Add safe numerics classes, imported from Chromium.

Not used for anything yet.

R=jochen@chromium.org

Review URL: https://codereview.chromium.org/336183003

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21883 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
jkummerow@chromium.org 2014-06-18 11:01:54 +00:00
parent 9ad39a8043
commit 01dde7513c
6 changed files with 1102 additions and 0 deletions

View File

@ -974,6 +974,10 @@ source_set("v8_libbase") {
"src/base/macros.h",
"src/base/once.cc",
"src/base/once.h",
"src/base/safe_conversions.h",
"src/base/safe_conversions_impl.h",
"src/base/safe_math.h",
"src/base/safe_math_impl.h",
"src/base/win32-headers.h",
]

View File

@ -0,0 +1,67 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Slightly adapted for inclusion in V8.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_BASE_SAFE_CONVERSIONS_H_
#define V8_BASE_SAFE_CONVERSIONS_H_
#include <limits>
#include "src/base/safe_conversions_impl.h"
namespace v8 {
namespace base {
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
inline bool IsValueInRangeForNumericType(Src value) {
return internal::DstRangeRelationToSrcRange<Dst>(value) ==
internal::RANGE_VALID;
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst, typename Src>
inline Dst checked_cast(Src value) {
CHECK(IsValueInRangeForNumericType<Dst>(value));
return static_cast<Dst>(value);
}
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate rather than overflow or
// underflow. NaN assignment to an integral will trigger a CHECK condition.
template <typename Dst, typename Src>
inline Dst saturated_cast(Src value) {
// Optimization for floating point values, which already saturate.
if (std::numeric_limits<Dst>::is_iec559)
return static_cast<Dst>(value);
switch (internal::DstRangeRelationToSrcRange<Dst>(value)) {
case internal::RANGE_VALID:
return static_cast<Dst>(value);
case internal::RANGE_UNDERFLOW:
return std::numeric_limits<Dst>::min();
case internal::RANGE_OVERFLOW:
return std::numeric_limits<Dst>::max();
// Should fail only on attempting to assign NaN to a saturated integer.
case internal::RANGE_INVALID:
CHECK(false);
return std::numeric_limits<Dst>::max();
}
UNREACHABLE();
return static_cast<Dst>(value);
}
} // namespace base
} // namespace v8
#endif // V8_BASE_SAFE_CONVERSIONS_H_

