[wasm][test] Various test cleanups

Changes:
- Remove an obsolete TODO from wasm-module-builder.
- Replace CHECK with gTest's EXPECT in unittests.
- Remove setting of --experimental-wasm-liftoff-extern-ref in wasm-gc.
- Test test-gc/JSAccess with Liftoff.
- Remove useless #undef's from module-decoder-unittest.

Change-Id: I11b4a3dde9683cc9c7d1eb89b1a63e1859505aad
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2659063
Commit-Queue: Manos Koukoutos <manoskouk@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#72455}
This commit is contained in:
Manos Koukoutos 2021-02-01 06:12:34 +00:00 committed by Commit Bot
parent 0b8bfd8590
commit 0461065ca9
9 changed files with 95 additions and 113 deletions

View File

@ -504,8 +504,6 @@ void WriteGlobalInitializer(ZoneBuffer* buffer, const WasmInitExpr& init,
case WasmInitExpr::kRttSub:
// The operand to rtt.sub must be emitted first.
WriteGlobalInitializer(buffer, *init.operand(), kWasmBottom);
// TODO(7748): If immediates for rtts remain in the standard, adapt this
// to emit them.
STATIC_ASSERT((kExprRttSub >> 8) == kGCPrefix);
buffer->write_u8(kGCPrefix);
buffer->write_u8(static_cast<uint8_t>(kExprRttSub));

