[mjsunit/wasm] Reuse WebAssembly.Memory objects in stress test

In the atomics stress, the search for sequential sequences creates
lots of new WebAssembly.Memory objects. This memory pressure is not
central to this test, so reuse the same memory to make them less
flaky.

R=mstarzinger@chromium.org

Change-Id: I8d135e7b82d572cb1df38f37a4e2f6393f6b2e05
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1697247
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Commit-Queue: Ben Titzer <titzer@chromium.org>
Cr-Commit-Position: refs/heads/master@{#62644}
This commit is contained in:
Ben L. Titzer 2019-07-11 11:52:29 +02:00 committed by Commit Bot
parent 98bc64d3c4
commit 14bfcf7ca3
2 changed files with 757 additions and 851 deletions

View File

@ -9,7 +9,7 @@
// Note that results of this test are flaky by design. While the test is
// deterministic with a fixed seed, bugs may introduce non-determinism.
load("test/mjsunit/wasm/wasm-module-builder.js");
load('test/mjsunit/wasm/wasm-module-builder.js');
const kDebug = false;
@ -22,319 +22,287 @@ const kFirstOpcodeWithoutOutput = 3;
const kLastOpcodeWithoutOutput = 5;
const opCodes = [
kExprI32AtomicLoad,
kExprI32AtomicLoad8U,
kExprI32AtomicLoad16U,
kExprI32AtomicStore,
kExprI32AtomicStore8U,
kExprI32AtomicStore16U,
kExprI32AtomicAdd,
kExprI32AtomicAdd8U,
kExprI32AtomicAdd16U,
kExprI32AtomicSub,
kExprI32AtomicSub8U,
kExprI32AtomicSub16U,
kExprI32AtomicAnd,
kExprI32AtomicAnd8U,
kExprI32AtomicAnd16U,
kExprI32AtomicOr,
kExprI32AtomicOr8U,
kExprI32AtomicOr16U,
kExprI32AtomicXor,
kExprI32AtomicXor8U,
kExprI32AtomicXor16U,
kExprI32AtomicExchange,
kExprI32AtomicExchange8U,
kExprI32AtomicExchange16U
kExprI32AtomicLoad, kExprI32AtomicLoad8U, kExprI32AtomicLoad16U,
kExprI32AtomicStore, kExprI32AtomicStore8U, kExprI32AtomicStore16U,
kExprI32AtomicAdd, kExprI32AtomicAdd8U, kExprI32AtomicAdd16U,
kExprI32AtomicSub, kExprI32AtomicSub8U, kExprI32AtomicSub16U,
kExprI32AtomicAnd, kExprI32AtomicAnd8U, kExprI32AtomicAnd16U,
kExprI32AtomicOr, kExprI32AtomicOr8U, kExprI32AtomicOr16U,
kExprI32AtomicXor, kExprI32AtomicXor8U, kExprI32AtomicXor16U,
kExprI32AtomicExchange, kExprI32AtomicExchange8U, kExprI32AtomicExchange16U
];
const opCodeNames = [
"kExprI32AtomicLoad",
"kExprI32AtomicLoad8U",
"kExprI32AtomicLoad16U",
"kExprI32AtomicStore",
"kExprI32AtomicStore8U",
"kExprI32AtomicStore16U",
"kExprI32AtomicAdd",
"kExprI32AtomicAdd8U",
"kExprI32AtomicAdd16U",
"kExprI32AtomicSub",
"kExprI32AtomicSub8U",
"kExprI32AtomicSub16U",
"kExprI32AtomicAnd",
"kExprI32AtomicAnd8U",
"kExprI32AtomicAnd16U",
"kExprI32AtomicOr",
"kExprI32AtomicOr8U",
"kExprI32AtomicOr16U",
"kExprI32AtomicXor",
"kExprI32AtomicXor8U",
"kExprI32AtomicXor16U",
"kExprI32AtomicExchange",
"kExprI32AtomicExchange8U",
"kExprI32AtomicExchange16U"
'kExprI32AtomicLoad', 'kExprI32AtomicLoad8U',
'kExprI32AtomicLoad16U', 'kExprI32AtomicStore',
'kExprI32AtomicStore8U', 'kExprI32AtomicStore16U',
'kExprI32AtomicAdd', 'kExprI32AtomicAdd8U',
'kExprI32AtomicAdd16U', 'kExprI32AtomicSub',
'kExprI32AtomicSub8U', 'kExprI32AtomicSub16U',
'kExprI32AtomicAnd', 'kExprI32AtomicAnd8U',
'kExprI32AtomicAnd16U', 'kExprI32AtomicOr',
'kExprI32AtomicOr8U', 'kExprI32AtomicOr16U',
'kExprI32AtomicXor', 'kExprI32AtomicXor8U',
'kExprI32AtomicXor16U', 'kExprI32AtomicExchange',
'kExprI32AtomicExchange8U', 'kExprI32AtomicExchange16U'
];
let kMaxMemPages = 10;
let gSharedMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gSharedMemoryView = new Int32Array(gSharedMemory.buffer);
let gPrivateMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gPrivateMemoryView = new Int32Array(gPrivateMemory.buffer);
class Operation {
constructor(opcode, input, offset) {
this.opcode = opcode != undefined ? opcode : Operation.nextOpcode();
this.size = Operation.opcodeToSize(this.opcode);
this.input = input != undefined ? input : Operation.inputForSize(
this.size);
this.offset = offset != undefined ? offset : Operation.offsetForSize(
this.size);
}
constructor(opcode, input, offset) {
this.opcode = opcode != undefined ? opcode : Operation.nextOpcode();
this.size = Operation.opcodeToSize(this.opcode);
this.input = input != undefined ? input : Operation.inputForSize(this.size);
this.offset =
offset != undefined ? offset : Operation.offsetForSize(this.size);
}
static nextOpcode() {
let random = Math.random();
return Math.floor(random * opCodes.length);
}
static nextOpcode() {
let random = Math.random();
return Math.floor(random * opCodes.length);
}
static opcodeToSize(opcode) {
// Instructions are ordered in 32, 8, 16 bits size
return [32, 8, 16][opcode % 3];
}
static opcodeToSize(opcode) {
// Instructions are ordered in 32, 8, 16 bits size
return [32, 8, 16][opcode % 3];
}
static opcodeToAlignment(opcode) {
// Instructions are ordered in 32, 8, 16 bits size
return [2, 0, 1][opcode % 3];
}
static opcodeToAlignment(opcode) {
// Instructions are ordered in 32, 8, 16 bits size
return [2, 0, 1][opcode % 3];
}
static inputForSize(size) {
let random = Math.random();
// Avoid 32 bit overflow for integer here :(
return Math.floor(random * (1 << (size - 1)) * 2);
}
static inputForSize(size) {
let random = Math.random();
// Avoid 32 bit overflow for integer here :(
return Math.floor(random * (1 << (size - 1)) * 2);
}
static offsetForSize(size) {
// Pick an offset in bytes between 0 and 7.
