Make assembler-x64.h and assembler-x64-inl.h compile
Review URL: http://codereview.chromium.org/115021 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1881 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
0f64915781
commit
1a5c6cfaca
@ -25,3 +25,44 @@
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
|
||||
#define V8_X64_ASSEMBLER_X64_INL_H_
|
||||
|
||||
namespace v8 { namespace internal {
|
||||
|
||||
Condition NegateCondition(Condition cc) {
|
||||
return static_cast<Condition>(cc ^ 1);
|
||||
}
|
||||
|
||||
|
||||
Address RelocInfo::target_address() {
|
||||
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
||||
return Assembler::target_address_at(pc_);
|
||||
}
|
||||
|
||||
|
||||
Address RelocInfo::target_address_address() {
|
||||
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
||||
return reinterpret_cast<Address>(pc_);
|
||||
}
|
||||
|
||||
|
||||
void RelocInfo::set_target_address(Address target) {
|
||||
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
||||
Assembler::set_target_address_at(pc_, target);
|
||||
}
|
||||
|
||||
|
||||
void Assembler::set_target_address_at(byte* location, byte* value) {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
|
||||
byte* Assembler::target_address_at(byte* location) {
|
||||
UNIMPLEMENTED();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
} } // namespace v8::internal
|
||||
|
||||
#endif // V8_X64_ASSEMBLER_X64_INL_H_
|
||||
|
@ -1,58 +1,123 @@
|
||||
// Copyright 2009 the V8 project authors. All rights reserved.
|
||||
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
||||
// All Rights Reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following
|
||||
// disclaimer in the documentation and/or other materials provided
|
||||
// with the distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
// - Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
// - Redistribution in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
//
|
||||
// - Neither the name of Sun Microsystems or the names of contributors may
|
||||
// be used to endorse or promote products derived from this software without
|
||||
// specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// The original source code covered by the above license above has been
|
||||
// modified significantly by Google Inc.
|
||||
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
||||
|
||||
// A lightweight X64 Assembler.
|
||||
|
||||
#ifndef V8_X64_ASSEMBLER_X64_H_
|
||||
#define V8_X64_ASSEMBLER_X64_H_
|
||||
|
||||
// TODO(x64): This is a temporary stub, we will need to implement this code.
|
||||
|
||||
namespace v8 { namespace internal {
|
||||
|
||||
// CPU Registers.
|
||||
//
|
||||
// 1) We would prefer to use an enum, but enum values are assignment-
|
||||
// compatible with int, which has caused code-generation bugs.
|
||||
//
|
||||
// 2) We would prefer to use a class instead of a struct but we don't like
|
||||
// the register initialization to depend on the particular initialization
|
||||
// order (which appears to be different on OS X, Linux, and Windows for the
|
||||
// installed versions of C++ we tried). Using a struct permits C-style
|
||||
// "initialization". Also, the Register objects cannot be const as this
|
||||
// forces initialization stubs in MSVC, making us dependent on initialization
|
||||
// order.
|
||||
//
|
||||
// 3) By not using an enum, we are possibly preventing the compiler from
|
||||
// doing certain constant folds, which may significantly reduce the
|
||||
// code generated for some assembly instructions (because they boil down
|
||||
// to a few constants). If this is a problem, we could change the code
|
||||
// such that we use an enum in optimized mode, and the struct in debug
|
||||
// mode. This way we get the compile-time error checking in debug mode
|
||||
// and best performance in optimized code.
|
||||
//
|
||||
const int kNumRegisters = 16;
|
||||
|
||||
struct Register {
|
||||
bool is_valid() const { return 0 <= code_ && code_ < 8; }
|
||||
bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
|
||||
bool is(Register reg) const { return code_ == reg.code_; }
|
||||
// eax, ebx, ecx and edx are byte registers, the rest are not.
|
||||
bool is_byte_register() const { return code_ <= 3; }
|
||||
// The byte-register distinction of ai32 has dissapeared.