View File

@ -204,7 +204,6 @@ ValueType optref(uint32_t type_index) {
WASM_COMPILED_EXEC_TEST(WasmBasicStruct) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index =
tester.DefineStruct({F(kWasmI32, true), F(kWasmI32, true)});
@ -277,7 +276,6 @@ WASM_COMPILED_EXEC_TEST(WasmBasicStruct) {
// struct refs types in globals and if-results.
WASM_COMPILED_EXEC_TEST(WasmRefAsNonNull) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index =
tester.DefineStruct({F(kWasmI32, true), F(kWasmI32, true)});
ValueType kRefTypes[] = {ref(type_index)};
@ -308,7 +306,6 @@ WASM_COMPILED_EXEC_TEST(WasmRefAsNonNull) {
WASM_COMPILED_EXEC_TEST(WasmBrOnNull) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index =
tester.DefineStruct({F(kWasmI32, true), F(kWasmI32, true)});
ValueType kRefTypes[] = {ref(type_index)};
@ -346,7 +343,6 @@ WASM_COMPILED_EXEC_TEST(WasmBrOnNull) {
WASM_COMPILED_EXEC_TEST(BrOnCast) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
ValueType kDataRefNull = ValueType::Ref(HeapType::kData, kNullable);
const byte type_index = tester.DefineStruct({F(kWasmI32, true)});
const byte other_type_index = tester.DefineStruct({F(kWasmF32, true)});
@ -418,7 +414,6 @@ WASM_COMPILED_EXEC_TEST(BrOnCast) {
WASM_COMPILED_EXEC_TEST(WasmRefEq) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
byte type_index = tester.DefineStruct({F(kWasmI32, true), F(kWasmI32, true)});
ValueType kRefTypes[] = {ref(type_index)};
ValueType kOptRefType = optref(type_index);
@ -458,7 +453,6 @@ WASM_COMPILED_EXEC_TEST(WasmRefEq) {
WASM_COMPILED_EXEC_TEST(WasmPackedStructU) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index = tester.DefineStruct(
{F(kWasmI8, true), F(kWasmI16, true), F(kWasmI32, true)});
@ -496,7 +490,6 @@ WASM_COMPILED_EXEC_TEST(WasmPackedStructU) {
WASM_COMPILED_EXEC_TEST(WasmPackedStructS) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index = tester.DefineStruct(
{F(kWasmI8, true), F(kWasmI16, true), F(kWasmI32, true)});
@ -614,7 +607,6 @@ TEST(WasmLetInstruction) {
WASM_COMPILED_EXEC_TEST(WasmBasicArray) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index = tester.DefineArray(wasm::kWasmI32, true);
ValueType kRefTypes[] = {ref(type_index)};
@ -690,7 +682,6 @@ WASM_COMPILED_EXEC_TEST(WasmBasicArray) {
WASM_COMPILED_EXEC_TEST(WasmPackedArrayU) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte array_index = tester.DefineArray(kWasmI8, true);
ValueType array_type = optref(array_index);
@ -726,7 +717,6 @@ WASM_COMPILED_EXEC_TEST(WasmPackedArrayU) {
WASM_COMPILED_EXEC_TEST(WasmPackedArrayS) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte array_index = tester.DefineArray(kWasmI16, true);
ValueType array_type = optref(array_index);
@ -762,7 +752,6 @@ WASM_COMPILED_EXEC_TEST(WasmPackedArrayS) {
WASM_COMPILED_EXEC_TEST(NewDefault) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte struct_type = tester.DefineStruct(
