[handles] Sanitize Handle and friends.

Bunch of cleanups to allow us to get rid of handles-inl.h at some
point (in the not so far future); but more importantly to sanitize uses
of handles and prepare for handle canonicalization support.

R=yangguo@chromium.org

Committed: https://crrev.com/3283195d0408333cce552cf4087577e6f41054e5
Cr-Commit-Position: refs/heads/master@{#28222}

Committed: https://crrev.com/d940c6d3bcc227b459cb4123d9a8332d9ed0d5f8
Cr-Commit-Position: refs/heads/master@{#29666}

Review URL: https://codereview.chromium.org/1128533002

Cr-Commit-Position: refs/heads/master@{#29675}
This commit is contained in:
bmeurer 2015-07-15 04:05:00 -07:00 committed by Commit bot
parent 207fbbbe32
commit 199e30d36f
7 changed files with 206 additions and 230 deletions

View File

@ -3797,7 +3797,8 @@ MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) {
isolate, self, toStringTag).ToHandle(&tag);
RETURN_ON_FAILED_EXECUTION(String);
if (tag->IsString()) {
class_name = i::Handle<i::String>::cast(tag).EscapeFrom(&handle_scope);
class_name = Utils::OpenHandle(*handle_scope.Escape(
Utils::ToLocal(i::Handle<i::String>::cast(tag))));
}
}
const char* prefix = "[object ";

View File

@ -308,17 +308,6 @@ OPEN_HANDLE_LIST(DECLARE_OPEN_HANDLE)
};
template <class T>
v8::internal::Handle<T> v8::internal::Handle<T>::EscapeFrom(
v8::EscapableHandleScope* scope) {
v8::internal::Handle<T> handle;
if (!is_null()) {
handle = *this;
}
return Utils::OpenHandle(*scope->Escape(Utils::ToLocal(handle)), true);
}
template <class T>
inline T* ToApi(v8::internal::Handle<v8::internal::Object> obj) {
return reinterpret_cast<T*>(obj.location());

View File

@ -1,7 +1,6 @@
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#ifndef V8_HANDLES_INL_H_
#define V8_HANDLES_INL_H_
@ -14,72 +13,8 @@
namespace v8 {
namespace internal {
template<typename T>
Handle<T>::Handle(T* obj) {
location_ = HandleScope::CreateHandle(obj->GetIsolate(), obj);
}
template<typename T>
Handle<T>::Handle(T* obj, Isolate* isolate) {
location_ = HandleScope::CreateHandle(isolate, obj);
}
template <typename T>
inline bool Handle<T>::is_identical_to(const Handle<T> o) const {
// Dereferencing deferred handles to check object equality is safe.
SLOW_DCHECK(
(location_ == NULL || IsDereferenceAllowed(NO_DEFERRED_CHECK)) &&
(o.location_ == NULL || o.IsDereferenceAllowed(NO_DEFERRED_CHECK)));
if (location_ == o.location_) return true;
if (location_ == NULL || o.location_ == NULL) return false;
return *location_ == *o.location_;
}
template <typename T>
inline T* Handle<T>::operator*() const {
SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return *bit_cast<T**>(location_);
}
template <typename T>
inline T** Handle<T>::location() const {
SLOW_DCHECK(location_ == NULL ||
IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return location_;
}
#ifdef DEBUG
template <typename T>
bool Handle<T>::IsDereferenceAllowed(DereferenceCheckMode mode) const {
DCHECK(location_ != NULL);
Object* object = *bit_cast<T**>(location_);
if (object->IsSmi()) return true;
HeapObject* heap_object = HeapObject::cast(object);
Heap* heap = heap_object->GetHeap();
Object** handle = reinterpret_cast<Object**>(location_);
Object** roots_array_start = heap->roots_array_start();
if (roots_array_start <= handle &&
handle < roots_array_start + Heap::kStrongRootListLength &&
heap->RootCanBeTreatedAsConstant(
static_cast<Heap::RootListIndex>(handle - roots_array_start))) {
return true;
}
if (!AllowHandleDereference::IsAllowed()) return false;
if (mode == INCLUDE_DEFERRED_CHECK &&
!AllowDeferredHandleDereference::IsAllowed()) {
// Accessing cells, maps and internalized strings is safe.
if (heap_object->IsCell()) return true;
if (heap_object->IsMap()) return true;
if (heap_object->IsInternalizedString()) return true;
return !heap->isolate()->IsDeferredHandle(handle);
}
return true;
}
#endif
HandleBase::HandleBase(Object* object, Isolate* isolate)
: location_(HandleScope::CreateHandle(isolate, object)) {}
HandleScope::HandleScope(Isolate* isolate) {
@ -136,7 +71,7 @@ Handle<T> HandleScope::CloseAndEscape(Handle<T> handle_value) {
CloseScope(isolate_, prev_next_, prev_limit_);
// Allocate one handle in the parent scope.
DCHECK(current->level > 0);
Handle<T> result(CreateHandle<T>(isolate_, value));
Handle<T> result(value, isolate_);
// Reinitialize the current scope (so that it's ready
// to be used or closed again).
prev_next_ = current->next;
@ -151,7 +86,7 @@ T** HandleScope::CreateHandle(Isolate* isolate, T* value) {
DCHECK(AllowHandleAllocation::IsAllowed());
HandleScopeData* current = isolate->handle_scope_data();
internal::Object** cur = current->next;
Object** cur = current->next;
if (cur == current->limit) cur = Extend(isolate);
// Update the current next field, set the value in the created
// handle, and return the result.
@ -190,6 +125,7 @@ inline SealHandleScope::~SealHandleScope() {
#endif
} } // namespace v8::internal
} // namespace internal
} // namespace v8
#endif // V8_HANDLES_INL_H_

