Revert r1900, r1897 and r1895 which are all gc changes. The changes

to the page iterator leads to occasional crashes in tests.
Review URL: http://codereview.chromium.org/113262

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1915 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
ager@chromium.org 2009-05-12 13:02:15 +00:00
parent 18f69a7171
commit 00addb277a
4 changed files with 92 additions and 142 deletions

View File

@ -538,7 +538,7 @@ class ScavengeVisitor: public ObjectVisitor {
// Shared state read by the scavenge collector and set by ScavengeObject. // Shared state read by the scavenge collector and set by ScavengeObject.
static Address promoted_rear = NULL; static Address promoted_top = NULL;
#ifdef DEBUG #ifdef DEBUG
@ -554,34 +554,24 @@ class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
} }
} }
}; };
static void VerifyNonPointerSpacePointers() {
// Verify that there are no pointers to new space in spaces where we
// do not expect them.
VerifyNonPointerSpacePointersVisitor v;
HeapObjectIterator code_it(Heap::code_space());
while (code_it.has_next()) {
HeapObject* object = code_it.next();
if (object->IsCode()) {
Code::cast(object)->ConvertICTargetsFromAddressToObject();
object->Iterate(&v);
Code::cast(object)->ConvertICTargetsFromObjectToAddress();
} else {
// If we find non-code objects in code space (e.g., free list
// nodes) we want to verify them as well.
object->Iterate(&v);
}
}
HeapObjectIterator data_it(Heap::old_data_space());
while (data_it.has_next()) data_it.next()->Iterate(&v);
}
#endif #endif
void Heap::Scavenge() { void Heap::Scavenge() {
#ifdef DEBUG #ifdef DEBUG
if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers(); if (FLAG_enable_slow_asserts) {
VerifyNonPointerSpacePointersVisitor v;
HeapObjectIterator it(code_space_);
while (it.has_next()) {
HeapObject* object = it.next();
if (object->IsCode()) {
Code::cast(object)->ConvertICTargetsFromAddressToObject();
}
object->Iterate(&v);
if (object->IsCode()) {
Code::cast(object)->ConvertICTargetsFromObjectToAddress();
}
}
}
#endif #endif
gc_state_ = SCAVENGE; gc_state_ = SCAVENGE;
@ -606,70 +596,72 @@ void Heap::Scavenge() {
new_space_.Flip(); new_space_.Flip();
new_space_.ResetAllocationInfo(); new_space_.ResetAllocationInfo();
// We need to sweep newly copied objects which can be either in the // We need to sweep newly copied objects which can be in either the to space
// to space or promoted to the old generation. For to-space // or the old space. For to space objects, we use a mark. Newly copied
// objects, we treat the bottom of the to space as a queue. Newly // objects lie between the mark and the allocation top. For objects
// copied and unswept objects lie between a 'front' mark and the // promoted to old space, we write their addresses downward from the top of
// allocation pointer. // the new space. Sweeping newly promoted objects requires an allocation
// pointer and a mark. Note that the allocation pointer 'top' actually
// moves downward from the high address in the to space.
// //
// Promoted objects can go into various old-generation spaces, and // There is guaranteed to be enough room at the top of the to space for the
// can be allocated internally in the spaces (from the free list). // addresses of promoted objects: every object promoted frees up its size in
// We treat the top of the to space as a queue of addresses of // bytes from the top of the new space, and objects are at least one pointer
// promoted objects. The addresses of newly promoted and unswept // in size. Using the new space to record promoted addresses makes the
// objects lie between a 'front' mark and a 'rear' mark that is // scavenge collector agnostic to the allocation strategy (eg, linear or
// updated as a side effect of promoting an object. // free-list) used in old space.
// Address new_mark = new_space_.ToSpaceLow();
// There is guaranteed to be enough room at the top of the to space Address promoted_mark = new_space_.ToSpaceHigh();
// for the addresses of promoted objects: every object promoted promoted_top = new_space_.ToSpaceHigh();