{F(wasm::kWasmI32, true), F(wasm::kWasmF64, true), F(optref(0), true)});
const byte array_type = tester.DefineArray(wasm::kWasmI32, true);
@ -958,7 +947,6 @@ TEST(NoDepthRtt) {
WASM_COMPILED_EXEC_TEST(ArrayNewMap) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte type_index = tester.DefineArray(kWasmI32, true);
@ -987,7 +975,6 @@ WASM_COMPILED_EXEC_TEST(ArrayNewMap) {
WASM_COMPILED_EXEC_TEST(FunctionRefs) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte func_index =
tester.DefineFunction(tester.sigs.i_v(), {}, {WASM_I32V(42), kExprEnd});
const byte sig_index = 0;
@ -1046,7 +1033,6 @@ WASM_COMPILED_EXEC_TEST(FunctionRefs) {
WASM_COMPILED_EXEC_TEST(CallRef) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
byte callee = tester.DefineFunction(
tester.sigs.i_ii(), {},
{WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprEnd});
@ -1066,7 +1052,6 @@ WASM_COMPILED_EXEC_TEST(CallRef) {
WASM_COMPILED_EXEC_TEST(RefTestCastNull) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
byte type_index = tester.DefineStruct({F(wasm::kWasmI32, true)});
const byte kRefTestNull = tester.DefineFunction(
@ -1215,7 +1200,6 @@ WASM_COMPILED_EXEC_TEST(AbstractTypeChecks) {
WASM_COMPILED_EXEC_TEST(BasicI31) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte kSigned = tester.DefineFunction(
tester.sigs.i_i(), {},
{WASM_I31_GET_S(WASM_I31_NEW(WASM_LOCAL_GET(0))), kExprEnd});
@ -1237,7 +1221,6 @@ WASM_COMPILED_EXEC_TEST(BasicI31) {
// be modified (made to run longer) to measure performance of casts.
WASM_COMPILED_EXEC_TEST(CastsBenchmark) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte SuperType = tester.DefineStruct({F(wasm::kWasmI32, true)});
const byte SubType =
tester.DefineStruct({F(wasm::kWasmI32, true), F(wasm::kWasmI32, true)});
@ -1337,7 +1320,6 @@ WASM_COMPILED_EXEC_TEST(CastsBenchmark) {
WASM_COMPILED_EXEC_TEST(GlobalInitReferencingGlobal) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
const byte from = tester.AddGlobal(kWasmI32, false, WasmInitExpr(42));
const byte to =
tester.AddGlobal(kWasmI32, false, WasmInitExpr::GlobalGet(from));
@ -1352,7 +1334,6 @@ WASM_COMPILED_EXEC_TEST(GlobalInitReferencingGlobal) {
WASM_COMPILED_EXEC_TEST(IndirectNullSetManually) {
WasmGCTester tester(execution_tier);
FLAG_experimental_liftoff_extern_ref = true;
byte sig_index = tester.DefineSignature(tester.sigs.i_i());
tester.DefineTable(ValueType::Ref(sig_index, kNullable), 1, 1);
byte func_index = tester.DefineFunction(
@ -1366,8 +1347,8 @@ WASM_COMPILED_EXEC_TEST(IndirectNullSetManually) {
tester.CheckHasThrown(func_index, 42);
}
TEST(JsAccess) {
WasmGCTester tester;
WASM_COMPILED_EXEC_TEST(JsAccess) {
WasmGCTester tester(execution_tier);
const byte type_index = tester.DefineStruct({F(wasm::kWasmI32, true)});
ValueType kRefType = ref(type_index);
ValueType kSupertypeToI[] = {kWasmI32, kWasmDataRef};