View File

@ -0,0 +1,220 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Slightly adapted for inclusion in V8.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_BASE_SAFE_CONVERSIONS_IMPL_H_
#define V8_BASE_SAFE_CONVERSIONS_IMPL_H_
#include <limits>
#include "src/base/macros.h"
namespace v8 {
namespace base {
namespace internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute one by adding one to the number of non-sign bits. This allows
// for accurate range comparisons between floating point and integer types.
template <typename NumericType>
struct MaxExponent {
static const int value = std::numeric_limits<NumericType>::is_iec559
? std::numeric_limits<NumericType>::max_exponent
: (sizeof(NumericType) * 8 + 1 -
std::numeric_limits<NumericType>::is_signed);
};
enum IntegerRepresentation {
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
};
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::min() >= numeric_limits<Dst>::min() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation {
NUMERIC_RANGE_NOT_CONTAINED,
NUMERIC_RANGE_CONTAINED
};
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
template <
typename Dst,
typename Src,
IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign =
std::numeric_limits<Src>::is_signed
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED >
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
// larger.
template <typename Dst, typename Src, IntegerRepresentation Sign>
struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value >= MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value > MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED> {
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
enum RangeConstraint {
RANGE_VALID = 0x0, // Value can be represented by the destination type.
RANGE_UNDERFLOW = 0x1, // Value would overflow.
RANGE_OVERFLOW = 0x2, // Value would underflow.
RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN).
};
// Helper function for coercing an int back to a RangeContraint.
inline RangeConstraint GetRangeConstraint(int integer_range_constraint) {
// TODO(jochen/jkummerow): Re-enable this when checks.h is available in base.
// ASSERT(integer_range_constraint >= RANGE_VALID &&
// integer_range_constraint <= RANGE_INVALID);
return static_cast<RangeConstraint>(integer_range_constraint);
}
// This function creates a RangeConstraint from an upper and lower bound
// check by taking advantage of the fact that only NaN can be out of range in
// both directions at once.
inline RangeConstraint GetRangeConstraint(bool is_in_upper_bound,
bool is_in_lower_bound) {
return GetRangeConstraint((is_in_upper_bound ? 0 : RANGE_OVERFLOW) |
(is_in_lower_bound ? 0 : RANGE_UNDERFLOW));
}
template <
typename Dst,
typename Src,
IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
NumericRangeRepresentation DstRange =
StaticDstRangeRelationToSrcRange<Dst, Src>::value >
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Dst range is statically determined to contain Src: Nothing to check.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
DstSign,
SrcSign,
NUMERIC_RANGE_CONTAINED> {
static RangeConstraint Check(Src value) { return RANGE_VALID; }
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded.
template <typename Dst, typename Src>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static RangeConstraint Check(Src value) {
return std::numeric_limits<Dst>::is_iec559
? GetRangeConstraint(value <= std::numeric_limits<Dst>::max(),
value >= -std::numeric_limits<Dst>::max())
: GetRangeConstraint(value <= std::numeric_limits<Dst>::max(),
value >= std::numeric_limits<Dst>::min());
}
};
// Unsigned to unsigned narrowing: Only the upper boundary can be exceeded.
template <typename Dst, typename Src>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static RangeConstraint Check(Src value) {
return GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), true);
}
};
// Unsigned to signed: The upper boundary may be exceeded.
template <typename Dst, typename Src>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static RangeConstraint Check(Src value) {
return sizeof(Dst) > sizeof(Src)
? RANGE_VALID
: GetRangeConstraint(
value <= static_cast<Src>(std::numeric_limits<Dst>::max()),
true);
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary.
template <typename Dst, typename Src>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static RangeConstraint Check(Src value) {
return (MaxExponent<Dst>::value >= MaxExponent<Src>::value)
? GetRangeConstraint(true, value >= static_cast<Src>(0))
: GetRangeConstraint(
value <= static_cast<Src>(std::numeric_limits<Dst>::max()),
value >= static_cast<Src>(0));
}
};
template <typename Dst, typename Src>
inline RangeConstraint DstRangeRelationToSrcRange(Src value) {
// Both source and destination must be numeric.
STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
STATIC_ASSERT(std::numeric_limits<Dst>::is_specialized);
return DstRangeRelationToSrcRangeImpl<Dst, Src>::Check(value);
}
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_BASE_SAFE_CONVERSIONS_IMPL_H_