// frees up its size in bytes from the top of the new space, and
// objects are at least one pointer in size.
Address new_space_front = new_space_.ToSpaceLow();
Address promoted_front = new_space_.ToSpaceHigh();
promoted_rear = new_space_.ToSpaceHigh();
ScavengeVisitor scavenge_visitor; ScavengeVisitor scavenge_visitor;
// Copy roots. // Copy roots.
IterateRoots(&scavenge_visitor); IterateRoots(&scavenge_visitor);
// Copy objects reachable from weak pointers. // Copy objects reachable from the old generation. By definition, there
GlobalHandles::IterateWeakRoots(&scavenge_visitor); // are no intergenerational pointers in code or data spaces.
// Copy objects reachable from the old generation. By definition,
// there are no intergenerational pointers in code or data spaces.
IterateRSet(old_pointer_space_, &ScavengePointer); IterateRSet(old_pointer_space_, &ScavengePointer);
IterateRSet(map_space_, &ScavengePointer); IterateRSet(map_space_, &ScavengePointer);
lo_space_->IterateRSet(&ScavengePointer); lo_space_->IterateRSet(&ScavengePointer);
do { bool has_processed_weak_pointers = false;
ASSERT(new_space_front <= new_space_.top());
ASSERT(promoted_front >= promoted_rear);
// The addresses new_space_front and new_space_.top() define a while (true) {
// queue of unprocessed copied objects. Process them until the ASSERT(new_mark <= new_space_.top());
// queue is empty. ASSERT(promoted_mark >= promoted_top);
while (new_space_front < new_space_.top()) {
HeapObject* object = HeapObject::FromAddress(new_space_front); // Copy objects reachable from newly copied objects.
object->Iterate(&scavenge_visitor); while (new_mark < new_space_.top() || promoted_mark > promoted_top) {
new_space_front += object->Size(); // Sweep newly copied objects in the to space. The allocation pointer
// can change during sweeping.
Address previous_top = new_space_.top();
SemiSpaceIterator new_it(new_space(), new_mark);
while (new_it.has_next()) {
new_it.next()->Iterate(&scavenge_visitor);
} }
new_mark = previous_top;
// The addresses promoted_front and promoted_rear define a queue // Sweep newly copied objects in the old space. The promotion 'top'
// of unprocessed addresses of promoted objects. Process them // pointer could change during sweeping.
// until the queue is empty. previous_top = promoted_top;
while (promoted_front > promoted_rear) { for (Address current = promoted_mark - kPointerSize;
promoted_front -= kPointerSize; current >= previous_top;
HeapObject* object = current -= kPointerSize) {
HeapObject::cast(Memory::Object_at(promoted_front)); HeapObject* object = HeapObject::cast(Memory::Object_at(current));
object->Iterate(&scavenge_visitor); object->Iterate(&scavenge_visitor);
UpdateRSet(object); UpdateRSet(object);
} }
promoted_mark = previous_top;
}
// Take another spin if there are now unswept objects in new space if (has_processed_weak_pointers) break; // We are done.
// (there are currently no more unswept promoted objects). // Copy objects reachable from weak pointers.
} while (new_space_front < new_space_.top()); GlobalHandles::IterateWeakRoots(&scavenge_visitor);
has_processed_weak_pointers = true;
}
// Set age mark. // Set age mark.
new_space_.set_age_mark(new_space_.top()); new_space_.set_age_mark(new_mark);
LOG(ResourceEvent("scavenge", "end")); LOG(ResourceEvent("scavenge", "end"));
@ -890,8 +882,8 @@ void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
if (target_space == Heap::old_pointer_space_) { if (target_space == Heap::old_pointer_space_) {
// Record the object's address at the top of the to space, to allow // Record the object's address at the top of the to space, to allow
// it to be swept by the scavenger. // it to be swept by the scavenger.
promoted_rear -= kPointerSize; promoted_top -= kPointerSize;
Memory::Object_at(promoted_rear) = *p; Memory::Object_at(promoted_top) = *p;
} else { } else {
#ifdef DEBUG #ifdef DEBUG
// Objects promoted to the data space should not have pointers to // Objects promoted to the data space should not have pointers to