View File

@ -3311,8 +3311,6 @@ TEST_F(WasmModuleVerifyTest, Memory64DataSegment) {
#undef NOP_BODY
#undef SIG_ENTRY_i_i
#undef UNKNOWN_SECTION
#undef COUNT_ARGS
#undef CHECK_LEB1
#undef ADD_COUNT
#undef SECTION
#undef TYPE_SECTION

View File

@ -66,7 +66,7 @@ TEST_F(WasmSubtypingTest, Subtyping) {
// Value types are unrelated, except if they are equal.
for (ValueType subtype : numeric_types) {
for (ValueType supertype : numeric_types) {
CHECK_EQ(IsSubtypeOf(subtype, supertype, module1, module),
EXPECT_EQ(IsSubtypeOf(subtype, supertype, module1, module),
subtype == supertype);
}
}
@ -74,92 +74,96 @@ TEST_F(WasmSubtypingTest, Subtyping) {
// Value types are unrelated with reference types.
for (ValueType value_type : numeric_types) {
for (ValueType ref_type : ref_types) {
CHECK(!IsSubtypeOf(value_type, ref_type, module1, module));
CHECK(!IsSubtypeOf(ref_type, value_type, module1, module));
EXPECT_TRUE(!IsSubtypeOf(value_type, ref_type, module1, module));
EXPECT_TRUE(!IsSubtypeOf(ref_type, value_type, module1, module));
}
}
for (ValueType ref_type : ref_types) {
// Concrete reference types, i31ref and dataref are subtypes of eqref,
// externref/funcref/anyref are not.
CHECK_EQ(IsSubtypeOf(ref_type, kWasmEqRef, module1, module),
EXPECT_EQ(IsSubtypeOf(ref_type, kWasmEqRef, module1, module),
ref_type != kWasmFuncRef && ref_type != kWasmExternRef &&
ref_type != kWasmAnyRef);
// Non-nullable struct/array types are subtypes of dataref.
CHECK_EQ(
EXPECT_EQ(
IsSubtypeOf(ref_type, kWasmDataRef, module1, module),
ref_type == kWasmDataRef ||
(ref_type.kind() == ValueType::kRef && ref_type.has_index()));
// Each reference type is a subtype of itself.
CHECK(IsSubtypeOf(ref_type, ref_type, module1, module));
EXPECT_TRUE(IsSubtypeOf(ref_type, ref_type, module1, module));
// Each reference type is a subtype of anyref.
CHECK(IsSubtypeOf(ref_type, kWasmAnyRef, module1, module));
EXPECT_TRUE(IsSubtypeOf(ref_type, kWasmAnyRef, module1, module));
// Only anyref is a subtype of anyref.
CHECK_EQ(IsSubtypeOf(kWasmAnyRef, ref_type, module1, module),
EXPECT_EQ(IsSubtypeOf(kWasmAnyRef, ref_type, module1, module),
ref_type == kWasmAnyRef);
}
// The rest of ref. types are unrelated.
for (ValueType type_1 : {kWasmExternRef, kWasmFuncRef, kWasmI31Ref}) {
for (ValueType type_2 : {kWasmExternRef, kWasmFuncRef, kWasmI31Ref}) {
CHECK_EQ(IsSubtypeOf(type_1, type_2, module1, module),
EXPECT_EQ(IsSubtypeOf(type_1, type_2, module1, module),
type_1 == type_2);
}
}
// Unrelated refs are unrelated.
CHECK(!IsSubtypeOf(ref(0), ref(2), module1, module));
CHECK(!IsSubtypeOf(optRef(3), optRef(1), module1, module));
EXPECT_TRUE(!IsSubtypeOf(ref(0), ref(2), module1, module));
EXPECT_TRUE(!IsSubtypeOf(optRef(3), optRef(1), module1, module));
// ref is a subtype of optref for the same struct/array.
CHECK(IsSubtypeOf(ref(0), optRef(0), module1, module));
CHECK(IsSubtypeOf(ref(2), optRef(2), module1, module));
EXPECT_TRUE(IsSubtypeOf(ref(0), optRef(0), module1, module));
EXPECT_TRUE(IsSubtypeOf(ref(2), optRef(2), module1, module));
// optref is not a subtype of ref for the same struct/array.
CHECK(!IsSubtypeOf(optRef(0), ref(0), module1, module));
CHECK(!IsSubtypeOf(optRef(2), ref(2), module1, module));
EXPECT_TRUE(!IsSubtypeOf(optRef(0), ref(0), module1, module));
EXPECT_TRUE(!IsSubtypeOf(optRef(2), ref(2), module1, module));
// ref is a subtype of optref if the same is true for the underlying
// structs/arrays.