276
src/base/safe_math.h Normal file
View File

@ -0,0 +1,276 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Slightly adapted for inclusion in V8.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_BASE_SAFE_MATH_H_
#define V8_BASE_SAFE_MATH_H_
#include "src/base/safe_math_impl.h"
namespace v8 {
namespace base {
namespace internal {
// CheckedNumeric implements all the logic and operators for detecting integer
// boundary conditions such as overflow, underflow, and invalid conversions.
// The CheckedNumeric type implicitly converts from floating point and integer
// data types, and contains overloads for basic arithmetic operations (i.e.: +,
// -, *, /, %).
//
// The following methods convert from CheckedNumeric to standard numeric values:
// IsValid() - Returns true if the underlying numeric value is valid (i.e. has
// has not wrapped and is not the result of an invalid conversion).
// ValueOrDie() - Returns the underlying value. If the state is not valid this
// call will crash on a CHECK.
// ValueOrDefault() - Returns the current value, or the supplied default if the
// state is not valid.
// ValueFloating() - Returns the underlying floating point value (valid only
// only for floating point CheckedNumeric types).
//
// Bitwise operations are explicitly not supported, because correct
// handling of some cases (e.g. sign manipulation) is ambiguous. Comparison
// operations are explicitly not supported because they could result in a crash
// on a CHECK condition. You should use patterns like the following for these
// operations:
// Bitwise operation:
// CheckedNumeric<int> checked_int = untrusted_input_value;
// int x = checked_int.ValueOrDefault(0) | kFlagValues;
// Comparison:
// CheckedNumeric<size_t> checked_size;
// CheckedNumeric<int> checked_size = untrusted_input_value;
// checked_size = checked_size + HEADER LENGTH;
// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size)
// Do stuff...
template <typename T>
class CheckedNumeric {
public:
typedef T type;
CheckedNumeric() {}
// Copy constructor.
template <typename Src>
CheckedNumeric(const CheckedNumeric<Src>& rhs)
: state_(rhs.ValueUnsafe(), rhs.validity()) {}
template <typename Src>
CheckedNumeric(Src value, RangeConstraint validity)
: state_(value, validity) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to CheckedNumerics to make them easier to use.
template <typename Src>
CheckedNumeric(Src value) // NOLINT
: state_(value) {
// Argument must be numeric.
STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
}
// IsValid() is the public API to test if a CheckedNumeric is currently valid.
bool IsValid() const { return validity() == RANGE_VALID; }
// ValueOrDie() The primary accessor for the underlying value. If the current
// state is not valid it will CHECK and crash.
T ValueOrDie() const {
CHECK(IsValid());
return state_.value();
}
// ValueOrDefault(T default_value) A convenience method that returns the
// current value if the state is valid, and the supplied default_value for
// any other state.
T ValueOrDefault(T default_value) const {
return IsValid() ? state_.value() : default_value;
}
// ValueFloating() - Since floating point values include their validity state,
// we provide an easy method for extracting them directly, without a risk of
// crashing on a CHECK.
T ValueFloating() const {
// Argument must be a floating-point value.
STATIC_ASSERT(std::numeric_limits<T>::is_iec559);
return CheckedNumeric<T>::cast(*this).ValueUnsafe();
}
// validity() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now for
// tests and to avoid a big matrix of friend operator overloads. But the
// values it returns are likely to change in the future.
// Returns: current validity state (i.e. valid, overflow, underflow, nan).
// TODO(jschuh): crbug.com/332611 Figure out and implement semantics for
// saturation/wrapping so we can expose this state consistently and implement
// saturated arithmetic.
RangeConstraint validity() const { return state_.validity(); }
// ValueUnsafe() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now
// for tests and to avoid a big matrix of friend operator overloads. But the
// values it returns are likely to change in the future.
// Returns: the raw numeric value, regardless of the current state.
// TODO(jschuh): crbug.com/332611 Figure out and implement semantics for
// saturation/wrapping so we can expose this state consistently and implement
// saturated arithmetic.
T ValueUnsafe() const { return state_.value(); }
// Prototypes for the supported arithmetic operator overloads.
template <typename Src> CheckedNumeric& operator+=(Src rhs);
template <typename Src> CheckedNumeric& operator-=(Src rhs);
template <typename Src> CheckedNumeric& operator*=(Src rhs);
template <typename Src> CheckedNumeric& operator/=(Src rhs);
template <typename Src> CheckedNumeric& operator%=(Src rhs);
CheckedNumeric operator-() const {
RangeConstraint validity;
T value = CheckedNeg(state_.value(), &validity);
// Negation is always valid for floating point.
if (std::numeric_limits<T>::is_iec559)
return CheckedNumeric<T>(value);