let offset = Math.floor(Math.random() * 8);
// Make sure the offset matches the required alignment by masking out the lower bits.
let size_in_bytes = size / 8;
let mask = ~(size_in_bytes - 1);
return offset & mask;
}
static offsetForSize(size) {
// Pick an offset in bytes between 0 and 7.
let offset = Math.floor(Math.random() * 8);
// Make sure the offset matches the required alignment by masking out the
// lower bits.
let size_in_bytes = size / 8;
let mask = ~(size_in_bytes - 1);
return offset & mask;
}
get wasmOpcode() {
// [opcode, alignment, offset]
return [opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode), this.offset];
}
get wasmOpcode() {
// [opcode, alignment, offset]
return [
opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode),
this.offset
];
}
get hasInput() {
return this.opcode >= kFirstOpcodeWithInput;
}
get hasInput() {
return this.opcode >= kFirstOpcodeWithInput;
}
get hasOutput() {
return this.opcode < kFirstOpcodeWithoutOutput || this.opcode >
kLastOpcodeWithoutOutput;
}
get hasOutput() {
return this.opcode < kFirstOpcodeWithoutOutput ||
this.opcode > kLastOpcodeWithoutOutput;
}
truncateResultBits(low, high) {
// Shift the lower part. For offsets greater four it drops out of the visible window.
let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8);
// The higher part is zero for offset 0, left shifted for [1..3] and right shifted
// for [4..7].
let shiftedH = this.offset == 0 ? 0 :
this.offset >= 4 ? high >>> (this.offset - 4) * 8 : high << ((4 -
this.offset) * 8);
let value = shiftedL | shiftedH;
truncateResultBits(low, high) {
// Shift the lower part. For offsets greater four it drops out of the
// visible window.
let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8);
// The higher part is zero for offset 0, left shifted for [1..3] and right
// shifted for [4..7].
let shiftedH = this.offset == 0 ?
0 :
this.offset >= 4 ? high >>> (this.offset - 4) * 8 :
high << ((4 - this.offset) * 8);
let value = shiftedL | shiftedH;
switch (this.size) {
case 8:
return value & 0xFF;
case 16:
return value & 0xFFFF;
case 32:
return value;
default:
throw "Unexpected size: " + this.size;
}
switch (this.size) {
case 8:
return value & 0xFF;
case 16:
return value & 0xFFFF;
case 32:
return value;
default:
throw 'Unexpected size: ' + this.size;
}
}
static get builder() {
if (!Operation.__builder) {
let builder = new WasmModuleBuilder();
builder.addMemory(1, 1, 1, false);
builder.exportMemoryAs("mem");
Operation.__builder = builder;
}
return Operation.__builder;
static get builder() {
if (!Operation.__builder) {
let builder = new WasmModuleBuilder();
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
Operation.__builder = builder;
}
return Operation.__builder;
}
static get exports() {
if (!Operation.__instance) {
return {};
}
return Operation.__instance.exports;
static get exports() {
if (!Operation.__instance) {
return {};
}
return Operation.__instance.exports;
}
static get memory() {
return Operation.exports.mem;
}
static set instance(instance) {
Operation.__instance = instance;
}
static set instance(instance) {
Operation.__instance = instance;
compute(state) {
let evalFun = Operation.exports[this.key];
if (!evalFun) {
let builder = Operation.builder;
let body = [
// Load address of low 32 bits.
kExprI32Const, 0,
// Load expected value.
kExprGetLocal, 0, kExprI32StoreMem, 2, 0,
// Load address of high 32 bits.
kExprI32Const, 4,
// Load expected value.
kExprGetLocal, 1, kExprI32StoreMem, 2, 0,
// Load address of where our window starts.
kExprI32Const, 0,
// Load input if there is one.
...(this.hasInput ? [kExprGetLocal, 2] : []),
// Perform operation.
kAtomicPrefix, ...this.wasmOpcode,
// Drop output if it had any.
...(this.hasOutput ? [kExprDrop] : []),
// Load resulting value.
kExprI32Const, 0, kExprI32LoadMem, 2, 0,
// Return.
kExprReturn
]
builder.addFunction(this.key, kSig_i_iii)
.addBody(body)
.exportAs(this.key);
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
Operation.instance =
new WebAssembly.Instance(module, {m: {imported_mem: gPrivateMemory}});
evalFun = Operation.exports[this.key];
}
let result = evalFun(state.low, state.high, this.input);
let ta = gPrivateMemoryView;
if (kDebug) {
print(
state.high + ':' + state.low + ' ' + this.toString() + ' -> ' +
ta[1] + ':' + ta[0]);
}
if (result != ta[0]) throw '!';
return {low: ta[0], high: ta[1]};
}
compute(state) {
let evalFun = Operation.exports[this.key];
if (!evalFun) {
let builder = Operation.builder;
let body = [
// Load address of low 32 bits.
kExprI32Const, 0,
// Load expected value.
kExprGetLocal, 0,
kExprI32StoreMem, 2, 0,
// Load address of high 32 bits.
kExprI32Const, 4,
// Load expected value.
kExprGetLocal, 1,
kExprI32StoreMem, 2, 0,
// Load address of where our window starts.
kExprI32Const, 0,
// Load input if there is one.
...(this.hasInput ? [kExprGetLocal, 2] : []),
// Perform operation.
kAtomicPrefix, ...this.wasmOpcode,
// Drop output if it had any.
...(this.hasOutput ? [kExprDrop] : []),
// Load resulting value.
kExprI32Const, 0,
kExprI32LoadMem, 2, 0,
// Return.