CHECK(IsSubtypeOf(ref(3), optRef(2), module1, module));
EXPECT_TRUE(IsSubtypeOf(ref(3), optRef(2), module1, module));
// Prefix subtyping for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(0), module1, module));
EXPECT_TRUE(IsSubtypeOf(optRef(4), optRef(0), module1, module));
// Mutable fields are invariant.
CHECK(!IsSubtypeOf(ref(0), ref(5), module1, module));
EXPECT_TRUE(!IsSubtypeOf(ref(0), ref(5), module1, module));
// Immutable fields are covariant.
CHECK(IsSubtypeOf(ref(1), ref(0), module1, module));
EXPECT_TRUE(IsSubtypeOf(ref(1), ref(0), module1, module));
// Prefix subtyping + immutable field covariance for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(1), module1, module));
EXPECT_TRUE(IsSubtypeOf(optRef(4), optRef(1), module1, module));
// No subtyping between mutable/immutable fields.
CHECK(!IsSubtypeOf(ref(7), ref(6), module1, module));
CHECK(!IsSubtypeOf(ref(6), ref(7), module1, module));
EXPECT_TRUE(!IsSubtypeOf(ref(7), ref(6), module1, module));
EXPECT_TRUE(!IsSubtypeOf(ref(6), ref(7), module1, module));
// Recursive types.
CHECK(IsSubtypeOf(ref(9), ref(8), module1, module));
EXPECT_TRUE(IsSubtypeOf(ref(9), ref(8), module1, module));
// Identical rtts are subtypes of each other.
CHECK(IsSubtypeOf(ValueType::Rtt(5, 3), ValueType::Rtt(5, 3), module1,
EXPECT_TRUE(IsSubtypeOf(ValueType::Rtt(5, 3), ValueType::Rtt(5, 3), module1,
module2));
CHECK(IsSubtypeOf(ValueType::Rtt(5), ValueType::Rtt(5), module1, module2));
EXPECT_TRUE(
IsSubtypeOf(ValueType::Rtt(5), ValueType::Rtt(5), module1, module2));
// Rtts of unrelated types are unrelated.
CHECK(!IsSubtypeOf(ValueType::Rtt(1, 1), ValueType::Rtt(2, 1), module1,
module2));
CHECK(!IsSubtypeOf(ValueType::Rtt(1), ValueType::Rtt(2), module1, module2));
CHECK(!IsSubtypeOf(ValueType::Rtt(1, 0), ValueType::Rtt(2), module1,
EXPECT_TRUE(!IsSubtypeOf(ValueType::Rtt(1, 1), ValueType::Rtt(2, 1),
module1, module2));
EXPECT_TRUE(
!IsSubtypeOf(ValueType::Rtt(1), ValueType::Rtt(2), module1, module2));
EXPECT_TRUE(!IsSubtypeOf(ValueType::Rtt(1, 0), ValueType::Rtt(2), module1,
module2));
// Rtts of different depth are unrelated.
CHECK(!IsSubtypeOf(ValueType::Rtt(5, 1), ValueType::Rtt(5, 3), module1,
module2));
CHECK(!IsSubtypeOf(ValueType::Rtt(5, 8), ValueType::Rtt(5, 3), module1,
module2));
EXPECT_TRUE(!IsSubtypeOf(ValueType::Rtt(5, 1), ValueType::Rtt(5, 3),
module1, module2));
EXPECT_TRUE(!IsSubtypeOf(ValueType::Rtt(5, 8), ValueType::Rtt(5, 3),
module1, module2));
// Rtts of identical types are subtype-related.
CHECK(IsSubtypeOf(ValueType::Rtt(8, 1), ValueType::Rtt(9, 1), module1,
EXPECT_TRUE(IsSubtypeOf(ValueType::Rtt(8, 1), ValueType::Rtt(9, 1), module1,
module));
CHECK(IsSubtypeOf(ValueType::Rtt(8), ValueType::Rtt(9), module1, module));
EXPECT_TRUE(
IsSubtypeOf(ValueType::Rtt(8), ValueType::Rtt(9), module1, module));
// Rtts of subtypes are not related.
CHECK(!IsSubtypeOf(ValueType::Rtt(1, 1), ValueType::Rtt(0, 1), module1,
module));
CHECK(!IsSubtypeOf(ValueType::Rtt(1), ValueType::Rtt(0), module1, module));
EXPECT_TRUE(!IsSubtypeOf(ValueType::Rtt(1, 1), ValueType::Rtt(0, 1),
module1, module));
EXPECT_TRUE(
!IsSubtypeOf(ValueType::Rtt(1), ValueType::Rtt(0), module1, module));
// rtt(t, d) <: rtt(t)
for (uint8_t depth : {0, 1, 5}) {
CHECK(IsSubtypeOf(ValueType::Rtt(1, depth), ValueType::Rtt(1), module1,
module));
EXPECT_TRUE(IsSubtypeOf(ValueType::Rtt(1, depth), ValueType::Rtt(1),
module1, module));
}
}
}

