, 9);
Node* h3[] = {w3.loop, c3.phi};
Node* b3[] = {w3.branch, w3.if_true, c3.add};
t.CheckLoop(h3, 2, b3, 3);
}
TEST(LaMultipleExit1) {
const int kMaxExits = 10;
Node* merge[1 + kMaxExits];
Node* body[2 * kMaxExits];
// A single loop with {i} exits.
for (int i = 1; i < kMaxExits; i++) {
LoopFinderTester t;
Node* cond = t.p0;
int merge_count = 0;
int body_count = 0;
Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
Node* last = loop;
for (int e = 0; e < i; e++) {
Node* branch = t.graph.NewNode(t.common.Branch(), cond, last);
Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
last = if_true;
body[body_count++] = branch;
body[body_count++] = if_true;
merge[merge_count++] = exit;
}
loop->ReplaceInput(1, last); // form loop backedge.
Node* end = t.graph.NewNode(t.common.Merge(i), i, merge); // form exit.
t.graph.SetEnd(end);
Node* h[] = {loop};
t.CheckLoop(h, 1, body, body_count);
}
}
TEST(LaMultipleBackedge1) {
const int kMaxBackedges = 10;
Node* loop_inputs[1 + kMaxBackedges];
Node* body[3 * kMaxBackedges];
// A single loop with {i} backedges.
for (int i = 1; i < kMaxBackedges; i++) {
LoopFinderTester t;
for (int j = 0; j <= i; j++) loop_inputs[j] = t.start;
Node* loop = t.graph.NewNode(t.common.Loop(1 + i), 1 + i, loop_inputs);
Node* cond = t.p0;
int body_count = 0;
Node* exit = loop;
for (int b = 0; b < i; b++) {
Node* branch = t.graph.NewNode(t.common.Branch(), cond, exit);
Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
Node* if_false = t.graph.NewNode(t.common.IfFalse(), branch);
exit = if_false;
body[body_count++] = branch;
body[body_count++] = if_true;
if (b != (i - 1)) body[body_count++] = if_false;
loop->ReplaceInput(1 + b, if_true);
}
t.graph.SetEnd(exit);
Node* h[] = {loop};
t.CheckLoop(h, 1, body, body_count);
}
}
TEST(LaEdgeMatrix1) {
// Test various kinds of extra edges added to a simple loop.
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
LoopFinderTester t;
Node* p1 = t.jsgraph.Int32Constant(11);
Node* p2 = t.jsgraph.Int32Constant(22);
Node* p3 = t.jsgraph.Int32Constant(33);
Node* loop = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
Node* phi = t.graph.NewNode(
t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p1, loop);
Node* cond = t.graph.NewNode(&kIntAdd, phi, p2);
Node* branch = t.graph.NewNode(t.common.Branch(), cond, loop);
Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
loop->ReplaceInput(1, if_true);
Node* zero = t.graph.NewNode(t.common.Int32Constant(0));
Node* ret = t.graph.NewNode(t.common.Return(), zero, p3, t.start, exit);
t.graph.SetEnd(ret);
Node* choices[] = {p1, phi, cond};
p1->ReplaceUses(choices[i]);
p2->ReplaceUses(choices[j]);
p3->ReplaceUses(choices[k]);
Node* header[] = {loop, phi};
Node* body[] = {cond, branch, if_true};
t.CheckLoop(header, 2, body, 3);
}
}
}
}
void RunEdgeMatrix2(int i) {
CHECK(i >= 0 && i < 5);
for (int j = 0; j < 5; j++) {
for (int k = 0; k < 5; k++) {
LoopFinderTester t;
Node* p1 = t.jsgraph.Int32Constant(11);
Node* p2 = t.jsgraph.Int32Constant(22);
Node* p3 = t.jsgraph.Int32Constant(33);
// outer loop.
Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
Node* phi1 = t.graph.NewNode(
t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p1, loop1);
Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, t.one);
Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1);
Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1);
Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1);
// inner loop.
Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start);
Node* phi2 = t.graph.NewNode(
t.common.Phi(MachineRepresentation::kWord32, 2), t.one, p2, loop2);
Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p3);
Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2);
Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2);
Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2);
loop2->ReplaceInput(1, if_true2);
loop1->ReplaceInput(1, exit2);
Node* zero = t.graph.NewNode(t.common.Int32Constant(0));
Node* ret =
t.graph.NewNode(t.common.Return(), zero, phi1, t.start, exit1);
t.graph.SetEnd(ret);
Node* choices[] = {p1, phi1, cond1, phi2, cond2};
p1->ReplaceUses(choices[i]);
p2->ReplaceUses(choices[j]);
p3->ReplaceUses(choices[k]);
Node* header1[] = {loop1, phi1};
Node* body1[] = {cond1, branch1, if_true1, exit2, loop2,
phi2, cond2, branch2, if_true2};
t.CheckLoop(header1, 2, body1, 9);
Node* header2[] = {loop2, phi2};
Node* body2[] = {cond2, branch2, if_true2};
t.CheckLoop(header2, 2, body2, 3);
Node* chain[] = {loop1, loop2};
t.CheckNestedLoops(chain, 2);
}
}
}
TEST(LaEdgeMatrix2_0) { RunEdgeMatrix2(0); }
TEST(LaEdgeMatrix2_1) { RunEdgeMatrix2(1); }
TEST(LaEdgeMatrix2_2) { RunEdgeMatrix2(2); }
TEST(LaEdgeMatrix2_3) { RunEdgeMatrix2(3); }
TEST(LaEdgeMatrix2_4) { RunEdgeMatrix2(4); }
// Generates a triply-nested loop with extra edges between the phis and
// conditions according to the edge choice parameters.
void RunEdgeMatrix3(int c1a, int c1b, int c1c, // line break
int c2a, int c2b, int c2c, // line break
int c3a, int c3b, int c3c) { // line break
LoopFinderTester t;
Node* p1a = t.jsgraph.Int32Constant(11);
Node* p1b = t.jsgraph.Int32Constant(22);
Node* p1c = t.jsgraph.Int32Constant(33);
Node* p2a = t.jsgraph.Int32Constant(44);
Node* p2b = t.jsgraph.Int32Constant(55);
Node* p2c = t.jsgraph.Int32Constant(66);
Node* p3a = t.jsgraph.Int32Constant(77);
Node* p3b = t.jsgraph.Int32Constant(88);
Node* p3c = t.jsgraph.Int32Constant(99);
// L1 depth = 0
Node* loop1 = t.graph.NewNode(t.common.Loop(2), t.start, t.start);
Node* phi1 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2),
p1a, p1c, loop1);
Node* cond1 = t.graph.NewNode(&kIntAdd, phi1, p1b);
Node* branch1 = t.graph.NewNode(t.common.Branch(), cond1, loop1);
Node* if_true1 = t.graph.NewNode(t.common.IfTrue(), branch1);
Node* exit1 = t.graph.NewNode(t.common.IfFalse(), branch1);
// L2 depth = 1
Node* loop2 = t.graph.NewNode(t.common.Loop(2), if_true1, t.start);
Node* phi2 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2),
p2a, p2c, loop2);
Node* cond2 = t.graph.NewNode(&kIntAdd, phi2, p2b);
Node* branch2 = t.graph.NewNode(t.common.Branch(), cond2, loop2);
Node* if_true2 = t.graph.NewNode(t.common.IfTrue(), branch2);
Node* exit2 = t.graph.NewNode(t.common.IfFalse(), branch2);
// L3 depth = 2
Node* loop3 = t.graph.NewNode(t.common.Loop(2), if_true2, t.start);
Node* phi3 = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2),
p3a, p3c, loop3);
Node* cond3 = t.graph.NewNode(&kIntAdd, phi3, p3b);
Node* branch3 = t.graph.NewNode(t.common.Branch(), cond3, loop3);
Node* if_true3 = t.graph.NewNode(t.common.IfTrue(), branch3);
Node* exit3 = t.graph.NewNode(t.common.IfFalse(), branch3);
loop3->ReplaceInput(1, if_true3);
loop2->ReplaceInput(1, exit3);
loop1->ReplaceInput(1, exit2);
Node* zero = t.graph.NewNode(t.common.Int32Constant(0));
Node* ret = t.graph.NewNode(t.common.Return(), zero, phi1, t.start, exit1);
t.graph.SetEnd(ret);
// Mutate the graph according to the edge choices.