View File

@ -9,6 +9,34 @@
namespace v8 {
namespace internal {
#ifdef DEBUG
bool HandleBase::IsDereferenceAllowed(DereferenceCheckMode mode) const {
DCHECK_NOT_NULL(location_);
Object* object = *location_;
if (object->IsSmi()) return true;
HeapObject* heap_object = HeapObject::cast(object);
Heap* heap = heap_object->GetHeap();
Object** roots_array_start = heap->roots_array_start();
if (roots_array_start <= location_ &&
location_ < roots_array_start + Heap::kStrongRootListLength &&
heap->RootCanBeTreatedAsConstant(
static_cast<Heap::RootListIndex>(location_ - roots_array_start))) {
return true;
}
if (!AllowHandleDereference::IsAllowed()) return false;
if (mode == INCLUDE_DEFERRED_CHECK &&
!AllowDeferredHandleDereference::IsAllowed()) {
// Accessing cells, maps and internalized strings is safe.
if (heap_object->IsCell()) return true;
if (heap_object->IsMap()) return true;
if (heap_object->IsInternalizedString()) return true;
return !heap->isolate()->IsDeferredHandle(location_);
}
return true;
}
#endif
int HandleScope::NumberOfHandles(Isolate* isolate) {
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
int n = impl->blocks()->length();
@ -67,7 +95,7 @@ void HandleScope::DeleteExtensions(Isolate* isolate) {
void HandleScope::ZapRange(Object** start, Object** end) {
DCHECK(end - start <= kHandleBlockSize);
for (Object** p = start; p != end; p++) {
*reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
*reinterpret_cast<Address*>(p) = kHandleZapValue;
}
}
#endif