View File

@ -53,7 +53,8 @@ TEST_F(SignalHandlerFallbackTest, DoTest) {
const int save_sigs = 1;
if (!sigsetjmp(continuation_, save_sigs)) {
constexpr bool use_default_signal_handler = true;
CHECK(v8::V8::EnableWebAssemblyTrapHandler(use_default_signal_handler));
EXPECT_TRUE(
v8::V8::EnableWebAssemblyTrapHandler(use_default_signal_handler));
CrashOnPurpose();
FAIL();
} else {

View File

@ -52,7 +52,7 @@ class ExceptionHandlerFallbackTest : public ::testing::Test {
void TearDown() override {
// be a good citizen and remove the exception handler.
ULONG result = RemoveVectoredExceptionHandler(registered_handler_);
CHECK(result);
EXPECT_TRUE(result);
}
private:
@ -61,7 +61,7 @@ class ExceptionHandlerFallbackTest : public ::testing::Test {
v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
// Make the allocated memory accessible so that from now on memory accesses
// do not cause an exception anymore.
CHECK(i::SetPermissions(page_allocator, g_start_address,
EXPECT_TRUE(i::SetPermissions(page_allocator, g_start_address,
page_allocator->AllocatePageSize(),
v8::PageAllocator::kReadWrite));
// The memory access should work now, we can continue execution.
@ -74,7 +74,7 @@ class ExceptionHandlerFallbackTest : public ::testing::Test {
TEST_F(ExceptionHandlerFallbackTest, DoTest) {
constexpr bool use_default_handler = true;
CHECK(v8::V8::EnableWebAssemblyTrapHandler(use_default_handler));
EXPECT_TRUE(v8::V8::EnableWebAssemblyTrapHandler(use_default_handler));
// In the original test setup the test memory is protected against any kind of
// access. Therefore the access here causes an access violation exception,
// which should be caught by the exception handler we install above. In the
@ -83,8 +83,8 @@ TEST_F(ExceptionHandlerFallbackTest, DoTest) {
// memory access again. This time we expect the memory access to work.
constexpr int test_value = 42;
WriteToTestMemory(test_value);
CHECK_EQ(test_value, ReadFromTestMemory());
CHECK(g_handler_got_executed);
EXPECT_EQ(test_value, ReadFromTestMemory());
EXPECT_TRUE(g_handler_got_executed);
v8::internal::trap_handler::RemoveTrapHandler();
}

View File

@ -85,7 +85,7 @@ class TrapHandlerTest : public TestWithIsolate,
backing_store_ = BackingStore::AllocateWasmMemory(i_isolate(), 1, 1,
SharedFlag::kNotShared);
CHECK(backing_store_);
CHECK(backing_store_->has_guard_regions());
EXPECT_TRUE(backing_store_->has_guard_regions());
// The allocated backing store ends with a guard page.
crash_address_ = reinterpret_cast<Address>(backing_store_->buffer_start()) +
backing_store_->byte_length() + 32;
@ -104,11 +104,11 @@ class TrapHandlerTest : public TestWithIsolate,
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO;
// SIGSEGV happens for wasm oob memory accesses on Linux.
CHECK_EQ(0, sigaction(SIGSEGV, &action, &g_old_segv_action));
EXPECT_EQ(0, sigaction(SIGSEGV, &action, &g_old_segv_action));