|
||||
bool is_byte_register() const { return false; }
|
||||
int code() const {
|
||||
ASSERT(is_valid());
|
||||
return code_;
|
||||
}
|
||||
int bit() const {
|
||||
ASSERT(is_valid());
|
||||
return 1 << code_;
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// (unfortunately we can't make this private in a struct)
|
||||
int code_;
|
||||
};
|
||||
|
||||
const int kNumRegisters = 8;
|
||||
extern Register rax;
|
||||
extern Register rcx;
|
||||
extern Register rdx;
|
||||
extern Register rbx;
|
||||
extern Register rsp;
|
||||
extern Register rbp;
|
||||
extern Register rsi;
|
||||
extern Register rdi;
|
||||
extern Register r8;
|
||||
extern Register r9;
|
||||
extern Register r10;
|
||||
extern Register r11;
|
||||
extern Register r12;
|
||||
extern Register r13;
|
||||
extern Register r14;
|
||||
extern Register r15;
|
||||
extern Register no_reg;
|
||||
|
||||
|
||||
struct XMMRegister {
|
||||
bool is_valid() const { return 0 <= code_ && code_ < 2; }
|
||||
int code() const {
|
||||
ASSERT(is_valid());
|
||||
return code_;
|
||||
}
|
||||
|
||||
int code_;
|
||||
};
|
||||
|
||||
extern XMMRegister xmm0;
|
||||
extern XMMRegister xmm1;
|
||||
extern XMMRegister xmm2;
|
||||
extern XMMRegister xmm3;
|
||||
extern XMMRegister xmm4;
|
||||
extern XMMRegister xmm5;
|
||||
extern XMMRegister xmm6;
|
||||
extern XMMRegister xmm7;
|
||||
|
||||
enum Condition {
|
||||
// any value < 0 is considered no_condition
|
||||
no_condition = -1,
|
||||
@ -83,12 +148,778 @@ enum Condition {
|
||||
not_sign = positive
|
||||
};
|
||||
|
||||
|
||||
// Returns the equivalent of !cc.
|
||||
// Negation of the default no_condition (-1) results in a non-default
|
||||
// no_condition value (-2). As long as tests for no_condition check
|
||||
// for condition < 0, this will work as expected.
|
||||
inline Condition NegateCondition(Condition cc);
|
||||
|
||||
// Corresponds to transposing the operands of a comparison.
|
||||
inline Condition ReverseCondition(Condition cc) {
|
||||
switch (cc) {
|
||||
case below:
|
||||
return above;
|
||||
case above:
|
||||
return below;
|
||||
case above_equal:
|
||||
return below_equal;
|
||||
case below_equal:
|
||||
return above_equal;
|
||||
case less:
|
||||
return greater;
|
||||
case greater:
|
||||
return less;
|
||||
case greater_equal:
|
||||
return less_equal;
|
||||
case less_equal:
|
||||
return greater_equal;
|
||||
default:
|
||||
return cc;
|
||||
};
|
||||
}
|
||||
|
||||
enum Hint {
|
||||
no_hint = 0,
|
||||
not_taken = 0x2e,
|
||||
taken = 0x3e
|
||||
};
|
||||
|
||||
// The result of negating a hint is as if the corresponding condition
|
||||
// were negated by NegateCondition. That is, no_hint is mapped to
|
||||
// itself and not_taken and taken are mapped to each other.
|
||||
inline Hint NegateHint(Hint hint) {
|
||||
return (hint == no_hint)
|
||||
? no_hint
|
||||
: ((hint == not_taken) ? taken : not_taken);
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Machine instruction Immediates
|
||||
|
||||
class Immediate BASE_EMBEDDED {
|
||||
public:
|
||||
inline explicit Immediate(int64_t x);
|
||||
inline explicit Immediate(const char* s);
|
||||
inline explicit Immediate(const ExternalReference& ext);
|
||||
inline explicit Immediate(Handle<Object> handle);
|
||||
inline explicit Immediate(Smi* value);
|
||||
|
||||
static Immediate CodeRelativeOffset(Label* label) {
|
||||
return Immediate(label);
|
||||
}
|
||||
|
||||
bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
|
||||
bool is_int8() const {
|
||||
return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
|
||||
}
|
||||
bool is_int16() const {
|
||||
return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
|
||||
}
|
||||
bool is_int32() const {
|
||||
return V8_INT64_C(-2147483648) <= x_
|
||||
&& x_ < V8_INT64_C(2147483648)
|
||||
&& rmode_ == RelocInfo::NONE;
|
||||
}
|
||||
|
||||
private:
|
||||
inline explicit Immediate(Label* value) { UNIMPLEMENTED(); }
|
||||
|
||||
int64_t x_;
|
||||
RelocInfo::Mode rmode_;
|
||||
|
||||
friend class Assembler;
|
||||
};
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Machine instruction Operands
|
||||
|
||||
enum ScaleFactor {
|
||||
times_1 = 0,
|
||||
times_2 = 1,
|
||||
times_4 = 2,
|
||||
times_8 = 3
|
||||
};
|
||||
|
||||
|
||||
class Operand BASE_EMBEDDED {
|
||||
public:
|
||||
// reg
|
||||
INLINE(explicit Operand(Register reg));
|
||||
|
||||
// MemoryOperand
|
||||
INLINE(explicit Operand()) { UNIMPLEMENTED(); }
|
||||
|
||||
// Returns true if this Operand is a wrapper for the specified register.