View File

@ -10,52 +10,174 @@
namespace v8 {
namespace internal {
// Forward declarations.
class DeferredHandles;
class HandleScopeImplementer;
// ----------------------------------------------------------------------------
// Base class for Handle instantiations. Don't use directly.
class HandleBase {
public:
V8_INLINE explicit HandleBase(Object** location) : location_(location) {}
V8_INLINE explicit HandleBase(Object* object, Isolate* isolate);
// Check if this handle refers to the exact same object as the other handle.
V8_INLINE bool is_identical_to(const HandleBase that) const {
// Dereferencing deferred handles to check object equality is safe.
SLOW_DCHECK((this->location_ == NULL ||
this->IsDereferenceAllowed(NO_DEFERRED_CHECK)) &&
(that.location_ == NULL ||
that.IsDereferenceAllowed(NO_DEFERRED_CHECK)));
if (this->location_ == that.location_) return true;
if (this->location_ == NULL || that.location_ == NULL) return false;
return *this->location_ == *that.location_;
}
V8_INLINE bool is_null() const { return location_ == nullptr; }
protected:
// Provides the C++ dereference operator.
V8_INLINE Object* operator*() const {
SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return *location_;
}
// Returns the address to where the raw pointer is stored.
V8_INLINE Object** location() const {
SLOW_DCHECK(location_ == NULL ||
IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
return location_;
}
enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
#ifdef DEBUG
bool IsDereferenceAllowed(DereferenceCheckMode mode) const;
#else
V8_INLINE
bool IsDereferenceAllowed(DereferenceCheckMode mode) const { return true; }
#endif // DEBUG
Object** location_;
};
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
// Handles are only valid within a HandleScope.
// When a handle is created for an object a cell is allocated in the heap.
template <typename T>
class Handle final : public HandleBase {
public:
V8_INLINE explicit Handle(T** location = nullptr)
: HandleBase(reinterpret_cast<Object**>(location)) {
Object* a = nullptr;
T* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
}
V8_INLINE explicit Handle(T* object) : Handle(object, object->GetIsolate()) {}
V8_INLINE Handle(T* object, Isolate* isolate) : HandleBase(object, isolate) {}
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <typename S>
V8_INLINE Handle(Handle<S> handle)
: HandleBase(handle) {
T* a = nullptr;
S* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
}
V8_INLINE T* operator->() const { return operator*(); }
// Provides the C++ dereference operator.
V8_INLINE T* operator*() const {
return reinterpret_cast<T*>(HandleBase::operator*());
}
// Returns the address to where the raw pointer is stored.
V8_INLINE T** location() const {
return reinterpret_cast<T**>(HandleBase::location());
}
template <typename S>
static const Handle<T> cast(Handle<S> that) {
T::cast(*reinterpret_cast<T**>(that.location_));
return Handle<T>(reinterpret_cast<T**>(that.location_));
}
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
static const Handle<T> null() { return Handle<T>(); }
private:
// Handles of different classes are allowed to access each other's location_.
template <typename>
friend class Handle;
// MaybeHandle is allowed to access location_.
template <typename>
friend class MaybeHandle;
};
template <typename T>
V8_INLINE Handle<T> handle(T* object, Isolate* isolate) {
return Handle<T>(object, isolate);
}
template <typename T>
V8_INLINE Handle<T> handle(T* object) {
return Handle<T>(object);
}
// ----------------------------------------------------------------------------
// A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
// into a Handle requires checking that it does not point to NULL. This
// ensures NULL checks before use.
// Do not use MaybeHandle as argument type.
template<typename T>
class MaybeHandle {
template <typename T>
class MaybeHandle final {
public:
INLINE(MaybeHandle()) : location_(NULL) { }
V8_INLINE MaybeHandle() {}
V8_INLINE ~MaybeHandle() {}
// Constructor for handling automatic up casting from Handle.
// Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
template <class S> MaybeHandle(Handle<S> handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
template <typename S>
V8_INLINE MaybeHandle(Handle<S> handle)
: location_(reinterpret_cast<T**>(handle.location_)) {
T* a = nullptr;
S* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
this->location_ = reinterpret_cast<T**>(handle.location());
}
// Constructor for handling automatic up casting.
// Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected.
template <class S> MaybeHandle(MaybeHandle<S> maybe_handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
template <typename S>
V8_INLINE MaybeHandle(MaybeHandle<S> maybe_handle)
: location_(reinterpret_cast<T**>(maybe_handle.location_)) {
T* a = nullptr;
S* b = nullptr;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
location_ = reinterpret_cast<T**>(maybe_handle.location_);
}
INLINE(void Assert() const) { DCHECK(location_ != NULL); }
INLINE(void Check() const) { CHECK(location_ != NULL); }
V8_INLINE void Assert() const { DCHECK_NOT_NULL(location_); }
V8_INLINE void Check() const { CHECK_NOT_NULL(location_); }
INLINE(Handle<T> ToHandleChecked()) const {
V8_INLINE Handle<T> ToHandleChecked() const {
Check();
return Handle<T>(location_);
}
// Convert to a Handle with a type that can be upcasted to.
template <class S>
template <typename S>
V8_INLINE bool ToHandle(Handle<S>* out) const {
if (location_ == NULL) {
if (location_ == nullptr) {
*out = Handle<T>::null();