Node* o1[] = {t.one};
Node* o2[] = {t.one, phi1, cond1};
Node* o3[] = {t.one, phi1, cond1, phi2, cond2};
p1a->ReplaceUses(o1[c1a]);
p1b->ReplaceUses(o1[c1b]);
p2a->ReplaceUses(o2[c2a]);
p2b->ReplaceUses(o2[c2b]);
p3a->ReplaceUses(o3[c3a]);
p3b->ReplaceUses(o3[c3b]);
Node* l2[] = {phi1, cond1, phi2, cond2};
Node* l3[] = {phi1, cond1, phi2, cond2, phi3, cond3};
p1c->ReplaceUses(l2[c1c]);
p2c->ReplaceUses(l3[c2c]);
p3c->ReplaceUses(l3[c3c]);
// Run the tests and verify loop structure.
Node* chain[] = {loop1, loop2, loop3};
t.CheckNestedLoops(chain, 3);
Node* header1[] = {loop1, phi1};
Node* body1[] = {cond1, branch1, if_true1, exit2, loop2,
phi2, cond2, branch2, if_true2, exit3,
loop3, phi3, cond3, branch3, if_true3};
t.CheckLoop(header1, 2, body1, 15);
Node* header2[] = {loop2, phi2};
Node* body2[] = {cond2, branch2, if_true2, exit3, loop3,
phi3, cond3, branch3, if_true3};
t.CheckLoop(header2, 2, body2, 9);
Node* header3[] = {loop3, phi3};
Node* body3[] = {cond3, branch3, if_true3};
t.CheckLoop(header3, 2, body3, 3);
}
// Runs all combinations with a fixed {i}.
static void RunEdgeMatrix3_i(int i) {
for (int a = 0; a < 1; a++) {
for (int b = 0; b < 1; b++) {
for (int c = 0; c < 4; c++) {
for (int d = 0; d < 3; d++) {
for (int e = 0; e < 3; e++) {
for (int f = 0; f < 6; f++) {
for (int g = 0; g < 5; g++) {
for (int h = 0; h < 5; h++) {
RunEdgeMatrix3(a, b, c, d, e, f, g, h, i);
}
}
}
}
}
}
}
}
}
// Test all possible legal triply-nested loops with conditions and phis.
TEST(LaEdgeMatrix3_0) { RunEdgeMatrix3_i(0); }
TEST(LaEdgeMatrix3_1) { RunEdgeMatrix3_i(1); }
TEST(LaEdgeMatrix3_2) { RunEdgeMatrix3_i(2); }
TEST(LaEdgeMatrix3_3) { RunEdgeMatrix3_i(3); }
TEST(LaEdgeMatrix3_4) { RunEdgeMatrix3_i(4); }
TEST(LaEdgeMatrix3_5) { RunEdgeMatrix3_i(5); }
static void RunManyChainedLoops_i(int count) {
LoopFinderTester t;
Node** nodes = t.zone()->NewArray<Node*>(count * 4);
Node* k11 = t.jsgraph.Int32Constant(11);
Node* k12 = t.jsgraph.Int32Constant(12);
Node* last = t.start;
// Build loops.