|
||||
bool is_reg(Register reg) const;
|
||||
|
||||
// These constructors have been moved to MemOperand, and should
|
||||
// be removed from Operand as soon as all their uses use MemOperands instead.
|
||||
// [disp/r]
|
||||
INLINE(explicit Operand(intptr_t disp, RelocInfo::Mode rmode)) {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
// disp only must always be relocated
|
||||
|
||||
// [base + disp/r]
|
||||
explicit Operand(Register base, intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
// [base + index*scale + disp/r]
|
||||
explicit Operand(Register base,
|
||||
Register index,
|
||||
ScaleFactor scale,
|
||||
intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
// [index*scale + disp/r]
|
||||
explicit Operand(Register index,
|
||||
ScaleFactor scale,
|
||||
intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
static Operand StaticVariable(const ExternalReference& ext) {
|
||||
return Operand(reinterpret_cast<intptr_t>(ext.address()),
|
||||
RelocInfo::EXTERNAL_REFERENCE);
|
||||
}
|
||||
|
||||
static Operand StaticArray(Register index,
|
||||
ScaleFactor scale,
|
||||
const ExternalReference& arr) {
|
||||
return Operand(index, scale, reinterpret_cast<intptr_t>(arr.address()),
|
||||
RelocInfo::EXTERNAL_REFERENCE);
|
||||
}
|
||||
|
||||
// End of constructors and methods that have been moved to MemOperand.
|
||||
|
||||
private:
|
||||
byte rex_;
|
||||
byte buf_[10];
|
||||
// The number of bytes in buf_.
|
||||
unsigned int len_;
|
||||
// Only valid if len_ > 4.
|
||||
RelocInfo::Mode rmode_;
|
||||
|
||||
// Set the ModRM byte without an encoded 'reg' register. The
|
||||
// register is encoded later as part of the emit_operand operation.
|
||||
inline void set_modrm(int mod, Register rm);
|
||||
|
||||
inline void set_sib(ScaleFactor scale, Register index, Register base);
|
||||
inline void set_disp8(int8_t disp);
|
||||
inline void set_disp32(int32_t disp);
|
||||
inline void set_dispr(intptr_t disp, RelocInfo::Mode rmode);
|
||||
|
||||
friend class Assembler;
|
||||
};
|
||||
|
||||
class MemOperand : public Operand {
|
||||
public:
|
||||
// [disp/r]
|
||||
INLINE(explicit MemOperand(intptr_t disp, RelocInfo::Mode rmode)) :
|
||||
Operand() {
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
// disp only must always be relocated
|
||||
|
||||
// [base + disp/r]
|
||||
explicit MemOperand(Register base, intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
// [base + index*scale + disp/r]
|
||||
explicit MemOperand(Register base,
|
||||
Register index,
|
||||
ScaleFactor scale,
|
||||
intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
// [index*scale + disp/r]
|
||||
explicit MemOperand(Register index,
|
||||
ScaleFactor scale,
|
||||
intptr_t disp,
|
||||
RelocInfo::Mode rmode = RelocInfo::NONE);
|
||||
|
||||
static MemOperand StaticVariable(const ExternalReference& ext) {
|
||||
return MemOperand(reinterpret_cast<intptr_t>(ext.address()),
|
||||
RelocInfo::EXTERNAL_REFERENCE);
|
||||
}
|
||||
|
||||
static MemOperand StaticArray(Register index,
|
||||
ScaleFactor scale,
|
||||
const ExternalReference& arr) {
|
||||
return MemOperand(index, scale, reinterpret_cast<intptr_t>(arr.address()),
|
||||
RelocInfo::EXTERNAL_REFERENCE);
|
||||
}
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// A Displacement describes the 32bit immediate field of an instruction which
|
||||
// may be used together with a Label in order to refer to a yet unknown code
|
||||
// position. Displacements stored in the instruction stream are used to describe
|
||||
// the instruction and to chain a list of instructions using the same Label.