return false;
} else {
@ -64,120 +186,37 @@ class MaybeHandle {
}
}
bool is_null() const { return location_ == NULL; }
bool is_null() const { return location_ == nullptr; }
template <typename S>
bool operator==(MaybeHandle<S> that) const {
V8_INLINE bool operator==(MaybeHandle<S> that) const {
return this->location_ == that.location_;
}
template <typename S>
bool operator!=(MaybeHandle<S> that) const {
return !(*this == that);
V8_INLINE bool operator!=(MaybeHandle<S> that) const {
return this->location_ != that.location_;
}
protected:
T** location_;
T** location_ = nullptr;
// MaybeHandles of different classes are allowed to access each
// other's location_.
template<class S> friend class MaybeHandle;
template <typename>
friend class MaybeHandle;
// Utility functions are allowed to access location_.
template <typename S>
friend size_t hash_value(MaybeHandle<S>);
};
template <typename S>
inline size_t hash_value(MaybeHandle<S> maybe_handle) {
return bit_cast<size_t>(maybe_handle.location_);
template <typename T>
V8_INLINE size_t hash_value(MaybeHandle<T> maybe_handle) {
uintptr_t v = bit_cast<uintptr_t>(maybe_handle.location_);
DCHECK_EQ(0u, v & ((1u << kPointerSizeLog2) - 1));
return v >> kPointerSizeLog2;
}
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
// Handles are only valid within a HandleScope.
// When a handle is created for an object a cell is allocated in the heap.
template<typename T>
class Handle {
public:
INLINE(explicit Handle(T** location)) { location_ = location; }
INLINE(explicit Handle(T* obj));
INLINE(Handle(T* obj, Isolate* isolate));
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
INLINE(Handle()) : location_(NULL) { }
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <class S> Handle(Handle<S> handle) {
#ifdef DEBUG
T* a = NULL;
S* b = NULL;
a = b; // Fake assignment to enforce type checks.
USE(a);
#endif
location_ = reinterpret_cast<T**>(handle.location_);
}
INLINE(T* operator->() const) { return operator*(); }
// Check if this handle refers to the exact same object as the other handle.
INLINE(bool is_identical_to(const Handle<T> other) const);
// Provides the C++ dereference operator.
INLINE(T* operator*() const);
// Returns the address to where the raw pointer is stored.
INLINE(T** location() const);
template <class S> static Handle<T> cast(Handle<S> that) {
T::cast(*reinterpret_cast<T**>(that.location_));
return Handle<T>(reinterpret_cast<T**>(that.location_));
}
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
static Handle<T> null() { return Handle<T>(); }
bool is_null() const { return location_ == NULL; }
// Closes the given scope, but lets this handle escape. See
// implementation in api.h.
inline Handle<T> EscapeFrom(v8::EscapableHandleScope* scope);
#ifdef DEBUG
enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
bool IsDereferenceAllowed(DereferenceCheckMode mode) const;
#endif // DEBUG
private:
T** location_;
// Handles of different classes are allowed to access each other's location_.
template<class S> friend class Handle;
};
// Convenience wrapper.
template<class T>
inline Handle<T> handle(T* t, Isolate* isolate) {
return Handle<T>(t, isolate);
}
// Convenience wrapper.
template<class T>
inline Handle<T> handle(T* t) {
return Handle<T>(t, t->GetIsolate());
}
class DeferredHandles;
class HandleScopeImplementer;
// A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is
@ -241,7 +280,7 @@ class HandleScope {
Object** prev_limit);
// Extend the handle scope making room for more handles.
static internal::Object** Extend(Isolate* isolate);
static Object** Extend(Isolate* isolate);
#ifdef ENABLE_HANDLE_ZAPPING
// Zaps the handles in the half-open interval [start, end).
@ -249,16 +288,13 @@ class HandleScope {
#endif
friend class v8::HandleScope;
friend class v8::internal::DeferredHandles;
friend class v8::internal::HandleScopeImplementer;
friend class v8::internal::Isolate;
friend class DeferredHandles;
friend class HandleScopeImplementer;
friend class Isolate;
};
class DeferredHandles;
class DeferredHandleScope {
class DeferredHandleScope final {
public:
explicit DeferredHandleScope(Isolate* isolate);
// The DeferredHandles object returned stores the Handles created
@ -283,7 +319,7 @@ class DeferredHandleScope {
// Seal off the current HandleScope so that new handles can only be created
// if a new HandleScope is entered.
class SealHandleScope BASE_EMBEDDED {
class SealHandleScope final {
public:
#ifndef DEBUG
explicit SealHandleScope(Isolate* isolate) {}
@ -298,9 +334,10 @@ class SealHandleScope BASE_EMBEDDED {
#endif
};
struct HandleScopeData {
internal::Object** next;
internal::Object** limit;
struct HandleScopeData final {
Object** next;
Object** limit;
int level;
void Initialize() {
@ -309,6 +346,7 @@ struct HandleScopeData {
}
};
} } // namespace v8::internal
} // namespace internal
} // namespace v8
#endif // V8_HANDLES_H_

View File

@ -1965,7 +1965,7 @@ THREADED_TEST(UndefinedIsNotEnumerable) {
v8::Handle<Script> call_recursively_script;
static const int kTargetRecursionDepth = 200; // near maximum
static const int kTargetRecursionDepth = 150; // near maximum
static void CallScriptRecursivelyCall(

View File

@ -973,22 +973,6 @@ TEST(Iteration) {
}
TEST(EmptyHandleEscapeFrom) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Handle<JSObject> runaway;
{
v8::EscapableHandleScope nested(CcTest::isolate());
Handle<JSObject> empty;
runaway = empty.EscapeFrom(&nested);
}
CHECK(runaway.is_null());
}
static int LenFromSize(int size) {
return (size - FixedArray::kHeaderSize) / kPointerSize;
}