Remove d8 implementation of ArrayBuffer and typed arrays.

R=rossberg@chromium.org

Review URL: https://codereview.chromium.org/14654011

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14706 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
dslomov@chromium.org 2013-05-16 11:48:03 +00:00
parent 8ce0718763
commit 0b4c7c8de9
2 changed files with 4 additions and 658 deletions

660
src/d8.cc
View File

@ -89,38 +89,15 @@ static Handle<Value> Throw(const char* message) {
}
// TODO(rossberg): should replace these by proper uses of HasInstance,
// once we figure out a good way to make the templates global.
const char kArrayBufferMarkerPropName[] = "d8::_is_array_buffer_";
const char kArrayMarkerPropName[] = "d8::_is_typed_array_";
#define FOR_EACH_STRING(V) \
V(ArrayBuffer, "ArrayBuffer") \
V(ArrayBufferMarkerPropName, kArrayBufferMarkerPropName) \
V(ArrayMarkerPropName, kArrayMarkerPropName) \
V(buffer, "buffer") \
V(byteLength, "byteLength") \
V(byteOffset, "byteOffset") \
V(BYTES_PER_ELEMENT, "BYTES_PER_ELEMENT") \
V(length, "length")
class PerIsolateData {
public:
explicit PerIsolateData(Isolate* isolate) : isolate_(isolate), realms_(NULL) {
HandleScope scope(isolate);
#define INIT_STRING(name, value) \
name##_string_ = Persistent<String>::New(isolate, String::NewSymbol(value));
FOR_EACH_STRING(INIT_STRING)
#undef INIT_STRING
isolate->SetData(this);
}
~PerIsolateData() {
#define DISPOSE_STRING(name, value) name##_string_.Dispose(isolate_);
FOR_EACH_STRING(DISPOSE_STRING)
#undef DISPOSE_STRING
isolate_->SetData(NULL); // Not really needed, just to be sure...
}
@ -128,13 +105,6 @@ class PerIsolateData {
return reinterpret_cast<PerIsolateData*>(isolate->GetData());
}
#define DEFINE_STRING_GETTER(name, value) \
static Handle<String> name##_string(Isolate* isolate) { \
return Handle<String>(*Get(isolate)->name##_string_); \
}
FOR_EACH_STRING(DEFINE_STRING_GETTER)
#undef DEFINE_STRING_GETTER
class RealmScope {
public:
explicit RealmScope(PerIsolateData* data);
@ -153,10 +123,6 @@ class PerIsolateData {
Persistent<Context>* realms_;
Persistent<Value> realm_shared_;
#define DEFINE_MEMBER(name, value) Persistent<String> name##_string_;
FOR_EACH_STRING(DEFINE_MEMBER)
#undef DEFINE_MEMBER
int RealmFind(Handle<Context> context);
};
@ -561,565 +527,6 @@ Handle<Value> Shell::Load(const Arguments& args) {
return Undefined(args.GetIsolate());
}
static int32_t convertToInt(Local<Value> value_in, TryCatch* try_catch) {
if (value_in->IsInt32()) {
return value_in->Int32Value();
}
Local<Value> number = value_in->ToNumber();
if (try_catch->HasCaught()) return 0;
ASSERT(number->IsNumber());
Local<Int32> int32 = number->ToInt32();
if (try_catch->HasCaught() || int32.IsEmpty()) return 0;
int32_t value = int32->Int32Value();
if (try_catch->HasCaught()) return 0;
return value;
}
static int32_t convertToUint(Local<Value> value_in, TryCatch* try_catch) {
int32_t raw_value = convertToInt(value_in, try_catch);
if (try_catch->HasCaught()) return 0;
if (raw_value < 0) {
Throw("Array length must not be negative.");
return 0;
}
static const int kMaxLength = 0x3fffffff;
#ifndef V8_SHARED
ASSERT(kMaxLength == i::ExternalArray::kMaxLength);
#endif // V8_SHARED
if (raw_value > static_cast<int32_t>(kMaxLength)) {
Throw("Array length exceeds maximum length.");
}
return raw_value;
}
Handle<Value> Shell::CreateExternalArrayBuffer(Isolate* isolate,
Handle<Object> buffer,
int32_t length) {
static const int32_t kMaxSize = 0x7fffffff;
// Make sure the total size fits into a (signed) int.