|
||||
// A Displacement contains 2 different fields:
|
||||
//
|
||||
// next field: position of next displacement in the chain (0 = end of list)
|
||||
// type field: instruction type
|
||||
//
|
||||
// A next value of null (0) indicates the end of a chain (note that there can
|
||||
// be no displacement at position zero, because there is always at least one
|
||||
// instruction byte before the displacement).
|
||||
//
|
||||
// Displacement _data field layout
|
||||
//
|
||||
// |31.....2|1......0|
|
||||
// [ next | type |
|
||||
|
||||
class Displacement BASE_EMBEDDED {
|
||||
public:
|
||||
enum Type {
|
||||
UNCONDITIONAL_JUMP,
|
||||
CODE_RELATIVE,
|
||||
OTHER
|
||||
};
|
||||
|
||||
int data() const { return data_; }
|
||||
Type type() const { return TypeField::decode(data_); }
|
||||
void next(Label* L) const {
|
||||
int n = NextField::decode(data_);
|
||||
n > 0 ? L->link_to(n) : L->Unuse();
|
||||
}
|
||||
void link_to(Label* L) { init(L, type()); }
|
||||
|
||||
explicit Displacement(int data) { data_ = data; }
|
||||
|
||||
Displacement(Label* L, Type type) { init(L, type); }
|
||||
|
||||
void print() {
|
||||
PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
|
||||
NextField::decode(data_));
|
||||
}
|
||||
|
||||
private:
|
||||
int data_;
|
||||
|
||||
class TypeField: public BitField<Type, 0, 2> {};
|
||||
class NextField: public BitField<int, 2, 32-2> {};
|
||||
|
||||
void init(Label* L, Type type);
|
||||
};
|
||||
|
||||
|
||||
|
||||
// CpuFeatures keeps track of which features are supported by the target CPU.
|
||||
// Supported features must be enabled by a Scope before use.
|
||||
// Example:
|
||||
// if (CpuFeatures::IsSupported(SSE2)) {
|
||||
// CpuFeatures::Scope fscope(SSE2);
|
||||
// // Generate SSE2 floating point code.
|
||||
// } else {
|
||||
// // Generate standard x87 floating point code.
|
||||
// }
|
||||
class CpuFeatures : public AllStatic {
|
||||
public:
|
||||
// Feature flags bit positions. They are mostly based on the CPUID spec.
|
||||
// (We assign CPUID itself to one of the currently reserved bits --
|
||||
// feel free to change this if needed.)
|
||||
enum Feature { SSE3 = 32, SSE2 = 26, CMOV = 15, RDTSC = 4, CPUID = 10 };
|
||||
// Detect features of the target CPU. Set safe defaults if the serializer
|
||||
// is enabled (snapshots must be portable).
|
||||
static void Probe();
|
||||
// Check whether a feature is supported by the target CPU.
|
||||
static bool IsSupported(Feature f) {
|
||||
return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
|
||||
}
|
||||
// Check whether a feature is currently enabled.
|
||||
static bool IsEnabled(Feature f) {
|
||||
return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
|
||||
}
|
||||
// Enable a specified feature within a scope.