kExprReturn
]
builder.addFunction(this.key, kSig_i_iii)
.addBody(body)
.exportAs(this.key);
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
Operation.instance = new WebAssembly.Instance(module);
evalFun = Operation.exports[this.key];
}
let result = evalFun(state.low, state.high, this.input);
let ta = new Int32Array(Operation.memory.buffer);
if (kDebug) {
print(state.high + ":" + state.low + " " + this.toString() +
" -> " + ta[1] + ":" + ta[0]);
}
if (result != ta[0]) throw "!";
return {
low: ta[0],
high: ta[1]
};
}
toString() {
return opCodeNames[this.opcode] + '[+' + this.offset + '] ' + this.input;
}
toString() {
return opCodeNames[this.opcode] + "[+" + this.offset + "] " + this.input;
}
get key() {
return this.opcode + "-" + this.offset;
}
get key() {
return this.opcode + '-' + this.offset;
}
}
class State {
constructor(low, high, indices, count) {
this.low = low;
this.high = high;
this.indices = indices;
this.count = count;
}
constructor(low, high, indices, count) {
this.low = low;
this.high = high;
this.indices = indices;
this.count = count;
}
isFinal() {
return (this.count == kNumberOfWorker * kSequenceLength);
}
isFinal() {
return (this.count == kNumberOfWorker * kSequenceLength);
}
toString() {
return this.high + ":" + this.low + " @ " + this.indices;
}
toString() {
return this.high + ':' + this.low + ' @ ' + this.indices;
}
}
function makeSequenceOfOperations(size) {
let result = new Array(size);
for (let i = 0; i < size; i++) {
result[i] = new Operation();
}
return result;
let result = new Array(size);
for (let i = 0; i < size; i++) {
result[i] = new Operation();
}
return result;
}
function toSLeb128(val) {
let result = [];
while (true) {
let v = val & 0x7f;
val = val >> 7;
let msbIsSet = (v & 0x40) || false;
if (((val == 0) && !msbIsSet) || ((val == -1) && msbIsSet)) {
result.push(v);
break;
}
result.push(v | 0x80);
let result = [];
while (true) {
let v = val & 0x7f;
val = val >> 7;
let msbIsSet = (v & 0x40) || false;
if (((val == 0) && !msbIsSet) || ((val == -1) && msbIsSet)) {
result.push(v);
break;
}
return result;
result.push(v | 0x80);
}
return result;
}
function generateFunctionBodyForSequence(sequence) {
// We expect the int32* to perform ops on as arg 0 and
// the int32* for our value log as arg1. Argument 2 gives
// an int32* we use to count down spinning workers.
let body = [];
// Initially, we spin until all workers start running.
if (!kDebug) {
body.push(
// Decrement the wait count.
kExprGetLocal, 2,
kExprI32Const, 1,
kAtomicPrefix, kExprI32AtomicSub, 2, 0,
// Spin until zero.
kExprLoop, kWasmStmt,
kExprGetLocal, 2,
kAtomicPrefix, kExprI32AtomicLoad, 2, 0,
kExprI32Const, 0,
kExprI32GtU,
kExprBrIf, 0,
kExprEnd
);
}
for (let operation of sequence) {
body.push(
// Pre-load address of results sequence pointer for later.
kExprGetLocal, 1,
// Load address where atomic pointers are stored.
kExprGetLocal, 0,
// Load the second argument if it had any.
...(operation.hasInput ? [kExprI32Const, ...toSLeb128(operation
.input)] : []),
// Perform operation
kAtomicPrefix, ...operation.wasmOpcode,
// Generate fake output in needed.
...(operation.hasOutput ? [] : [kExprI32Const, 0]),
// Store read intermediate to sequence.
kExprI32StoreMem, 2, 0,
// Increment result sequence pointer.
kExprGetLocal, 1,
kExprI32Const, 4,
kExprI32Add,
kExprSetLocal, 1
);
}
// Return end of sequence index.
// We expect the int32* to perform ops on as arg 0 and
// the int32* for our value log as arg1. Argument 2 gives
// an int32* we use to count down spinning workers.
let body = [];
// Initially, we spin until all workers start running.
if (!kDebug) {
body.push(
// Decrement the wait count.
kExprGetLocal, 2, kExprI32Const, 1, kAtomicPrefix, kExprI32AtomicSub, 2,
0,
// Spin until zero.
kExprLoop, kWasmStmt, kExprGetLocal, 2, kAtomicPrefix,
kExprI32AtomicLoad, 2, 0, kExprI32Const, 0, kExprI32GtU, kExprBrIf, 0,
kExprEnd);
}
for (let operation of sequence) {
body.push(
// Pre-load address of results sequence pointer for later.
kExprGetLocal, 1,
kExprReturn);
return body;
// Load address where atomic pointers are stored.
kExprGetLocal, 0,
// Load the second argument if it had any.
...(operation.hasInput ?
[kExprI32Const, ...toSLeb128(operation.input)] :
[]),
// Perform operation
kAtomicPrefix, ...operation.wasmOpcode,
// Generate fake output in needed.
...(operation.hasOutput ? [] : [kExprI32Const, 0]),
// Store read intermediate to sequence.
kExprI32StoreMem, 2, 0,
// Increment result sequence pointer.
kExprGetLocal, 1, kExprI32Const, 4, kExprI32Add, kExprSetLocal, 1);
}
// Return end of sequence index.
body.push(kExprGetLocal, 1, kExprReturn);
return body;
}
function getSequence(start, end) {
return new Int32Array(memory.buffer, start, (end - start) / Int32Array.BYTES_PER_ELEMENT);
return new Int32Array(
gSharedMemory.buffer, start,
(end - start) / Int32Array.BYTES_PER_ELEMENT);
}
function spawnWorkers() {
let workers = [];
for (let i = 0; i < kNumberOfWorker; i++) {
let worker = new Worker(
`onmessage = function(msg) {
let workers = [];
for (let i = 0; i < kNumberOfWorker; i++) {
let worker = new Worker(
`onmessage = function(msg) {
if (msg.module) {
let module = msg.module;
let mem = msg.mem;
@ -348,206 +316,190 @@ function spawnWorkers() {
let result = instance.exports["worker" + index](address, sequence, spin);
postMessage({index: index, sequence: sequence, result: result});
}
}`, {type: 'string'}
);
workers.push(worker);
}
return workers;
}`,
{type: 'string'});
workers.push(worker);
}
return workers;
}
function instantiateModuleInWorkers(workers) {
for (let worker of workers) {
worker.postMessage({
module: module,
mem: memory
});
let msg = worker.getMessage();
if (!msg.instantiated) throw "Worker failed to instantiate";
}
for (let worker of workers) {
worker.postMessage({module: module, mem: gSharedMemory});
let msg = worker.getMessage();
if (!msg.instantiated) throw 'Worker failed to instantiate';
}
}
function executeSequenceInWorkers(workers) {
for (i = 0; i < workers.length; i++) {
let worker = workers[i];
worker.postMessage({
index: i,
address: 0,
spin: 16,
sequence: 32 + ((kSequenceLength * 4) + 32) * i
});
// In debug mode, keep execution sequential.
if (kDebug) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
for (i = 0; i < workers.length; i++) {
let worker = workers[i];
worker.postMessage({
index: i,
address: 0,
spin: 16,
sequence: 32 + ((kSequenceLength * 4) + 32) * i
});
// In debug mode, keep execution sequential.
if (kDebug) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
}
function selectMatchingWorkers(state) {
let matching = [];
let indices = state.indices;
for (let i = 0; i < indices.length; i++) {
let index = indices[i];
if (index >= kSequenceLength) continue;
// We need to project the expected value to the number of bits this
// operation will read at runtime.
let expected = sequences[i][index].truncateResultBits(state.low, state.high);
let hasOutput = sequences[i][index].hasOutput;
if (!hasOutput || (results[i][index] == expected)) {
matching.push(i);
}
let matching = [];
let indices = state.indices;
for (let i = 0; i < indices.length; i++) {
let index = indices[i];
if (index >= kSequenceLength) continue;
// We need to project the expected value to the number of bits this
// operation will read at runtime.