if (length < 0 || length > kMaxSize) {
return Throw("ArrayBuffer exceeds maximum size (2G)");
}
uint8_t* data = new uint8_t[length];
if (data == NULL) {
return Throw("Memory allocation failed");
}
memset(data, 0, length);
buffer->SetHiddenValue(
PerIsolateData::ArrayBufferMarkerPropName_string(isolate), True());
Persistent<Object> persistent_array =
Persistent<Object>::New(isolate, buffer);
persistent_array.MakeWeak(isolate, data, ExternalArrayWeakCallback);
persistent_array.MarkIndependent(isolate);
isolate->AdjustAmountOfExternalAllocatedMemory(length);
buffer->SetIndexedPropertiesToExternalArrayData(
data, v8::kExternalByteArray, length);
buffer->Set(PerIsolateData::byteLength_string(isolate),
Int32::New(length, isolate),
ReadOnly);
return buffer;
}
Handle<Value> Shell::ArrayBuffer(const Arguments& args) {
if (!args.IsConstructCall()) {
Handle<Value>* rec_args = new Handle<Value>[args.Length()];
for (int i = 0; i < args.Length(); ++i) rec_args[i] = args[i];
Handle<Value> result = args.Callee()->NewInstance(args.Length(), rec_args);
delete[] rec_args;
return result;
}
if (args.Length() == 0) {
return Throw("ArrayBuffer constructor must have one argument");
}
TryCatch try_catch;
int32_t length = convertToUint(args[0], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
return CreateExternalArrayBuffer(args.GetIsolate(), args.This(), length);
}
Handle<Object> Shell::CreateExternalArray(Isolate* isolate,
Handle<Object> array,
Handle<Object> buffer,
ExternalArrayType type,
int32_t length,
int32_t byteLength,
int32_t byteOffset,
int32_t element_size) {
ASSERT(element_size == 1 || element_size == 2 ||
element_size == 4 || element_size == 8);
ASSERT(byteLength == length * element_size);
void* data = buffer->GetIndexedPropertiesExternalArrayData();
ASSERT(data != NULL);
array->SetIndexedPropertiesToExternalArrayData(
static_cast<uint8_t*>(data) + byteOffset, type, length);
array->SetHiddenValue(PerIsolateData::ArrayMarkerPropName_string(isolate),
Int32::New(type, isolate));
array->Set(PerIsolateData::byteLength_string(isolate),
Int32::New(byteLength, isolate),
ReadOnly);
array->Set(PerIsolateData::byteOffset_string(isolate),
Int32::New(byteOffset, isolate),
ReadOnly);
array->Set(PerIsolateData::length_string(isolate),
Int32::New(length, isolate),
ReadOnly);
array->Set(PerIsolateData::BYTES_PER_ELEMENT_string(isolate),
Int32::New(element_size, isolate));
array->Set(PerIsolateData::buffer_string(isolate),
buffer,
ReadOnly);
return array;
}
Handle<Value> Shell::CreateExternalArray(const Arguments& args,
ExternalArrayType type,
int32_t element_size) {
Isolate* isolate = args.GetIsolate();
if (!args.IsConstructCall()) {
Handle<Value>* rec_args = new Handle<Value>[args.Length()];
for (int i = 0; i < args.Length(); ++i) rec_args[i] = args[i];
Handle<Value> result = args.Callee()->NewInstance(args.Length(), rec_args);
delete[] rec_args;
return result;
}
TryCatch try_catch;
ASSERT(element_size == 1 || element_size == 2 ||
element_size == 4 || element_size == 8);
// All of the following constructors are supported:
// TypedArray(unsigned long length)
// TypedArray(type[] array)
// TypedArray(TypedArray array)
// TypedArray(ArrayBuffer buffer,
// optional unsigned long byteOffset,
// optional unsigned long length)
Handle<Object> buffer;
int32_t length;
int32_t byteLength;
int32_t byteOffset;
bool init_from_array = false;
if (args.Length() == 0) {
return Throw("Array constructor must have at least one argument");
}
if (args[0]->IsObject() &&
!args[0]->ToObject()->GetHiddenValue(
PerIsolateData::ArrayBufferMarkerPropName_string(isolate)).IsEmpty()) {
// Construct from ArrayBuffer.