|
||||
class Scope BASE_EMBEDDED {
|
||||
#ifdef DEBUG
|
||||
public:
|
||||
explicit Scope(Feature f) {
|
||||
ASSERT(CpuFeatures::IsSupported(f));
|
||||
old_enabled_ = CpuFeatures::enabled_;
|
||||
CpuFeatures::enabled_ |= (static_cast<uint64_t>(1) << f);
|
||||
}
|
||||
~Scope() { CpuFeatures::enabled_ = old_enabled_; }
|
||||
private:
|
||||
uint64_t old_enabled_;
|
||||
#else
|
||||
public:
|
||||
explicit Scope(Feature f) {}
|
||||
#endif
|
||||
};
|
||||
private:
|
||||
static uint64_t supported_;
|
||||
static uint64_t enabled_;
|
||||
};
|
||||
|
||||
|
||||
class Assembler : public Malloced {
|
||||
private:
|
||||
// The relocation writer's position is kGap bytes below the end of
|
||||
// the generated instructions. This leaves enough space for the
|
||||
// longest possible ia32 instruction (17 bytes as of 9/26/06) and
|
||||
// allows for a single, fast space check per instruction.
|
||||
static const int kGap = 32;
|
||||
|
||||
public:
|
||||
// Create an assembler. Instructions and relocation information are emitted
|
||||
// into a buffer, with the instructions starting from the beginning and the
|
||||
// relocation information starting from the end of the buffer. See CodeDesc
|
||||
// for a detailed comment on the layout (globals.h).
|
||||
//
|
||||
// If the provided buffer is NULL, the assembler allocates and grows its own
|
||||
// buffer, and buffer_size determines the initial buffer size. The buffer is
|
||||
// owned by the assembler and deallocated upon destruction of the assembler.
|
||||
//
|
||||
// If the provided buffer is not NULL, the assembler uses the provided buffer
|
||||
// for code generation and assumes its size to be buffer_size. If the buffer
|
||||
// is too small, a fatal error occurs. No deallocation of the buffer is done
|
||||
// upon destruction of the assembler.
|
||||
Assembler(void* buffer, int buffer_size);
|
||||
~Assembler();
|
||||
|
||||
// GetCode emits any pending (non-emitted) code and fills the descriptor
|
||||
// desc. GetCode() is idempotent; it returns the same result if no other
|
||||
// Assembler functions are invoked in between GetCode() calls.
|
||||
void GetCode(CodeDesc* desc);
|
||||
|
||||
// Read/Modify the code target in the branch/call instruction at pc.
|
||||
inline static Address target_address_at(Address pc);
|
||||
inline static void set_target_address_at(Address pc, Address target);
|
||||
|
||||
// Distance between the address of the code target in the call instruction
|
||||
// and the return address
|
||||
static const int kTargetAddrToReturnAddrDist = kPointerSize;
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Code generation
|
||||
//
|
||||
// - function names correspond one-to-one to ia32 instruction mnemonics
|
||||
// - unless specified otherwise, instructions operate on 32bit operands
|
||||
// - instructions on 8bit (byte) operands/registers have a trailing '_b'
|
||||
// - instructions on 16bit (word) operands/registers have a trailing '_w'
|
||||
// - naming conflicts with C++ keywords are resolved via a trailing '_'
|
||||
|
||||
// NOTE ON INTERFACE: Currently, the interface is not very consistent
|
||||
// in the sense that some operations (e.g. mov()) can be called in more
|
||||
// the one way to generate the same instruction: The Register argument
|
||||
// can in some cases be replaced with an Operand(Register) argument.
|
||||
// This should be cleaned up and made more orthogonal. The questions
|
||||
// is: should we always use Operands instead of Registers where an
|
||||
// Operand is possible, or should we have a Register (overloaded) form
|
||||
// instead? We must be careful to make sure that the selected instruction
|
||||
// is obvious from the parameters to avoid hard-to-find code generation
|
||||
// bugs.
|
||||
|
||||
// Insert the smallest number of nop instructions
|
||||
// possible to align the pc offset to a multiple
|
||||
// of m. m must be a power of 2.