let expected =
sequences[i][index].truncateResultBits(state.low, state.high);
let hasOutput = sequences[i][index].hasOutput;
if (!hasOutput || (results[i][index] == expected)) {
matching.push(i);
}
return matching;
}
return matching;
}
function computeNextState(state, advanceIdx) {
let newIndices = state.indices.slice();
let sequence = sequences[advanceIdx];
let operation = sequence[state.indices[advanceIdx]];
newIndices[advanceIdx]++;
let {
low,
high
} = operation.compute(state);
return new State(low, high, newIndices, state.count + 1);
let newIndices = state.indices.slice();
let sequence = sequences[advanceIdx];
let operation = sequence[state.indices[advanceIdx]];
newIndices[advanceIdx]++;
let {low, high} = operation.compute(state);
return new State(low, high, newIndices, state.count + 1);
}
function findSequentialOrdering() {
let startIndices = new Array(results.length);
let steps = 0;
startIndices.fill(0);
let matchingStates = [new State(0, 0, startIndices, 0)];
while (matchingStates.length > 0) {
let current = matchingStates.pop();
if (kDebug) {
print(current);
}
let matchingResults = selectMatchingWorkers(current);
if (matchingResults.length == 0) {
continue;
}
for (let match of matchingResults) {
let newState = computeNextState(current, match);
if (newState.isFinal()) {
return true;
}
matchingStates.push(newState);
}
if (steps++ > kNumberOfSteps) {
print("Search timed out, aborting...");
return true;
}
let startIndices = new Array(results.length);
let steps = 0;
startIndices.fill(0);
let matchingStates = [new State(0, 0, startIndices, 0)];
while (matchingStates.length > 0) {
let current = matchingStates.pop();
if (kDebug) {
print(current);
}
// We have no options left.
return false;
let matchingResults = selectMatchingWorkers(current);
if (matchingResults.length == 0) {
continue;
}
for (let match of matchingResults) {
let newState = computeNextState(current, match);
if (newState.isFinal()) {
return true;
}
matchingStates.push(newState);
}
if (steps++ > kNumberOfSteps) {
print('Search timed out, aborting...');
return true;
}
}
// We have no options left.
return false;
}
// Helpful for debugging failed tests.
function loadSequencesFromStrings(inputs) {
let reverseOpcodes = {};
for (let i = 0; i < opCodeNames.length; i++) {
reverseOpcodes[opCodeNames[i]] = i;
let reverseOpcodes = {};
for (let i = 0; i < opCodeNames.length; i++) {
reverseOpcodes[opCodeNames[i]] = i;
}
let sequences = [];
let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/;
for (let input of inputs) {
let parts = input.split(',');
let sequence = [];
for (let part of parts) {
let parsed = parseRE.exec(part);
sequence.push(
new Operation(reverseOpcodes[parsed[1]], parsed[3], parsed[2] | 0));
}
let sequences = [];
let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/;
for (let input of inputs) {
let parts = input.split(",");
let sequence = [];
for (let part of parts) {
let parsed = parseRE.exec(part);
sequence.push(new Operation(reverseOpcodes[parsed[1]], parsed[3],
parsed[2] | 0));
}
sequences.push(sequence);
}
return sequences;
sequences.push(sequence);
}
return sequences;
}
// Helpful for debugging failed tests.
function loadResultsFromStrings(inputs) {
let results = [];
for (let input of inputs) {
let parts = input.split(",");
let result = [];
for (let number of parts) {
result.push(number | 0);
}
results.push(result);
let results = [];
for (let input of inputs) {
let parts = input.split(',');
let result = [];
for (let number of parts) {
result.push(number | 0);
}
return results;
results.push(result);
}
return results;
}
let maxSize = 10;
let memory = new WebAssembly.Memory({
initial: 1,
maximum: maxSize,
shared: true
});
let memory_view = new Int32Array(memory.buffer);
let sequences = [];
let results = [];
let builder = new WasmModuleBuilder();
builder.addImportedMemory("m", "imported_mem", 0, maxSize, "shared");
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
for (let i = 0; i < kNumberOfWorker; i++) {
sequences[i] = makeSequenceOfOperations(kSequenceLength);
builder.addFunction("worker" + i, kSig_i_iii)
.addBody(generateFunctionBodyForSequence(sequences[i]))
.exportAs("worker" + i);
sequences[i] = makeSequenceOfOperations(kSequenceLength);
builder.addFunction('worker' + i, kSig_i_iii)
.addBody(generateFunctionBodyForSequence(sequences[i]))
.exportAs('worker' + i);
}
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
let instance = new WebAssembly.Instance(module, {
m: {
imported_mem: memory
}
});
let instance =
new WebAssembly.Instance(module, {m: {imported_mem: gSharedMemory}});
// Spawn off the workers and run the sequences.
let workers = spawnWorkers();
// Set spin count.
memory_view[4] = kNumberOfWorker;
gSharedMemoryView[4] = kNumberOfWorker;
instantiateModuleInWorkers(workers);
executeSequenceInWorkers(workers);
if (!kDebug) {
// Collect results, d8 style.
for (let worker of workers) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
// Collect results, d8 style.
for (let worker of workers) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
// Terminate all workers.
for (let worker of workers) {
worker.terminate();
worker.terminate();
}
// In debug mode, print sequences and results.
if (kDebug) {
for (let result of results) {
print(result);
}
for (let result of results) {
print(result);
}
for (let sequence of sequences) {
print(sequence);
}
for (let sequence of sequences) {
print(sequence);
}
}
// Try to reconstruct a sequential ordering.
let passed = findSequentialOrdering();
if (passed) {
print("PASS");
print('PASS');
} else {
for (let i = 0; i < kNumberOfWorker; i++) {
print("Worker " + i);
print(sequences[i]);
print(results[i]);
}
print("FAIL");
quit(-1);
for (let i = 0; i < kNumberOfWorker; i++) {
print('Worker ' + i);
print(sequences[i]);
print(results[i]);
}
print('FAIL');
quit(-1);
}

View File

@ -9,7 +9,7 @@
// Note that results of this test are flaky by design. While the test is
// deterministic with a fixed seed, bugs may introduce non-determinism.