// SIGBUS happens for wasm oob memory accesses on macOS.
CHECK_EQ(0, sigaction(SIGBUS, &action, &g_old_bus_action));
EXPECT_EQ(0, sigaction(SIGBUS, &action, &g_old_bus_action));
// SIGFPE to simulate crashes which are not handled by the trap handler.
CHECK_EQ(0, sigaction(SIGFPE, &action, &g_old_fpe_action));
EXPECT_EQ(0, sigaction(SIGFPE, &action, &g_old_fpe_action));
#elif V8_OS_WIN
g_registered_handler =
AddVectoredExceptionHandler(/*first=*/0, TestHandler);
@ -117,7 +117,7 @@ class TrapHandlerTest : public TestWithIsolate,
void TearDown() override {
// We should always have left wasm code.
CHECK(!GetThreadInWasmFlag());
EXPECT_TRUE(!GetThreadInWasmFlag());
buffer_.reset();
recovery_buffer_.reset();
backing_store_.reset();
@ -128,9 +128,9 @@ class TrapHandlerTest : public TestWithIsolate,
#if V8_OS_LINUX || V8_OS_MACOSX || V8_OS_FREEBSD
// The test handler cleans up the signal handler setup in the test. If the
// test handler was not called, we have to do the cleanup ourselves.
CHECK_EQ(0, sigaction(SIGSEGV, &g_old_segv_action, nullptr));
CHECK_EQ(0, sigaction(SIGFPE, &g_old_fpe_action, nullptr));
CHECK_EQ(0, sigaction(SIGBUS, &g_old_bus_action, nullptr));
EXPECT_EQ(0, sigaction(SIGSEGV, &g_old_segv_action, nullptr));
EXPECT_EQ(0, sigaction(SIGFPE, &g_old_fpe_action, nullptr));
EXPECT_EQ(0, sigaction(SIGBUS, &g_old_bus_action, nullptr));
#elif V8_OS_WIN
RemoveVectoredExceptionHandler(g_registered_handler);
g_registered_handler = nullptr;
@ -232,21 +232,21 @@ class TrapHandlerTest : public TestWithIsolate,
GeneratedCode<void>::FromAddress(
i_isolate(), reinterpret_cast<Address>(buffer_->start()))
.Call();
CHECK(!g_test_handler_executed);
EXPECT_FALSE(g_test_handler_executed);
}
// Execute the code in buffer. We expect a crash which we recover from in the
// test handler.
void ExecuteExpectCrash(TestingAssemblerBuffer* buffer,
bool check_wasm_flag = true) {
CHECK(!g_test_handler_executed);
EXPECT_FALSE(g_test_handler_executed);
buffer->MakeExecutable();
GeneratedCode<void>::FromAddress(i_isolate(),
reinterpret_cast<Address>(buffer->start()))
.Call();
CHECK(g_test_handler_executed);
EXPECT_TRUE(g_test_handler_executed);
g_test_handler_executed = false;
if (check_wasm_flag) CHECK(!GetThreadInWasmFlag());
if (check_wasm_flag) EXPECT_FALSE(GetThreadInWasmFlag());
}
bool test_handler_executed() { return g_test_handler_executed; }
@ -457,12 +457,12 @@ TEST_P(TrapHandlerTest, TestCrashInOtherThread) {
desc.instr_size, 1, &protected_instruction);
CodeRunner runner(this, buffer_.get());
CHECK(!GetThreadInWasmFlag());
EXPECT_FALSE(GetThreadInWasmFlag());
// Set the thread-in-wasm flag manually in this thread.
*trap_handler::GetThreadInWasmThreadLocalAddress() = 1;
CHECK(runner.Start());
EXPECT_TRUE(runner.Start());
runner.Join();
CHECK(GetThreadInWasmFlag());
EXPECT_TRUE(GetThreadInWasmFlag());
// Reset the thread-in-wasm flag.
*trap_handler::GetThreadInWasmThreadLocalAddress() = 0;
}