validity = GetRangeConstraint(state_.validity() | validity);
return CheckedNumeric<T>(value, validity);
}
CheckedNumeric Abs() const {
RangeConstraint validity;
T value = CheckedAbs(state_.value(), &validity);
// Absolute value is always valid for floating point.
if (std::numeric_limits<T>::is_iec559)
return CheckedNumeric<T>(value);
validity = GetRangeConstraint(state_.validity() | validity);
return CheckedNumeric<T>(value, validity);
}
CheckedNumeric& operator++() {
*this += 1;
return *this;
}
CheckedNumeric operator++(int) {
CheckedNumeric value = *this;
*this += 1;
return value;
}
CheckedNumeric& operator--() {
*this -= 1;
return *this;
}
CheckedNumeric operator--(int) {
CheckedNumeric value = *this;
*this -= 1;
return value;
}
// These static methods behave like a convenience cast operator targeting
// the desired CheckedNumeric type. As an optimization, a reference is
// returned when Src is the same type as T.
template <typename Src>
static CheckedNumeric<T> cast(
Src u,
typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
0) {
return u;
}
template <typename Src>
static CheckedNumeric<T> cast(
const CheckedNumeric<Src>& u,
typename enable_if<!is_same<Src, T>::value, int>::type = 0) {
return u;
}
static const CheckedNumeric<T>& cast(const CheckedNumeric<T>& u) { return u; }
private:
CheckedNumericState<T> state_;
};
// This is the boilerplate for the standard arithmetic operator overloads. A
// macro isn't the prettiest solution, but it beats rewriting these five times.
// Some details worth noting are:
// * We apply the standard arithmetic promotions.
// * We skip range checks for floating points.
// * We skip range checks for destination integers with sufficient range.
// TODO(jschuh): extract these out into templates.
#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \
/* Binary arithmetic operator for CheckedNumerics of the same type. */ \
template <typename T> \
CheckedNumeric<typename ArithmeticPromotion<T>::type> operator OP( \
const CheckedNumeric<T>& lhs, const CheckedNumeric<T>& rhs) { \
typedef typename ArithmeticPromotion<T>::type Promotion; \
/* Floating point always takes the fast path */ \
if (std::numeric_limits<T>::is_iec559) \
return CheckedNumeric<T>(lhs.ValueUnsafe() OP rhs.ValueUnsafe()); \
if (IsIntegerArithmeticSafe<Promotion, T, T>::value) \
return CheckedNumeric<Promotion>( \
lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \
GetRangeConstraint(rhs.validity() | lhs.validity())); \
RangeConstraint validity = RANGE_VALID; \
T result = Checked##NAME(static_cast<Promotion>(lhs.ValueUnsafe()), \
static_cast<Promotion>(rhs.ValueUnsafe()), \
&validity); \
return CheckedNumeric<Promotion>( \
result, \
GetRangeConstraint(validity | lhs.validity() | rhs.validity())); \
} \
/* Assignment arithmetic operator implementation from CheckedNumeric. */ \
template <typename T> \
template <typename Src> \
CheckedNumeric<T>& CheckedNumeric<T>::operator COMPOUND_OP(Src rhs) { \
*this = CheckedNumeric<T>::cast(*this) OP CheckedNumeric<Src>::cast(rhs); \
return *this; \
} \
/* Binary arithmetic operator for CheckedNumeric of different type. */ \
template <typename T, typename Src> \
CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \
const CheckedNumeric<Src>& lhs, const CheckedNumeric<T>& rhs) { \
typedef typename ArithmeticPromotion<T, Src>::type Promotion; \
if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \
return CheckedNumeric<Promotion>( \
lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \
GetRangeConstraint(rhs.validity() | lhs.validity())); \
return CheckedNumeric<Promotion>::cast(lhs) \
OP CheckedNumeric<Promotion>::cast(rhs); \
} \
/* Binary arithmetic operator for left CheckedNumeric and right numeric. */ \
template <typename T, typename Src> \
CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \
const CheckedNumeric<T>& lhs, Src rhs) { \
typedef typename ArithmeticPromotion<T, Src>::type Promotion; \
if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \
return CheckedNumeric<Promotion>(lhs.ValueUnsafe() OP rhs, \
lhs.validity()); \
return CheckedNumeric<Promotion>::cast(lhs) \
OP CheckedNumeric<Promotion>::cast(rhs); \
} \
/* Binary arithmetic operator for right numeric and left CheckedNumeric. */ \
template <typename T, typename Src> \
CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \
Src lhs, const CheckedNumeric<T>& rhs) { \
typedef typename ArithmeticPromotion<T, Src>::type Promotion; \
if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \
return CheckedNumeric<Promotion>(lhs OP rhs.ValueUnsafe(), \
rhs.validity()); \
return CheckedNumeric<Promotion>::cast(lhs) \
OP CheckedNumeric<Promotion>::cast(rhs); \
}
BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, += )
BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -= )
BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *= )
BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /= )
BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %= )
#undef BASE_NUMERIC_ARITHMETIC_OPERATORS
} // namespace internal
using internal::CheckedNumeric;
} // namespace base
} // namespace v8
#endif // V8_BASE_SAFE_MATH_H_