load("test/mjsunit/wasm/wasm-module-builder.js");
load('test/mjsunit/wasm/wasm-module-builder.js');
const kDebug = false;
@ -22,358 +22,328 @@ const kFirstOpcodeWithoutOutput = 4;
const kLastOpcodeWithoutOutput = 7;
const opCodes = [
kExprI64AtomicLoad,
kExprI64AtomicLoad8U,
kExprI64AtomicLoad16U,
kExprI64AtomicLoad32U,
kExprI64AtomicStore,
kExprI64AtomicStore8U,
kExprI64AtomicStore16U,
kExprI64AtomicStore32U,
kExprI64AtomicAdd,
kExprI64AtomicAdd8U,
kExprI64AtomicAdd16U,
kExprI64AtomicAdd32U,
kExprI64AtomicSub,
kExprI64AtomicSub8U,
kExprI64AtomicSub16U,
kExprI64AtomicSub32U,
kExprI64AtomicAnd,
kExprI64AtomicAnd8U,
kExprI64AtomicAnd16U,
kExprI64AtomicAnd32U,
kExprI64AtomicOr,
kExprI64AtomicOr8U,
kExprI64AtomicOr16U,
kExprI64AtomicOr32U,
kExprI64AtomicXor,
kExprI64AtomicXor8U,
kExprI64AtomicXor16U,
kExprI64AtomicXor32U,
kExprI64AtomicExchange,
kExprI64AtomicExchange8U,
kExprI64AtomicExchange16U,
kExprI64AtomicExchange32U
kExprI64AtomicLoad, kExprI64AtomicLoad8U, kExprI64AtomicLoad16U,
kExprI64AtomicLoad32U, kExprI64AtomicStore, kExprI64AtomicStore8U,
kExprI64AtomicStore16U, kExprI64AtomicStore32U, kExprI64AtomicAdd,
kExprI64AtomicAdd8U, kExprI64AtomicAdd16U, kExprI64AtomicAdd32U,
kExprI64AtomicSub, kExprI64AtomicSub8U, kExprI64AtomicSub16U,
kExprI64AtomicSub32U, kExprI64AtomicAnd, kExprI64AtomicAnd8U,
kExprI64AtomicAnd16U, kExprI64AtomicAnd32U, kExprI64AtomicOr,
kExprI64AtomicOr8U, kExprI64AtomicOr16U, kExprI64AtomicOr32U,
kExprI64AtomicXor, kExprI64AtomicXor8U, kExprI64AtomicXor16U,
kExprI64AtomicXor32U, kExprI64AtomicExchange, kExprI64AtomicExchange8U,
kExprI64AtomicExchange16U, kExprI64AtomicExchange32U
];
const opCodeNames = [
"kExprI64AtomicLoad",
"kExprI64AtomicLoad8U",
"kExprI64AtomicLoad16U",
"kExprI64AtomicLoad32U",
"kExprI64AtomicStore",
"kExprI64AtomicStore8U",
"kExprI64AtomicStore16U",
"kExprI64AtomicStore32U",
"kExprI64AtomicAdd",
"kExprI64AtomicAdd8U",
"kExprI64AtomicAdd16U",
"kExprI64AtomicAdd32U",
"kExprI64AtomicSub",
"kExprI64AtomicSub8U",
"kExprI64AtomicSub16U",
"kExprI64AtomicSub32U",
"kExprI64AtomicAnd",
"kExprI64AtomicAnd8U",
"kExprI64AtomicAnd16U",
"kExprI64AtomicAnd32U",
"kExprI64AtomicOr",
"kExprI64AtomicOr8U",
"kExprI64AtomicOr16U",
"kExprI64AtomicOr32U",
"kExprI64AtomicXor",
"kExprI64AtomicXor8U",
"kExprI64AtomicXor16U",
"kExprI64AtomicXor32U",
"kExprI64AtomicExchange",
"kExprI64AtomicExchange8U",
"kExprI64AtomicExchange16U",
"kExprI64AtomicExchange32U"
'kExprI64AtomicLoad', 'kExprI64AtomicLoad8U',
'kExprI64AtomicLoad16U', 'kExprI64AtomicLoad32U',
'kExprI64AtomicStore', 'kExprI64AtomicStore8U',
'kExprI64AtomicStore16U', 'kExprI64AtomicStore32U',
'kExprI64AtomicAdd', 'kExprI64AtomicAdd8U',
'kExprI64AtomicAdd16U', 'kExprI64AtomicAdd32U',
'kExprI64AtomicSub', 'kExprI64AtomicSub8U',
'kExprI64AtomicSub16U', 'kExprI64AtomicSub32U',
'kExprI64AtomicAnd', 'kExprI64AtomicAnd8U',
'kExprI64AtomicAnd16U', 'kExprI64AtomicAnd32U',
'kExprI64AtomicOr', 'kExprI64AtomicOr8U',
'kExprI64AtomicOr16U', 'kExprI64AtomicOr32U',
'kExprI64AtomicXor', 'kExprI64AtomicXor8U',
'kExprI64AtomicXor16U', 'kExprI64AtomicXor32U',
'kExprI64AtomicExchange', 'kExprI64AtomicExchange8U',
'kExprI64AtomicExchange16U', 'kExprI64AtomicExchange32U'
];
let kMaxMemPages = 10;
let gSharedMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gSharedMemoryView = new Int32Array(gSharedMemory.buffer);
let gPrivateMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gPrivateMemoryView = new Int32Array(gPrivateMemory.buffer);
const kMaxInt32 = (1 << 31) * 2;
class Operation {
constructor(opcode, low_input, high_input, offset) {
this.opcode = opcode != undefined ? opcode : Operation.nextOpcode();
this.size = Operation.opcodeToSize(this.opcode);
if (low_input == undefined) {
[low_input, high_input] = Operation.inputForSize(this.size);
}
this.low_input = low_input;
this.high_input = high_input;
this.offset = offset != undefined ? offset : Operation.offsetForSize(
this.size);
constructor(opcode, low_input, high_input, offset) {
this.opcode = opcode != undefined ? opcode : Operation.nextOpcode();
this.size = Operation.opcodeToSize(this.opcode);
if (low_input == undefined) {
[low_input, high_input] = Operation.inputForSize(this.size);
}
this.low_input = low_input;
this.high_input = high_input;
this.offset =
offset != undefined ? offset : Operation.offsetForSize(this.size);
}
static nextOpcode() {
let random = Math.random();
return Math.floor(random * opCodes.length);
static nextOpcode() {
let random = Math.random();
return Math.floor(random * opCodes.length);
}
static opcodeToSize(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [64, 8, 16, 32][opcode % 4];
}
static opcodeToAlignment(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [3, 0, 1, 2][opcode % 4];
}
static inputForSize(size) {
if (size <= 32) {
let random = Math.random();
// Avoid 32 bit overflow for integer here :(
return [Math.floor(random * (1 << (size - 1)) * 2), 0];
}
return [
Math.floor(Math.random() * kMaxInt32),
Math.floor(Math.random() * kMaxInt32)
];
}
static opcodeToSize(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [64, 8, 16, 32][opcode % 4];
static offsetForSize(size) {
// Pick an offset in bytes between 0 and 8.
let offset = Math.floor(Math.random() * 8);
// Make sure the offset matches the required alignment by masking out the
// lower bits.
let size_in_bytes = size / 8;
let mask = ~(size_in_bytes - 1);
return offset & mask;
}
get wasmOpcode() {
// [opcode, alignment, offset]
return [
opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode),
this.offset
];
}
get hasInput() {
return this.opcode >= kFirstOpcodeWithInput;
}
get hasOutput() {
return this.opcode < kFirstOpcodeWithoutOutput ||
this.opcode > kLastOpcodeWithoutOutput;
}
truncateResultBits(low, high) {
if (this.size == 64)
return [low, high]
// Shift the lower part. For offsets greater four it drops out of the
// visible window.
let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8);
// The higher part is zero for offset 0, left shifted for [1..3] and right
// shifted for [4..7].
let shiftedH = this.offset == 0 ?