View File

@ -28,16 +28,16 @@ void DisjointAllocationPoolTest::CheckPool(
const DisjointAllocationPool& mem,
std::initializer_list<base::AddressRegion> expected_regions) {
const auto& regions = mem.regions();
CHECK_EQ(regions.size(), expected_regions.size());
EXPECT_EQ(regions.size(), expected_regions.size());
auto iter = expected_regions.begin();
for (auto it = regions.begin(), e = regions.end(); it != e; ++it, ++iter) {
CHECK_EQ(*it, *iter);
EXPECT_EQ(*it, *iter);
}
}
void DisjointAllocationPoolTest::CheckRange(base::AddressRegion region1,
base::AddressRegion region2) {
CHECK_EQ(region1, region2);
EXPECT_EQ(region1, region2);
}
DisjointAllocationPool DisjointAllocationPoolTest::Make(
@ -51,7 +51,7 @@ DisjointAllocationPool DisjointAllocationPoolTest::Make(
TEST_F(DisjointAllocationPoolTest, ConstructEmpty) {
DisjointAllocationPool a;
CHECK(a.IsEmpty());
EXPECT_TRUE(a.IsEmpty());
CheckPool(a, {});
a.Merge({1, 4});
CheckPool(a, {{1, 4}});
@ -59,7 +59,7 @@ TEST_F(DisjointAllocationPoolTest, ConstructEmpty) {
TEST_F(DisjointAllocationPoolTest, ConstructWithRange) {
DisjointAllocationPool a({1, 4});
CHECK(!a.IsEmpty());
EXPECT_FALSE(a.IsEmpty());
CheckPool(a, {{1, 4}});
}
@ -70,16 +70,16 @@ TEST_F(DisjointAllocationPoolTest, SimpleExtract) {
CheckRange(b, {1, 2});
a.Merge(b);
CheckPool(a, {{1, 4}});
CHECK_EQ(a.regions().size(), 1);
CHECK_EQ(a.regions().begin()->begin(), 1);
CHECK_EQ(a.regions().begin()->end(), 5);
EXPECT_EQ(a.regions().size(), uint32_t{1});
EXPECT_EQ(a.regions().begin()->begin(), uint32_t{1});
EXPECT_EQ(a.regions().begin()->end(), uint32_t{5});
}
TEST_F(DisjointAllocationPoolTest, ExtractAll) {
DisjointAllocationPool a({1, 4});
base::AddressRegion b = a.Allocate(4);
CheckRange(b, {1, 4});
CHECK(a.IsEmpty());
EXPECT_TRUE(a.IsEmpty());
a.Merge(b);
CheckPool(a, {{1, 4}});
}
@ -88,14 +88,14 @@ TEST_F(DisjointAllocationPoolTest, FailToExtract) {
DisjointAllocationPool a = Make({{1, 4}});
base::AddressRegion b = a.Allocate(5);
CheckPool(a, {{1, 4}});
CHECK(b.is_empty());
EXPECT_TRUE(b.is_empty());
}
TEST_F(DisjointAllocationPoolTest, FailToExtractExact) {
DisjointAllocationPool a = Make({{1, 4}, {10, 4}});
base::AddressRegion b = a.Allocate(5);
CheckPool(a, {{1, 4}, {10, 4}});
CHECK(b.is_empty());
EXPECT_TRUE(b.is_empty());
}
TEST_F(DisjointAllocationPoolTest, ExtractExact) {

View File

@ -22,7 +22,7 @@ TEST_F(WasmCallDescriptorTest, TestExternRefIsGrouped) {
for (size_t i = 0; i < kMaxCount; i += 2) {
params[i] = kWasmExternRef;
CHECK_LT(i + 1, kMaxCount);
EXPECT_TRUE(i + 1 < kMaxCount);
params[i + 1] = kWasmI32;
}
@ -32,7 +32,7 @@ TEST_F(WasmCallDescriptorTest, TestExternRefIsGrouped) {
compiler::GetWasmCallDescriptor(zone(), &sig);
// The WasmInstance is the implicit first parameter.
CHECK_EQ(count + 1, desc->ParameterCount());
EXPECT_EQ(count + 1, desc->ParameterCount());
bool has_untagged_stack_param = false;
bool has_tagged_register_param = false;
@ -45,7 +45,7 @@ TEST_F(WasmCallDescriptorTest, TestExternRefIsGrouped) {
if (location.IsRegister()) {
has_tagged_register_param = true;
} else {
CHECK(location.IsCallerFrameSlot());
EXPECT_TRUE(location.IsCallerFrameSlot());
max_tagged_stack_location =
std::max(max_tagged_stack_location, location.AsCallerFrameSlot());
}
@ -55,14 +55,14 @@ TEST_F(WasmCallDescriptorTest, TestExternRefIsGrouped) {
min_untagged_stack_location = std::min(min_untagged_stack_location,
location.AsCallerFrameSlot());
} else {
CHECK(location.IsRegister());
EXPECT_TRUE(location.IsRegister());
}
}
}
// There should never be a tagged parameter in a register and an untagged
// parameter on the stack at the same time.
CHECK_EQ(false, has_tagged_register_param && has_untagged_stack_param);
CHECK_LT(max_tagged_stack_location, min_untagged_stack_location);
EXPECT_EQ(false, has_tagged_register_param && has_untagged_stack_param);
EXPECT_TRUE(max_tagged_stack_location < min_untagged_stack_location);
}
}