531
src/base/safe_math_impl.h Normal file
View File

@ -0,0 +1,531 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Slightly adapted for inclusion in V8.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_BASE_SAFE_MATH_IMPL_H_
#define V8_BASE_SAFE_MATH_IMPL_H_
#include <stdint.h>
#include <cmath>
#include <cstdlib>
#include <limits>
#include "src/base/macros.h"
#include "src/base/safe_conversions.h"
namespace v8 {
namespace base {
namespace internal {
// From Chromium's base/template_util.h:
template<class T, T v>
struct integral_constant {
static const T value = v;
typedef T value_type;
typedef integral_constant<T, v> type;
};
template <class T, T v> const T integral_constant<T, v>::value;
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
template <class T, class U> struct is_same : public false_type {};
template <class T> struct is_same<T, T> : true_type {};
template<bool B, class T = void>
struct enable_if {};
template<class T>
struct enable_if<true, T> { typedef T type; };
// </template_util.h>
// Everything from here up to the floating point operations is portable C++,
// but it may not be fast. This code could be split based on
// platform/architecture and replaced with potentially faster implementations.
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForSizeAndSign;
template <>
struct IntegerForSizeAndSign<1, true> {
typedef int8_t type;
};
template <>
struct IntegerForSizeAndSign<1, false> {
typedef uint8_t type;
};
template <>
struct IntegerForSizeAndSign<2, true> {
typedef int16_t type;
};
template <>
struct IntegerForSizeAndSign<2, false> {
typedef uint16_t type;
};
template <>
struct IntegerForSizeAndSign<4, true> {
typedef int32_t type;
};
template <>
struct IntegerForSizeAndSign<4, false> {
typedef uint32_t type;
};
template <>
struct IntegerForSizeAndSign<8, true> {
typedef int64_t type;
};
template <>
struct IntegerForSizeAndSign<8, false> {
typedef uint64_t type;
};
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
template <typename Integer>
struct UnsignedIntegerForSize {
typedef typename enable_if<
std::numeric_limits<Integer>::is_integer,
typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
};
template <typename Integer>
struct SignedIntegerForSize {
typedef typename enable_if<
std::numeric_limits<Integer>::is_integer,
typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
};
template <typename Integer>
struct TwiceWiderInteger {
typedef typename enable_if<
std::numeric_limits<Integer>::is_integer,
typename IntegerForSizeAndSign<
sizeof(Integer) * 2,
std::numeric_limits<Integer>::is_signed>::type>::type type;
};
template <typename Integer>
struct PositionOfSignBit {
static const typename enable_if<std::numeric_limits<Integer>::is_integer,
size_t>::type value = 8 * sizeof(Integer) - 1;
};
// Helper templates for integer manipulations.
template <typename T>
bool HasSignBit(T x) {
// Cast to unsigned since right shift on signed is undefined.
return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
PositionOfSignBit<T>::value);
}
// This wrapper undoes the standard integer promotions.
template <typename T>
T BinaryComplement(T x) {
return ~x;
}
// Here are the actual portable checked integer math implementations.
// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
// way to coalesce things into the CheckedNumericState specializations below.
template <typename T>
typename enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedAdd(T x, T y, RangeConstraint* validity) {
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = ux + uy;
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
if (std::numeric_limits<T>::is_signed) {
if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
*validity = RANGE_VALID;
else // Direction of wrap is inverse of result sign.
*validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
} else { // Unsigned is either valid or overflow.
*validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
}
return static_cast<T>(uresult);
}
template <typename T>
typename enable_if<std::numeric_limits<T>::is_integer, T>::type
CheckedSub(T x, T y, RangeConstraint* validity) {
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = ux - uy;
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
if (std::numeric_limits<T>::is_signed) {