for (int i = 0; i < count; i++) {
Node* loop = t.graph.NewNode(t.common.Loop(2), last, t.start);
Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2),
k11, k12, loop);
Node* branch = t.graph.NewNode(t.common.Branch(), phi, loop);
Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
loop->ReplaceInput(1, if_true);
nodes[i * 4 + 0] = loop;
nodes[i * 4 + 1] = phi;
nodes[i * 4 + 2] = branch;
nodes[i * 4 + 3] = if_true;
last = exit;
}
Node* zero = t.graph.NewNode(t.common.Int32Constant(0));
Node* ret = t.graph.NewNode(t.common.Return(), zero, t.p0, t.start, last);
t.graph.SetEnd(ret);
// Verify loops.
for (int i = 0; i < count; i++) {
t.CheckLoop(nodes + i * 4, 2, nodes + i * 4 + 2, 2);
}
}
static void RunManyNestedLoops_i(int count) {
LoopFinderTester t;
Node** nodes = t.zone()->NewArray<Node*>(count * 5);
Node* k11 = t.jsgraph.Int32Constant(11);
Node* k12 = t.jsgraph.Int32Constant(12);
Node* outer = nullptr;
Node* entry = t.start;
// Build loops.
Node* zero = t.graph.NewNode(t.common.Int32Constant(0));
for (int i = 0; i < count; i++) {
Node* loop = t.graph.NewNode(t.common.Loop(2), entry, t.start);
Node* phi = t.graph.NewNode(t.common.Phi(MachineRepresentation::kWord32, 2),
k11, k12, loop);
Node* branch = t.graph.NewNode(t.common.Branch(), phi, loop);
Node* if_true = t.graph.NewNode(t.common.IfTrue(), branch);
Node* exit = t.graph.NewNode(t.common.IfFalse(), branch);
nodes[i * 5 + 0] = exit; // outside
nodes[i * 5 + 1] = loop; // header
nodes[i * 5 + 2] = phi; // header
nodes[i * 5 + 3] = branch; // body
nodes[i * 5 + 4] = if_true; // body
if (outer != nullptr) {
// inner loop.
outer->ReplaceInput(1, exit);
} else {
// outer loop.
Node* ret = t.graph.NewNode(t.common.Return(), zero, t.p0, t.start, exit);
t.graph.SetEnd(ret);
}
outer = loop;
entry = if_true;
}
outer->ReplaceInput(1, entry); // innermost loop.
// Verify loops.
for (int i = 0; i < count; i++) {
int k = i * 5;
t.CheckLoop(nodes + k + 1, 2, nodes + k + 3, count * 5 - k - 3);
}
}
TEST(LaManyChained_30) { RunManyChainedLoops_i(30); }
TEST(LaManyChained_31) { RunManyChainedLoops_i(31); }
TEST(LaManyChained_32) { RunManyChainedLoops_i(32); }
TEST(LaManyChained_33) { RunManyChainedLoops_i(33); }
TEST(LaManyChained_34) { RunManyChainedLoops_i(34); }
TEST(LaManyChained_62) { RunManyChainedLoops_i(62); }
TEST(LaManyChained_63) { RunManyChainedLoops_i(63); }
TEST(LaManyChained_64) { RunManyChainedLoops_i(64); }
TEST(LaManyNested_30) { RunManyNestedLoops_i(30); }
TEST(LaManyNested_31) { RunManyNestedLoops_i(31); }
TEST(LaManyNested_32) { RunManyNestedLoops_i(32); }
TEST(LaManyNested_33) { RunManyNestedLoops_i(33); }
TEST(LaManyNested_34) { RunManyNestedLoops_i(34); }
TEST(LaManyNested_62) { RunManyNestedLoops_i(62); }
TEST(LaManyNested_63) { RunManyNestedLoops_i(63); }
TEST(LaManyNested_64) { RunManyNestedLoops_i(64); }
TEST(LaPhiTangle) { LoopFinderTester t; }
} // namespace compiler
} // namespace internal
} // namespace v8