buffer = args[0]->ToObject();
int32_t bufferLength = convertToUint(
buffer->Get(PerIsolateData::byteLength_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (args.Length() < 2 || args[1]->IsUndefined()) {
byteOffset = 0;
} else {
byteOffset = convertToUint(args[1], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (byteOffset > bufferLength) {
return Throw("byteOffset out of bounds");
}
if (byteOffset % element_size != 0) {
return Throw("byteOffset must be multiple of element size");
}
}
if (args.Length() < 3 || args[2]->IsUndefined()) {
byteLength = bufferLength - byteOffset;
length = byteLength / element_size;
if (byteLength % element_size != 0) {
return Throw("buffer size must be multiple of element size");
}
} else {
length = convertToUint(args[2], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
byteLength = length * element_size;
if (byteOffset + byteLength > bufferLength) {
return Throw("length out of bounds");
}
}
} else {
if (args[0]->IsObject() &&
args[0]->ToObject()->Has(PerIsolateData::length_string(isolate))) {
// Construct from array.
Local<Value> value =
args[0]->ToObject()->Get(PerIsolateData::length_string(isolate));
if (try_catch.HasCaught()) return try_catch.ReThrow();
length = convertToUint(value, &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
init_from_array = true;
} else {
// Construct from size.
length = convertToUint(args[0], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
}
byteLength = length * element_size;
byteOffset = 0;
Handle<Object> global = Context::GetCurrent()->Global();
Handle<Value> array_buffer =
global->Get(PerIsolateData::ArrayBuffer_string(isolate));
ASSERT(!try_catch.HasCaught() && array_buffer->IsFunction());
Handle<Value> buffer_args[] = { Uint32::New(byteLength, isolate) };
Handle<Value> result = Handle<Function>::Cast(array_buffer)->NewInstance(
1, buffer_args);
if (try_catch.HasCaught()) return result;
buffer = result->ToObject();
}
Handle<Object> array =
CreateExternalArray(isolate, args.This(), buffer, type, length,
byteLength, byteOffset, element_size);
if (init_from_array) {
Handle<Object> init = args[0]->ToObject();
for (int i = 0; i < length; ++i) {
Local<Value> value = init->Get(i);
if (try_catch.HasCaught()) return try_catch.ReThrow();
array->Set(i, value);
}
}
return array;
}
Handle<Value> Shell::ArrayBufferSlice(const Arguments& args) {
TryCatch try_catch;
if (!args.This()->IsObject()) {
return Throw("'slice' invoked on non-object receiver");
}
Isolate* isolate = args.GetIsolate();
Local<Object> self = args.This();
Local<Value> marker = self->GetHiddenValue(
PerIsolateData::ArrayBufferMarkerPropName_string(isolate));
if (marker.IsEmpty()) {
return Throw("'slice' invoked on wrong receiver type");
}
int32_t length = convertToUint(
self->Get(PerIsolateData::byteLength_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (args.Length() == 0) {
return Throw("'slice' must have at least one argument");
}
int32_t begin = convertToInt(args[0], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (begin < 0) begin += length;
if (begin < 0) begin = 0;
if (begin > length) begin = length;
int32_t end;
if (args.Length() < 2 || args[1]->IsUndefined()) {
end = length;
} else {
end = convertToInt(args[1], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (end < 0) end += length;
if (end < 0) end = 0;
if (end > length) end = length;
if (end < begin) end = begin;
}
Local<Function> constructor = Local<Function>::Cast(self->GetConstructor());
Handle<Value> new_args[] = { Uint32::New(end - begin, isolate) };
Handle<Value> result = constructor->NewInstance(1, new_args);
if (try_catch.HasCaught()) return result;
Handle<Object> buffer = result->ToObject();
uint8_t* dest =
static_cast<uint8_t*>(buffer->GetIndexedPropertiesExternalArrayData());
uint8_t* src = begin + static_cast<uint8_t*>(
self->GetIndexedPropertiesExternalArrayData());
memcpy(dest, src, end - begin);
return buffer;
}
Handle<Value> Shell::ArraySubArray(const Arguments& args) {
TryCatch try_catch;
if (!args.This()->IsObject()) {
return Throw("'subarray' invoked on non-object receiver");
}
Isolate* isolate = args.GetIsolate();
Local<Object> self = args.This();
Local<Value> marker =
self->GetHiddenValue(PerIsolateData::ArrayMarkerPropName_string(isolate));
if (marker.IsEmpty()) {
return Throw("'subarray' invoked on wrong receiver type");