View File

@ -64,16 +64,15 @@ HeapObject* HeapObjectIterator::next() {
// PageIterator // PageIterator
bool PageIterator::has_next() { bool PageIterator::has_next() {
return prev_page_ != stop_page_; return cur_page_ != stop_page_;
} }
Page* PageIterator::next() { Page* PageIterator::next() {
ASSERT(has_next()); ASSERT(has_next());
prev_page_ = (prev_page_ == NULL) Page* result = cur_page_;
? space_->first_page_ cur_page_ = cur_page_->next_page();
: prev_page_->next_page(); return result;
return prev_page_;
} }

View File

@ -111,17 +111,17 @@ void HeapObjectIterator::Verify() {
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// PageIterator // PageIterator
PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) { PageIterator::PageIterator(PagedSpace* space, Mode mode) {
prev_page_ = NULL; cur_page_ = space->first_page_;
switch (mode) { switch (mode) {
case PAGES_IN_USE: case PAGES_IN_USE:
stop_page_ = space->AllocationTopPage(); stop_page_ = space->AllocationTopPage()->next_page();
break; break;
case PAGES_USED_BY_MC: case PAGES_USED_BY_MC:
stop_page_ = space->MCRelocationTopPage(); stop_page_ = space->MCRelocationTopPage()->next_page();
break; break;
case ALL_PAGES: case ALL_PAGES:
stop_page_ = space->last_page_; stop_page_ = Page::FromAddress(NULL);
break; break;
default: default:
UNREACHABLE(); UNREACHABLE();
@ -496,11 +496,8 @@ bool PagedSpace::Setup(Address start, size_t size) {
accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
ASSERT(Capacity() <= max_capacity_); ASSERT(Capacity() <= max_capacity_);
// Sequentially initialize remembered sets in the newly allocated
// pages and cache the current last page in the space.
for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
p->ClearRSet(); p->ClearRSet();
last_page_ = p;
} }
// Use first_page_ for allocation. // Use first_page_ for allocation.
@ -679,11 +676,9 @@ bool PagedSpace::Expand(Page* last_page) {
MemoryAllocator::SetNextPage(last_page, p); MemoryAllocator::SetNextPage(last_page, p);
// Sequentially clear remembered set of new pages and and cache the // Clear remembered set of new pages.
// new last page in the space.
while (p->is_valid()) { while (p->is_valid()) {
p->ClearRSet(); p->ClearRSet();
last_page_ = p;
p = p->next_page(); p = p->next_page();
} }
@ -728,12 +723,10 @@ void PagedSpace::Shrink() {
Page* p = MemoryAllocator::FreePages(last_page_to_keep->next_page()); Page* p = MemoryAllocator::FreePages(last_page_to_keep->next_page());
MemoryAllocator::SetNextPage(last_page_to_keep, p); MemoryAllocator::SetNextPage(last_page_to_keep, p);
// Since pages are only freed in whole chunks, we may have kept more // Since pages are only freed in whole chunks, we may have kept more than
// than pages_to_keep. Count the extra pages and cache the new last // pages_to_keep.
// page in the space.
while (p->is_valid()) { while (p->is_valid()) {
pages_to_keep++; pages_to_keep++;
last_page_ = p;
p = p->next_page(); p = p->next_page();
} }

View File

@ -511,22 +511,11 @@ class ObjectIterator : public Malloced {
// //
// A HeapObjectIterator iterates objects from a given address to the // A HeapObjectIterator iterates objects from a given address to the
// top of a space. The given address must be below the current // top of a space. The given address must be below the current
// allocation pointer (space top). There are some caveats. // allocation pointer (space top). If the space top changes during
// // iteration (because of allocating new objects), the iterator does
// (1) If the space top changes upward during iteration (because of // not iterate new objects. The caller function must create a new
// allocating new objects), the iterator does not iterate objects
// above the original space top. The caller must create a new
// iterator starting from the old top in order to visit these new // iterator starting from the old top in order to visit these new
// objects. // objects. Heap::Scavenage() is such an example.
//
// (2) If new objects are allocated below the original allocation top
// (e.g., free-list allocation in paged spaces), the new objects
// may or may not be iterated depending on their position with
// respect to the current point of iteration.
//
// (3) The space top should not change downward during iteration,
// otherwise the iterator will return not-necessarily-valid
// objects.
class HeapObjectIterator: public ObjectIterator { class HeapObjectIterator: public ObjectIterator {
public: public:
@ -570,35 +559,17 @@ class HeapObjectIterator: public ObjectIterator {
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// A PageIterator iterates the pages in a paged space. // A PageIterator iterates pages in a space.
// //
// The PageIterator class provides three modes for iterating pages in a space: // The PageIterator class provides three modes for iterating pages in a space:
// PAGES_IN_USE iterates pages containing allocated objects. // PAGES_IN_USE iterates pages that are in use by the allocator;
// PAGES_USED_BY_MC iterates pages that hold relocated objects during a // PAGES_USED_BY_GC iterates pages that hold relocated objects during a
// mark-compact collection. // mark-compact collection;
// ALL_PAGES iterates all pages in the space. // ALL_PAGES iterates all pages in the space.
//
// There are some caveats.
//
// (1) If the space expands during iteration, new pages will not be
// returned by the iterator in any mode.
//
// (2) If new objects are allocated during iteration, they will appear
// in pages returned by the iterator. Allocation may cause the
// allocation pointer or MC allocation pointer in the last page to
// change between constructing the iterator and iterating the last
// page.
//
// (3) The space should not shrink during iteration, otherwise the
// iterator will return deallocated pages.
class PageIterator BASE_EMBEDDED { class PageIterator BASE_EMBEDDED {
public: public:
enum Mode { enum Mode {PAGES_IN_USE, PAGES_USED_BY_MC, ALL_PAGES};
PAGES_IN_USE,
PAGES_USED_BY_MC,
ALL_PAGES
};
PageIterator(PagedSpace* space, Mode mode); PageIterator(PagedSpace* space, Mode mode);
@ -606,9 +577,8 @@ class PageIterator BASE_EMBEDDED {
inline Page* next(); inline Page* next();
private: private:
PagedSpace* space_; Page* cur_page_; // next page to return
Page* prev_page_; // Previous page returned. Page* stop_page_; // page where to stop
Page* stop_page_; // Page to stop at (last page returned by the iterator).
}; };
@ -839,10 +809,6 @@ class PagedSpace : public Space {
// The first page in this space. // The first page in this space.
Page* first_page_; Page* first_page_;
// The last page in this space. Initially set in Setup, updated in
// Expand and Shrink.
Page* last_page_;
// Normal allocation information. // Normal allocation information.
AllocationInfo allocation_info_; AllocationInfo allocation_info_;