0 :
this.offset >= 4 ? high >>> (this.offset - 4) * 8 :
high << ((4 - this.offset) * 8);
let value = shiftedL | shiftedH;
switch (this.size) {
case 8:
return [value & 0xFF, 0];
case 16:
return [value & 0xFFFF, 0];
case 32:
return [value, 0];
default:
throw 'Unexpected size: ' + this.size;
}
}
static opcodeToAlignment(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [3, 0, 1, 2][opcode % 4];
static get builder() {
if (!Operation.__builder) {
let builder = new WasmModuleBuilder();
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
Operation.__builder = builder;
}
return Operation.__builder;
}
static inputForSize(size) {
if (size <= 32) {
let random = Math.random();
// Avoid 32 bit overflow for integer here :(
return [Math.floor(random * (1 << (size - 1)) * 2), 0];
}
return [Math.floor(Math.random() * kMaxInt32), Math.floor(Math.random() *
kMaxInt32)];
static get exports() {
if (!Operation.__instance) {
return {};
}
return Operation.__instance.exports;
}
static offsetForSize(size) {
// Pick an offset in bytes between 0 and 8.
let offset = Math.floor(Math.random() * 8);
// Make sure the offset matches the required alignment by masking out the lower bits.
let size_in_bytes = size / 8;
let mask = ~(size_in_bytes - 1);
return offset & mask;
static get memory() {
return Operation.exports.mem;
}
static set instance(instance) {
Operation.__instance = instance;
}
compute(state) {
let evalFun = Operation.exports[this.key];
if (!evalFun) {
let builder = Operation.builder;
let body = [
// Load address of low 32 bits.
kExprI32Const, 0,
// Load expected value.
kExprGetLocal, 0, kExprI32StoreMem, 2, 0,
// Load address of high 32 bits.
kExprI32Const, 4,
// Load expected value.
kExprGetLocal, 1, kExprI32StoreMem, 2, 0,
// Load address of where our window starts.
kExprI32Const, 0,
// Load input if there is one.
...(this.hasInput ?
[
kExprGetLocal, 3, kExprI64UConvertI32, kExprI64Const, 32,
kExprI64Shl, kExprGetLocal, 2, kExprI64UConvertI32,
kExprI64Ior
] :
[]),
// Perform operation.
kAtomicPrefix, ...this.wasmOpcode,
// Drop output if it had any.
...(this.hasOutput ? [kExprDrop] : []),
// Return.
kExprReturn
]
builder.addFunction(this.key, kSig_v_iiii)
.addBody(body)
.exportAs(this.key);
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
Operation.instance =
new WebAssembly.Instance(module, {m: {imported_mem: gPrivateMemory}});
evalFun = Operation.exports[this.key];
}
get wasmOpcode() {
// [opcode, alignment, offset]
return [opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode), this.offset];
evalFun(state.low, state.high, this.low_input, this.high_input);
let ta = gPrivateMemoryView;
if (kDebug) {
print(
state.high + ':' + state.low + ' ' + this.toString() + ' -> ' +
ta[1] + ':' + ta[0]);
}
return {low: ta[0], high: ta[1]};
}
get hasInput() {
return this.opcode >= kFirstOpcodeWithInput;
}
toString() {
return opCodeNames[this.opcode] + '[+' + this.offset + '] ' +
this.high_input + ':' + this.low_input;
}
get hasOutput() {
return this.opcode < kFirstOpcodeWithoutOutput || this.opcode >
kLastOpcodeWithoutOutput;
}
truncateResultBits(low, high) {
if (this.size == 64) return [low, high]
// Shift the lower part. For offsets greater four it drops out of the visible window.
let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8);
// The higher part is zero for offset 0, left shifted for [1..3] and right shifted
// for [4..7].
let shiftedH = this.offset == 0 ? 0 :
this.offset >= 4 ? high >>> (this.offset - 4) * 8 : high << ((4 -
this.offset) * 8);
let value = shiftedL | shiftedH;
switch (this.size) {
case 8:
return [value & 0xFF, 0];
case 16:
return [value & 0xFFFF, 0];
case 32:
return [value, 0];
default:
throw "Unexpected size: " + this.size;
}
}
static get builder() {
if (!Operation.__builder) {
let builder = new WasmModuleBuilder();
builder.addMemory(1, 1, 1, false);
builder.exportMemoryAs("mem");
Operation.__builder = builder;
}
return Operation.__builder;
}
static get exports() {
if (!Operation.__instance) {
return {};
}
return Operation.__instance.exports;
}
static get memory() {
return Operation.exports.mem;
}
static set instance(instance) {
Operation.__instance = instance;
}
compute(state) {
let evalFun = Operation.exports[this.key];
if (!evalFun) {
let builder = Operation.builder;
let body = [
// Load address of low 32 bits.
kExprI32Const, 0,
// Load expected value.
kExprGetLocal, 0,
kExprI32StoreMem, 2, 0,
// Load address of high 32 bits.
kExprI32Const, 4,
// Load expected value.
kExprGetLocal, 1,
kExprI32StoreMem, 2, 0,
// Load address of where our window starts.
kExprI32Const, 0,
// Load input if there is one.
...(this.hasInput ? [kExprGetLocal, 3,
kExprI64UConvertI32,
kExprI64Const, 32,
kExprI64Shl,
kExprGetLocal, 2,
kExprI64UConvertI32,
kExprI64Ior
] : []),
// Perform operation.
kAtomicPrefix, ...this.wasmOpcode,
// Drop output if it had any.
...(this.hasOutput ? [kExprDrop] : []),
// Return.
kExprReturn
]
builder.addFunction(this.key, kSig_v_iiii)
.addBody(body)
.exportAs(this.key);
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
Operation.instance = new WebAssembly.Instance(module);
evalFun = Operation.exports[this.key];
}
evalFun(state.low, state.high, this.low_input, this.high_input);
let ta = new Int32Array(Operation.memory.buffer);
if (kDebug) {
print(state.high + ":" + state.low + " " + this.toString() +
" -> " + ta[1] + ":" + ta[0]);
}
return {
low: ta[0],
high: ta[1]
};
}
toString() {
return opCodeNames[this.opcode] + "[+" + this.offset + "] " + this.high_input +
":" + this.low_input;
}
get key() {
return this.opcode + "-" + this.offset;
}
get key() {
return this.opcode + '-' + this.offset;
}
}
class State {
constructor(low, high, indices, count) {
this.low = low;
this.high = high;
this.indices = indices;
this.count = count;
}
constructor(low, high, indices, count) {
this.low = low;
this.high = high;
this.indices = indices;
this.count = count;
}
isFinal() {
return (this.count == kNumberOfWorker * kSequenceLength);
}
isFinal() {
return (this.count == kNumberOfWorker * kSequenceLength);
}
toString() {
return this.high + ":" + this.low + " @ " + this.indices;
}
toString() {
return this.high + ':' + this.low + ' @ ' + this.indices;
}
}
function makeSequenceOfOperations(size) {
let result = new Array(size);
for (let i = 0; i < size; i++) {
result[i] = new Operation();
}
return result;
let result = new Array(size);
for (let i = 0; i < size; i++) {
result[i] = new Operation();
}
return result;
}
function toSLeb128(low, high) {
let result = [];
while (true) {
let v = low & 0x7f;
// For low, fill up with zeros, high will add extra bits.