}
Handle<Object> buffer =
self->Get(PerIsolateData::buffer_string(isolate))->ToObject();
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t length = convertToUint(
self->Get(PerIsolateData::length_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t byteOffset = convertToUint(
self->Get(PerIsolateData::byteOffset_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t element_size = convertToUint(
self->Get(PerIsolateData::BYTES_PER_ELEMENT_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (args.Length() == 0) {
return Throw("'subarray' must have at least one argument");
}
int32_t begin = convertToInt(args[0], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (begin < 0) begin += length;
if (begin < 0) begin = 0;
if (begin > length) begin = length;
int32_t end;
if (args.Length() < 2 || args[1]->IsUndefined()) {
end = length;
} else {
end = convertToInt(args[1], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (end < 0) end += length;
if (end < 0) end = 0;
if (end > length) end = length;
if (end < begin) end = begin;
}
length = end - begin;
byteOffset += begin * element_size;
Local<Function> constructor = Local<Function>::Cast(self->GetConstructor());
Handle<Value> construct_args[] = {
buffer, Uint32::New(byteOffset, isolate), Uint32::New(length, isolate)
};
return constructor->NewInstance(3, construct_args);
}
Handle<Value> Shell::ArraySet(const Arguments& args) {
TryCatch try_catch;
if (!args.This()->IsObject()) {
return Throw("'set' invoked on non-object receiver");
}
Isolate* isolate = args.GetIsolate();
Local<Object> self = args.This();
Local<Value> marker =
self->GetHiddenValue(PerIsolateData::ArrayMarkerPropName_string(isolate));
if (marker.IsEmpty()) {
return Throw("'set' invoked on wrong receiver type");
}
int32_t length = convertToUint(
self->Get(PerIsolateData::length_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t element_size = convertToUint(
self->Get(PerIsolateData::BYTES_PER_ELEMENT_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (args.Length() == 0) {
return Throw("'set' must have at least one argument");
}
if (!args[0]->IsObject() ||
!args[0]->ToObject()->Has(PerIsolateData::length_string(isolate))) {
return Throw("'set' invoked with non-array argument");
}
Handle<Object> source = args[0]->ToObject();
int32_t source_length = convertToUint(
source->Get(PerIsolateData::length_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t offset;
if (args.Length() < 2 || args[1]->IsUndefined()) {
offset = 0;
} else {
offset = convertToUint(args[1], &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
}
if (offset + source_length > length) {
return Throw("offset or source length out of bounds");
}
int32_t source_element_size;
if (source->GetHiddenValue(
PerIsolateData::ArrayMarkerPropName_string(isolate)).IsEmpty()) {
source_element_size = 0;
} else {
source_element_size = convertToUint(
source->Get(PerIsolateData::BYTES_PER_ELEMENT_string(isolate)),
&try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
}
if (element_size == source_element_size &&
self->GetConstructor()->StrictEquals(source->GetConstructor())) {
// Use memmove on the array buffers.
Handle<Object> buffer =
self->Get(PerIsolateData::buffer_string(isolate))->ToObject();
if (try_catch.HasCaught()) return try_catch.ReThrow();
Handle<Object> source_buffer =
source->Get(PerIsolateData::buffer_string(isolate))->ToObject();
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t byteOffset = convertToUint(
self->Get(PerIsolateData::byteOffset_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t source_byteOffset = convertToUint(
source->Get(PerIsolateData::byteOffset_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
uint8_t* dest = byteOffset + offset * element_size + static_cast<uint8_t*>(
buffer->GetIndexedPropertiesExternalArrayData());
uint8_t* src = source_byteOffset + static_cast<uint8_t*>(
source_buffer->GetIndexedPropertiesExternalArrayData());
memmove(dest, src, source_length * element_size);
} else if (source_element_size == 0) {
// Source is not a typed array, copy element-wise sequentially.
for (int i = 0; i < source_length; ++i) {
self->Set(offset + i, source->Get(i));
if (try_catch.HasCaught()) return try_catch.ReThrow();
}
} else {
// Need to copy element-wise to make the right conversions.