|
||||
void Align(int m);
|
||||
|
||||
// Stack
|
||||
void pushad();
|
||||
void popad();
|
||||
|
||||
void pushfd();
|
||||
void popfd();
|
||||
|
||||
void push(const Immediate& x);
|
||||
void push(Register src);
|
||||
void push(const Operand& src);
|
||||
void push(Label* label, RelocInfo::Mode relocation_mode);
|
||||
|
||||
void pop(Register dst);
|
||||
void pop(const Operand& dst);
|
||||
|
||||
void enter(const Immediate& size);
|
||||
void leave();
|
||||
|
||||
// Moves
|
||||
void mov_b(Register dst, const Operand& src);
|
||||
void mov_b(const Operand& dst, int8_t imm8);
|
||||
void mov_b(const Operand& dst, Register src);
|
||||
|
||||
void mov_w(Register dst, const Operand& src);
|
||||
void mov_w(const Operand& dst, Register src);
|
||||
|
||||
void mov(Register dst, int32_t imm32);
|
||||
void mov(Register dst, const Immediate& x);
|
||||
void mov(Register dst, Handle<Object> handle);
|
||||
void mov(Register dst, const Operand& src);
|
||||
void mov(Register dst, Register src);
|
||||
void mov(const Operand& dst, const Immediate& x);
|
||||
void mov(const Operand& dst, Handle<Object> handle);
|
||||
void mov(const Operand& dst, Register src);
|
||||
|
||||
void movsx_b(Register dst, const Operand& src);
|
||||
|
||||
void movsx_w(Register dst, const Operand& src);
|
||||
|
||||
void movzx_b(Register dst, const Operand& src);
|
||||
|
||||
void movzx_w(Register dst, const Operand& src);
|
||||
|
||||
// Conditional moves
|
||||
void cmov(Condition cc, Register dst, int32_t imm32);
|
||||
void cmov(Condition cc, Register dst, Handle<Object> handle);
|
||||
void cmov(Condition cc, Register dst, const Operand& src);
|
||||
|
||||
// Exchange two registers
|
||||
void xchg(Register dst, Register src);
|
||||
|
||||
// Arithmetics
|
||||
void adc(Register dst, int32_t imm32);
|
||||
void adc(Register dst, const Operand& src);
|
||||
|
||||
void add(Register dst, const Operand& src);
|
||||
void add(const Operand& dst, const Immediate& x);
|
||||
|
||||
void and_(Register dst, int32_t imm32);
|
||||
void and_(Register dst, const Operand& src);
|
||||
void and_(const Operand& src, Register dst);
|
||||
void and_(const Operand& dst, const Immediate& x);
|
||||
|
||||
void cmpb(const Operand& op, int8_t imm8);
|
||||
void cmpb_al(const Operand& op);
|
||||
void cmpw_ax(const Operand& op);
|
||||
void cmpw(const Operand& op, Immediate imm16);
|
||||
void cmp(Register reg, int32_t imm32);
|
||||
void cmp(Register reg, Handle<Object> handle);
|
||||
void cmp(Register reg, const Operand& op);
|
||||
void cmp(const Operand& op, const Immediate& imm);
|
||||
|
||||
void dec_b(Register dst);
|
||||
|
||||
void dec(Register dst);
|
||||
void dec(const Operand& dst);
|
||||
|
||||
void cdq();
|
||||
|
||||
void idiv(Register src);
|
||||
|
||||
void imul(Register dst, const Operand& src);
|
||||
void imul(Register dst, Register src, int32_t imm32);
|
||||
|
||||
void inc(Register dst);
|
||||
void inc(const Operand& dst);
|
||||
|
||||
void lea(Register dst, const Operand& src);
|
||||
|
||||
void mul(Register src);
|
||||
|
||||
void neg(Register dst);
|
||||
|
||||
void not_(Register dst);
|
||||
|
||||
void or_(Register dst, int32_t imm32);
|
||||
void or_(Register dst, const Operand& src);
|
||||
void or_(const Operand& dst, Register src);
|
||||
void or_(const Operand& dst, const Immediate& x);
|
||||
|
||||
void rcl(Register dst, uint8_t imm8);
|
||||
|
||||
void sar(Register dst, uint8_t imm8);
|
||||
void sar(Register dst);
|
||||
|
||||
void sbb(Register dst, const Operand& src);
|
||||
|
||||
void shld(Register dst, const Operand& src);
|
||||
|
||||
void shl(Register dst, uint8_t imm8);
|
||||
void shl(Register dst);
|
||||
|
||||
void shrd(Register dst, const Operand& src);
|
||||
|
||||
void shr(Register dst, uint8_t imm8);
|
||||
void shr(Register dst);
|
||||
void shr_cl(Register dst);
|
||||
|
||||
void sub(const Operand& dst, const Immediate& x);
|
||||
void sub(Register dst, const Operand& src);
|
||||
void sub(const Operand& dst, Register src);
|
||||
|
||||
void test(Register reg, const Immediate& imm);
|
||||
void test(Register reg, const Operand& op);
|
||||
void test(const Operand& op, const Immediate& imm);
|
||||
|
||||
void xor_(Register dst, int32_t imm32);
|
||||
void xor_(Register dst, const Operand& src);
|
||||
void xor_(const Operand& src, Register dst);
|
||||
void xor_(const Operand& dst, const Immediate& x);
|
||||
|
||||
// Bit operations.