low = low >>> 7;
if (high != 0) {
let shiftIn = high << (32 - 7);
low = low | shiftIn;
// For high, fill up with ones, so that we keep trailing one.
high = high >> 7;
}
let msbIsSet = (v & 0x40) || false;
if (((low == 0) && (high == 0) && !msbIsSet) || ((low == -1) && (high ==
-1) && msbIsSet)) {
result.push(v);
break;
}
result.push(v | 0x80);
let result = [];
while (true) {
let v = low & 0x7f;
// For low, fill up with zeros, high will add extra bits.
low = low >>> 7;
if (high != 0) {
let shiftIn = high << (32 - 7);
low = low | shiftIn;
// For high, fill up with ones, so that we keep trailing one.
high = high >> 7;
}
return result;
let msbIsSet = (v & 0x40) || false;
if (((low == 0) && (high == 0) && !msbIsSet) ||
((low == -1) && (high == -1) && msbIsSet)) {
result.push(v);
break;
}
result.push(v | 0x80);
}
return result;
}
function generateFunctionBodyForSequence(sequence) {
// We expect the int64* to perform ops on as arg 0 and
// the int64* for our value log as arg1. Argument 2 gives
// an int32* we use to count down spinning workers.
let body = [];
// Initially, we spin until all workers start running.
if (!kDebug) {
body.push(
// Decrement the wait count.
kExprGetLocal, 2,
kExprI32Const, 1,
kAtomicPrefix, kExprI32AtomicSub, 2, 0,
// Spin until zero.
kExprLoop, kWasmStmt,
kExprGetLocal, 2,
kAtomicPrefix, kExprI32AtomicLoad, 2, 0,
kExprI32Const, 0,
kExprI32GtU,
kExprBrIf, 0,
kExprEnd
);
}
for (let operation of sequence) {
body.push(
// Pre-load address of results sequence pointer for later.
kExprGetLocal, 1,
// Load address where atomic pointers are stored.
kExprGetLocal, 0,
// Load the second argument if it had any.
...(operation.hasInput ? [kExprI64Const, ...toSLeb128(operation
.low_input, operation.high_input)] : []),
// Perform operation
kAtomicPrefix, ...operation.wasmOpcode,
// Generate fake output in needed.
...(operation.hasOutput ? [] : [kExprI64Const, 0]),
// Store read intermediate to sequence.
kExprI64StoreMem, 3, 0,
// Increment result sequence pointer.
kExprGetLocal, 1,
kExprI32Const, 8,
kExprI32Add,
kExprSetLocal, 1
);
}
// Return end of sequence index.
// We expect the int64* to perform ops on as arg 0 and
// the int64* for our value log as arg1. Argument 2 gives
// an int32* we use to count down spinning workers.
let body = [];
// Initially, we spin until all workers start running.
if (!kDebug) {
body.push(
// Decrement the wait count.
kExprGetLocal, 2, kExprI32Const, 1, kAtomicPrefix, kExprI32AtomicSub, 2,
0,
// Spin until zero.
kExprLoop, kWasmStmt, kExprGetLocal, 2, kAtomicPrefix,
kExprI32AtomicLoad, 2, 0, kExprI32Const, 0, kExprI32GtU, kExprBrIf, 0,
kExprEnd);
}
for (let operation of sequence) {
body.push(
// Pre-load address of results sequence pointer for later.
kExprGetLocal, 1,
kExprReturn);
return body;
// Load address where atomic pointers are stored.
kExprGetLocal, 0,
// Load the second argument if it had any.
...(operation.hasInput ?
[
kExprI64Const,
...toSLeb128(operation.low_input, operation.high_input)
] :
[]),
// Perform operation
kAtomicPrefix, ...operation.wasmOpcode,
// Generate fake output in needed.
...(operation.hasOutput ? [] : [kExprI64Const, 0]),
// Store read intermediate to sequence.
kExprI64StoreMem, 3, 0,
// Increment result sequence pointer.
kExprGetLocal, 1, kExprI32Const, 8, kExprI32Add, kExprSetLocal, 1);
}
// Return end of sequence index.
body.push(kExprGetLocal, 1, kExprReturn);
return body;
}
function getSequence(start, end) {
return new Int32Array(memory.buffer, start, (end - start) / Int32Array.BYTES_PER_ELEMENT);
return new Int32Array(
gSharedMemory.buffer, start,
(end - start) / Int32Array.BYTES_PER_ELEMENT);
}
function spawnWorkers() {
let workers = [];
for (let i = 0; i < kNumberOfWorker; i++) {
let worker = new Worker(
`onmessage = function(msg) {
let workers = [];
for (let i = 0; i < kNumberOfWorker; i++) {
let worker = new Worker(
`onmessage = function(msg) {
if (msg.module) {
let module = msg.module;
let mem = msg.mem;
@ -387,209 +357,193 @@ function spawnWorkers() {
let result = instance.exports["worker" + index](address, sequence, spin);
postMessage({index: index, sequence: sequence, result: result});
}
}`, {type: 'string'}
);
workers.push(worker);
}
return workers;
}`,
{type: 'string'});
workers.push(worker);
}
return workers;
}
function instantiateModuleInWorkers(workers) {
for (let worker of workers) {
worker.postMessage({
module: module,
mem: memory
});
let msg = worker.getMessage();
if (!msg.instantiated) throw "Worker failed to instantiate";
}
for (let worker of workers) {
worker.postMessage({module: module, mem: gSharedMemory});
let msg = worker.getMessage();
if (!msg.instantiated) throw 'Worker failed to instantiate';
}
}
function executeSequenceInWorkers(workers) {
for (i = 0; i < workers.length; i++) {
let worker = workers[i];
worker.postMessage({
index: i,
address: 0,
spin: 16,
sequence: 32 + ((kSequenceLength * 8) + 32) * i
});
// In debug mode, keep execution sequential.
if (kDebug) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
for (i = 0; i < workers.length; i++) {
let worker = workers[i];
worker.postMessage({
index: i,
address: 0,
spin: 16,
sequence: 32 + ((kSequenceLength * 8) + 32) * i
});
// In debug mode, keep execution sequential.