Handle<Object> buffer =
self->Get(PerIsolateData::buffer_string(isolate))->ToObject();
if (try_catch.HasCaught()) return try_catch.ReThrow();
Handle<Object> source_buffer =
source->Get(PerIsolateData::buffer_string(isolate))->ToObject();
if (try_catch.HasCaught()) return try_catch.ReThrow();
if (buffer->StrictEquals(source_buffer)) {
// Same backing store, need to handle overlap correctly.
// This gets a bit tricky in the case of different element sizes
// (which, of course, is extremely unlikely to ever occur in practice).
int32_t byteOffset = convertToUint(
self->Get(PerIsolateData::byteOffset_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
int32_t source_byteOffset = convertToUint(
source->Get(PerIsolateData::byteOffset_string(isolate)), &try_catch);
if (try_catch.HasCaught()) return try_catch.ReThrow();
// Copy as much as we can from left to right.
int i = 0;
int32_t next_dest_offset = byteOffset + (offset + 1) * element_size;
int32_t next_src_offset = source_byteOffset + source_element_size;
while (i < length && next_dest_offset <= next_src_offset) {
self->Set(offset + i, source->Get(i));
++i;
next_dest_offset += element_size;
next_src_offset += source_element_size;
}
// Of what's left, copy as much as we can from right to left.
int j = length - 1;
int32_t dest_offset = byteOffset + (offset + j) * element_size;
int32_t src_offset = source_byteOffset + j * source_element_size;
while (j >= i && dest_offset >= src_offset) {
self->Set(offset + j, source->Get(j));
--j;
dest_offset -= element_size;
src_offset -= source_element_size;
}
// There can be at most 8 entries left in the middle that need buffering
// (because the largest element_size is 8 times the smallest).
ASSERT(j+1 - i <= 8);
Handle<Value> temp[8];
for (int k = i; k <= j; ++k) {
temp[k - i] = source->Get(k);
}
for (int k = i; k <= j; ++k) {
self->Set(offset + k, temp[k - i]);
}
} else {
// Different backing stores, safe to copy element-wise sequentially.
for (int i = 0; i < source_length; ++i)
self->Set(offset + i, source->Get(i));
}
}
return Undefined(args.GetIsolate());
}
void Shell::ExternalArrayWeakCallback(v8::Isolate* isolate,
Persistent<Object>* object,
uint8_t* data) {
HandleScope scope(isolate);
int32_t length = (*object)->Get(
PerIsolateData::byteLength_string(isolate))->Uint32Value();
isolate->AdjustAmountOfExternalAllocatedMemory(-length);
delete[] data;
object->Dispose(isolate);
}
Handle<Value> Shell::Int8Array(const Arguments& args) {
return CreateExternalArray(args, v8::kExternalByteArray, sizeof(int8_t));
}
Handle<Value> Shell::Uint8Array(const Arguments& args) {
return CreateExternalArray(args, kExternalUnsignedByteArray, sizeof(uint8_t));
}
Handle<Value> Shell::Int16Array(const Arguments& args) {
return CreateExternalArray(args, kExternalShortArray, sizeof(int16_t));
}
Handle<Value> Shell::Uint16Array(const Arguments& args) {
return CreateExternalArray(
args, kExternalUnsignedShortArray, sizeof(uint16_t));
}
Handle<Value> Shell::Int32Array(const Arguments& args) {
return CreateExternalArray(args, kExternalIntArray, sizeof(int32_t));
}
Handle<Value> Shell::Uint32Array(const Arguments& args) {
return CreateExternalArray(args, kExternalUnsignedIntArray, sizeof(uint32_t));
}
Handle<Value> Shell::Float32Array(const Arguments& args) {
return CreateExternalArray(
args, kExternalFloatArray, sizeof(float)); // NOLINT
}
Handle<Value> Shell::Float64Array(const Arguments& args) {
return CreateExternalArray(
args, kExternalDoubleArray, sizeof(double)); // NOLINT
}
Handle<Value> Shell::Uint8ClampedArray(const Arguments& args) {
return CreateExternalArray(args, kExternalPixelArray, sizeof(uint8_t));
}
Handle<Value> Shell::Quit(const Arguments& args) {
int exit_code = args[0]->Int32Value();
@ -1412,26 +819,6 @@ class BZip2Decompressor : public v8::StartupDataDecompressor {
#endif
Handle<FunctionTemplate> Shell::CreateArrayBufferTemplate(
InvocationCallback fun) {
Handle<FunctionTemplate> buffer_template = FunctionTemplate::New(fun);
Local<Template> proto_template = buffer_template->PrototypeTemplate();
proto_template->Set(String::New("slice"),
FunctionTemplate::New(ArrayBufferSlice));
return buffer_template;
}
Handle<FunctionTemplate> Shell::CreateArrayTemplate(InvocationCallback fun) {
Handle<FunctionTemplate> array_template = FunctionTemplate::New(fun);
Local<Template> proto_template = array_template->PrototypeTemplate();
proto_template->Set(String::New("set"), FunctionTemplate::New(ArraySet));
proto_template->Set(String::New("subarray"),
FunctionTemplate::New(ArraySubArray));
return array_template;
}
Handle<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Handle<ObjectTemplate> global_template = ObjectTemplate::New();
global_template->Set(String::New("print"), FunctionTemplate::New(Print));
@ -1469,36 +856,6 @@ Handle<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
RealmSharedGet, RealmSharedSet);
global_template->Set(String::New("Realm"), realm_template);
// Bind the handlers for external arrays.