if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
*validity = RANGE_VALID;
else // Direction of wrap is inverse of result sign.
*validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
} else { // Unsigned is either valid or underflow.
*validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
}
return static_cast<T>(uresult);
}
// Integer multiplication is a bit complicated. In the fast case we just
// we just promote to a twice wider type, and range check the result. In the
// slow case we need to manually check that the result won't be truncated by
// checking with division against the appropriate bound.
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
T>::type
CheckedMul(T x, T y, RangeConstraint* validity) {
typedef typename TwiceWiderInteger<T>::type IntermediateType;
IntermediateType tmp =
static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
*validity = DstRangeRelationToSrcRange<T>(tmp);
return static_cast<T>(tmp);
}
template <typename T>
typename enable_if<std::numeric_limits<T>::is_integer &&
std::numeric_limits<T>::is_signed &&
(sizeof(T) * 2 > sizeof(uintmax_t)),
T>::type
CheckedMul(T x, T y, RangeConstraint* validity) {
// if either side is zero then the result will be zero.
if (!(x || y)) {
return RANGE_VALID;
} else if (x > 0) {
if (y > 0)
*validity =
x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
else
*validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
: RANGE_UNDERFLOW;
} else {
if (y > 0)
*validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
: RANGE_UNDERFLOW;
else
*validity =
y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
}
return x * y;
}
template <typename T>
typename enable_if<std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed &&
(sizeof(T) * 2 > sizeof(uintmax_t)),
T>::type
CheckedMul(T x, T y, RangeConstraint* validity) {
*validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
? RANGE_VALID
: RANGE_OVERFLOW;
return x * y;
}
// Division just requires a check for an invalid negation on signed min/-1.
template <typename T>
T CheckedDiv(
T x,
T y,
RangeConstraint* validity,
typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
y == static_cast<T>(-1)) {
*validity = RANGE_OVERFLOW;
return std::numeric_limits<T>::min();
}
*validity = RANGE_VALID;
return x / y;
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
T>::type
CheckedMod(T x, T y, RangeConstraint* validity) {
*validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
return x % y;
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
T>::type
CheckedMod(T x, T y, RangeConstraint* validity) {
*validity = RANGE_VALID;
return x % y;
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
T>::type
CheckedNeg(T value, RangeConstraint* validity) {
*validity =
value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
// The negation of signed min is min, so catch that one.
return -value;
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
T>::type
CheckedNeg(T value, RangeConstraint* validity) {
// The only legal unsigned negation is zero.
*validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
return static_cast<T>(
-static_cast<typename SignedIntegerForSize<T>::type>(value));
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
T>::type
CheckedAbs(T value, RangeConstraint* validity) {
*validity =
value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
return std::abs(value);
}
template <typename T>
typename enable_if<
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
T>::type
CheckedAbs(T value, RangeConstraint* validity) {
// Absolute value of a positive is just its identiy.
*validity = RANGE_VALID;
return value;
}
// These are the floating point stubs that the compiler needs to see. Only the
// negation operation is ever called.
#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
template <typename T> \
typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
Checked##NAME(T, T, RangeConstraint*) { \
UNREACHABLE(); \
return 0; \
}
BASE_FLOAT_ARITHMETIC_STUBS(Add)
BASE_FLOAT_ARITHMETIC_STUBS(Sub)
BASE_FLOAT_ARITHMETIC_STUBS(Mul)
BASE_FLOAT_ARITHMETIC_STUBS(Div)
BASE_FLOAT_ARITHMETIC_STUBS(Mod)
#undef BASE_FLOAT_ARITHMETIC_STUBS
template <typename T>
typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
T value,