if (kDebug) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
}
function selectMatchingWorkers(state) {
let matching = [];
let indices = state.indices;
for (let i = 0; i < indices.length; i++) {
let index = indices[i];
if (index >= kSequenceLength) continue;
// We need to project the expected value to the number of bits this
// operation will read at runtime.
let [expected_low, expected_high] = sequences[i][index].truncateResultBits(
state.low, state.high);
let hasOutput = sequences[i][index].hasOutput;
if (!hasOutput || ((results[i][index * 2] == expected_low) && (results[
i][index * 2 + 1] == expected_high))) {
matching.push(i);
}
let matching = [];
let indices = state.indices;
for (let i = 0; i < indices.length; i++) {
let index = indices[i];
if (index >= kSequenceLength) continue;
// We need to project the expected value to the number of bits this
// operation will read at runtime.
let [expected_low, expected_high] =
sequences[i][index].truncateResultBits(state.low, state.high);
let hasOutput = sequences[i][index].hasOutput;
if (!hasOutput ||
((results[i][index * 2] == expected_low) &&
(results[i][index * 2 + 1] == expected_high))) {
matching.push(i);
}
return matching;
}
return matching;
}
function computeNextState(state, advanceIdx) {
let newIndices = state.indices.slice();
let sequence = sequences[advanceIdx];
let operation = sequence[state.indices[advanceIdx]];
newIndices[advanceIdx]++;
let {
low,
high
} = operation.compute(state);
let newIndices = state.indices.slice();
let sequence = sequences[advanceIdx];
let operation = sequence[state.indices[advanceIdx]];
newIndices[advanceIdx]++;
let {low, high} = operation.compute(state);
return new State(low, high, newIndices, state.count + 1);
return new State(low, high, newIndices, state.count + 1);
}
function findSequentialOrdering() {
let startIndices = new Array(results.length);
let steps = 0;
startIndices.fill(0);
let matchingStates = [new State(0, 0, startIndices, 0)];
while (matchingStates.length > 0) {
let current = matchingStates.pop();
if (kDebug) {
print(current);
}
let matchingResults = selectMatchingWorkers(current);
if (matchingResults.length == 0) {
continue;
}
for (let match of matchingResults) {
let newState = computeNextState(current, match);
if (newState.isFinal()) {
return true;
}
matchingStates.push(newState);
}
if (steps++ > kNumberOfSteps) {
print("Search timed out, aborting...");
return true;
}
let startIndices = new Array(results.length);
let steps = 0;
startIndices.fill(0);
let matchingStates = [new State(0, 0, startIndices, 0)];
while (matchingStates.length > 0) {
let current = matchingStates.pop();
if (kDebug) {
print(current);
}
// We have no options left.
return false;
let matchingResults = selectMatchingWorkers(current);
if (matchingResults.length == 0) {
continue;
}
for (let match of matchingResults) {
let newState = computeNextState(current, match);
if (newState.isFinal()) {
return true;
}
matchingStates.push(newState);
}
if (steps++ > kNumberOfSteps) {
print('Search timed out, aborting...');
return true;
}
}
// We have no options left.
return false;
}
// Helpful for debugging failed tests.
function loadSequencesFromStrings(inputs) {
let reverseOpcodes = {};
for (let i = 0; i < opCodeNames.length; i++) {
reverseOpcodes[opCodeNames[i]] = i;
let reverseOpcodes = {};
for (let i = 0; i < opCodeNames.length; i++) {
reverseOpcodes[opCodeNames[i]] = i;
}
let sequences = [];
let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/;
for (let input of inputs) {
let parts = input.split(',');
let sequence = [];
for (let part of parts) {
let parsed = parseRE.exec(part);
sequence.push(
new Operation(reverseOpcodes[parsed[1]], parsed[3], parsed[2] | 0));
}
let sequences = [];
let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/;
for (let input of inputs) {
let parts = input.split(",");
let sequence = [];
for (let part of parts) {
let parsed = parseRE.exec(part);
sequence.push(new Operation(reverseOpcodes[parsed[1]], parsed[3],
parsed[2] | 0));
}
sequences.push(sequence);
}
return sequences;
sequences.push(sequence);
}
return sequences;
}
// Helpful for debugging failed tests.
function loadResultsFromStrings(inputs) {
let results = [];
for (let input of inputs) {
let parts = input.split(",");
let result = [];
for (let number of parts) {
result.push(number | 0);
}
results.push(result);
let results = [];
for (let input of inputs) {
let parts = input.split(',');
let result = [];
for (let number of parts) {
result.push(number | 0);
}
return results;
results.push(result);
}
return results;
}
let maxSize = 10;
let memory = new WebAssembly.Memory({
initial: 1,
maximum: maxSize,
shared: true
});
let memory_view = new Int32Array(memory.buffer);
let sequences = [];
let results = [];
let builder = new WasmModuleBuilder();
builder.addImportedMemory("m", "imported_mem", 0, maxSize, "shared");
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
for (let i = 0; i < kNumberOfWorker; i++) {
sequences[i] = makeSequenceOfOperations(kSequenceLength);
builder.addFunction("worker" + i, kSig_i_iii)
.addBody(generateFunctionBodyForSequence(sequences[i]))
.exportAs("worker" + i);
sequences[i] = makeSequenceOfOperations(kSequenceLength);
builder.addFunction('worker' + i, kSig_i_iii)
.addBody(generateFunctionBodyForSequence(sequences[i]))
.exportAs('worker' + i);
}
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
let instance = new WebAssembly.Instance(module, {
m: {
imported_mem: memory
}
});
let instance =
new WebAssembly.Instance(module, {m: {imported_mem: gSharedMemory}});
// Spawn off the workers and run the sequences.
let workers = spawnWorkers();
// Set spin count.
memory_view[4] = kNumberOfWorker;
gSharedMemoryView[4] = kNumberOfWorker;
instantiateModuleInWorkers(workers);
executeSequenceInWorkers(workers);
if (!kDebug) {
// Collect results, d8 style.
for (let worker of workers) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
// Collect results, d8 style.
for (let worker of workers) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
// Terminate all workers.
for (let worker of workers) {
worker.terminate();
worker.terminate();
}
// In debug mode, print sequences and results.
if (kDebug) {
for (let result of results) {
print(result);
}
for (let result of results) {
print(result);
}
for (let sequence of sequences) {
print(sequence);
}
for (let sequence of sequences) {
print(sequence);
}
}
// Try to reconstruct a sequential ordering.
let passed = findSequentialOrdering();
if (passed) {
print("PASS");
print('PASS');
} else {
for (let i = 0; i < kNumberOfWorker; i++) {
print("Worker " + i);
print(sequences[i]);
print(results[i]);
}
print("FAIL");
quit(-1);
for (let i = 0; i < kNumberOfWorker; i++) {
print('Worker ' + i);
print(sequences[i]);
print(results[i]);
}
print('FAIL');
quit(-1);
}