#ifndef V8_SHARED
if (!i::FLAG_harmony_typed_arrays) {
#endif // V8_SHARED
PropertyAttribute attr =
static_cast<PropertyAttribute>(ReadOnly | DontDelete);
global_template->Set(PerIsolateData::ArrayBuffer_string(isolate),
CreateArrayBufferTemplate(ArrayBuffer), attr);
global_template->Set(String::New("Int8Array"),
CreateArrayTemplate(Int8Array), attr);
global_template->Set(String::New("Uint8Array"),
CreateArrayTemplate(Uint8Array), attr);
global_template->Set(String::New("Int16Array"),
CreateArrayTemplate(Int16Array), attr);
global_template->Set(String::New("Uint16Array"),
CreateArrayTemplate(Uint16Array), attr);
global_template->Set(String::New("Int32Array"),
CreateArrayTemplate(Int32Array), attr);
global_template->Set(String::New("Uint32Array"),
CreateArrayTemplate(Uint32Array), attr);
global_template->Set(String::New("Float32Array"),
CreateArrayTemplate(Float32Array), attr);
global_template->Set(String::New("Float64Array"),
CreateArrayTemplate(Float64Array), attr);
global_template->Set(String::New("Uint8ClampedArray"),
CreateArrayTemplate(Uint8ClampedArray), attr);
#ifndef V8_SHARED
}
#endif // V8_SHARED
#if !defined(V8_SHARED) && !defined(_WIN32) && !defined(_WIN64)
Handle<ObjectTemplate> os_templ = ObjectTemplate::New();
AddOSMethods(os_templ);
@ -1705,20 +1062,9 @@ Handle<Value> Shell::ReadBuffer(const Arguments& args) {
if (data == NULL) {
return Throw("Error reading file");
}
Isolate* isolate = args.GetIsolate();
Handle<Object> buffer = Object::New();
buffer->SetHiddenValue(
PerIsolateData::ArrayBufferMarkerPropName_string(isolate), True());
Persistent<Object> persistent_buffer =
Persistent<Object>::New(isolate, buffer);
persistent_buffer.MakeWeak(isolate, data, ExternalArrayWeakCallback);
persistent_buffer.MarkIndependent(isolate);
isolate->AdjustAmountOfExternalAllocatedMemory(length);
buffer->SetIndexedPropertiesToExternalArrayData(
data, kExternalUnsignedByteArray, length);
buffer->Set(PerIsolateData::byteLength_string(isolate),
Int32::New(static_cast<int32_t>(length), isolate), ReadOnly);
Handle<v8::ArrayBuffer> buffer = ArrayBuffer::New(length);
memcpy(buffer->Data(), data, length);
delete[] data;
return buffer;
}

View File

@ -676,7 +676,7 @@ bool Runtime::SetupArrayBuffer(Isolate* isolate,
array_buffer->set_backing_store(data);
Handle<Object> byte_length =
isolate->factory()->NewNumber(static_cast<double>(allocated_length));
isolate->factory()->NewNumberFromSize(allocated_length);
CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
array_buffer->set_byte_length(*byte_length);
return true;