RangeConstraint*) {
return -value;
}
template <typename T>
typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
T value,
RangeConstraint*) {
return std::abs(value);
}
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::numeric_limits<NumericType>::is_integer
? NUMERIC_INTEGER
: (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T, NumericRepresentation type =
GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
private:
T value_;
RangeConstraint validity_;
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
template <typename Src>
CheckedNumericState(Src value, RangeConstraint validity)
: value_(value),
validity_(GetRangeConstraint(validity |
DstRangeRelationToSrcRange<T>(value))) {
// Argument must be numeric.
STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
}
// Copy constructor.
template <typename Src>
CheckedNumericState(const CheckedNumericState<Src>& rhs)
: value_(static_cast<T>(rhs.value())),
validity_(GetRangeConstraint(
rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
template <typename Src>
explicit CheckedNumericState(
Src value,
typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
0)
: value_(static_cast<T>(value)),
validity_(DstRangeRelationToSrcRange<T>(value)) {}
RangeConstraint validity() const { return validity_; }
T value() const { return value_; }
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
private:
T value_;
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
CheckedNumericState() : value_(0.0) {}
template <typename Src>
CheckedNumericState(
Src value,
RangeConstraint validity,
typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
switch (DstRangeRelationToSrcRange<T>(value)) {
case RANGE_VALID:
value_ = static_cast<T>(value);
break;
case RANGE_UNDERFLOW:
value_ = -std::numeric_limits<T>::infinity();
break;
case RANGE_OVERFLOW:
value_ = std::numeric_limits<T>::infinity();
break;
case RANGE_INVALID:
value_ = std::numeric_limits<T>::quiet_NaN();
break;
}
}
template <typename Src>
explicit CheckedNumericState(
Src value,
typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
0)
: value_(static_cast<T>(value)) {}
// Copy constructor.
template <typename Src>
CheckedNumericState(const CheckedNumericState<Src>& rhs)
: value_(static_cast<T>(rhs.value())) {}
RangeConstraint validity() const {
return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
value_ >= -std::numeric_limits<T>::max());
}
T value() const { return value_; }
};
// For integers less than 128-bit and floats 32-bit or larger, we can distil
// C/C++ arithmetic promotions down to two simple rules:
// 1. The type with the larger maximum exponent always takes precedence.
// 2. The resulting type must be promoted to at least an int.
// The following template specializations implement that promotion logic.
enum ArithmeticPromotionCategory {
LEFT_PROMOTION,
RIGHT_PROMOTION,
DEFAULT_PROMOTION
};
template <typename Lhs,
typename Rhs = Lhs,
ArithmeticPromotionCategory Promotion =
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
? (MaxExponent<Lhs>::value > MaxExponent<int>::value
? LEFT_PROMOTION
: DEFAULT_PROMOTION)
: (MaxExponent<Rhs>::value > MaxExponent<int>::value
? RIGHT_PROMOTION
: DEFAULT_PROMOTION) >
struct ArithmeticPromotion;
template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
typedef Lhs type;
};
template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
typedef Rhs type;
};
template <typename Lhs, typename Rhs>
struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
typedef int type;
};
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs>
struct IsIntegerArithmeticSafe {
static const bool value = !std::numeric_limits<T>::is_iec559 &&
StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
NUMERIC_RANGE_CONTAINED &&
sizeof(T) >= (2 * sizeof(Lhs)) &&
StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
NUMERIC_RANGE_CONTAINED &&
sizeof(T) >= (2 * sizeof(Rhs));
};
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_BASE_SAFE_MATH_IMPL_H_

View File

@ -1080,6 +1080,10 @@
'../../src/base/macros.h',
'../../src/base/once.cc',
'../../src/base/once.h',
'../../src/base/safe_conversions.h',
'../../src/base/safe_conversions_impl.h',
'../../src/base/safe_math.h',
'../../src/base/safe_math_impl.h',
'../../src/base/win32-headers.h',
],
'conditions': [