|
||||
void bt(const Operand& dst, Register src);
|
||||
void bts(const Operand& dst, Register src);
|
||||
|
||||
// Miscellaneous
|
||||
void hlt();
|
||||
void int3();
|
||||
void nop();
|
||||
void rdtsc();
|
||||
void ret(int imm16);
|
||||
|
||||
// Label operations & relative jumps (PPUM Appendix D)
|
||||
//
|
||||
// Takes a branch opcode (cc) and a label (L) and generates
|
||||
// either a backward branch or a forward branch and links it
|
||||
// to the label fixup chain. Usage:
|
||||
//
|
||||
// Label L; // unbound label
|
||||
// j(cc, &L); // forward branch to unbound label
|
||||
// bind(&L); // bind label to the current pc
|
||||
// j(cc, &L); // backward branch to bound label
|
||||
// bind(&L); // illegal: a label may be bound only once
|
||||
//
|
||||
// Note: The same Label can be used for forward and backward branches
|
||||
// but it may be bound only once.
|
||||
|
||||
void bind(Label* L); // binds an unbound label L to the current code position
|
||||
|
||||
// Calls
|
||||
void call(Label* L);
|
||||
void call(byte* entry, RelocInfo::Mode rmode);
|
||||
void call(const Operand& adr);
|
||||
void call(Handle<Code> code, RelocInfo::Mode rmode);
|
||||
|
||||
// Jumps
|
||||
void jmp(Label* L); // unconditional jump to L
|
||||
void jmp(byte* entry, RelocInfo::Mode rmode);
|
||||
void jmp(const Operand& adr);
|
||||
void jmp(Handle<Code> code, RelocInfo::Mode rmode);
|
||||
|
||||
// Conditional jumps
|
||||
void j(Condition cc, Label* L, Hint hint = no_hint);
|
||||
void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
|
||||
void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
|
||||
|
||||
// Floating-point operations
|
||||
void fld(int i);
|
||||
|
||||
void fld1();
|
||||
void fldz();
|
||||
|
||||
void fld_s(const Operand& adr);
|
||||
void fld_d(const Operand& adr);
|
||||
|
||||
void fstp_s(const Operand& adr);
|
||||
void fstp_d(const Operand& adr);
|
||||
|
||||
void fild_s(const Operand& adr);
|
||||
void fild_d(const Operand& adr);
|
||||
|
||||
void fist_s(const Operand& adr);
|
||||
|
||||
void fistp_s(const Operand& adr);
|
||||
void fistp_d(const Operand& adr);
|
||||
|
||||
void fisttp_s(const Operand& adr);
|
||||
|
||||
void fabs();
|
||||
void fchs();
|
||||
|
||||
void fadd(int i);
|
||||
void fsub(int i);
|
||||
void fmul(int i);
|
||||
void fdiv(int i);
|
||||
|
||||
void fisub_s(const Operand& adr);
|
||||
|
||||
void faddp(int i = 1);
|
||||
void fsubp(int i = 1);
|
||||
void fsubrp(int i = 1);
|
||||
void fmulp(int i = 1);
|
||||
void fdivp(int i = 1);
|
||||
void fprem();
|
||||
void fprem1();
|
||||
|
||||
void fxch(int i = 1);
|
||||
void fincstp();
|
||||
void ffree(int i = 0);
|
||||
|
||||
void ftst();
|
||||
void fucomp(int i);
|
||||
void fucompp();
|
||||
void fcompp();
|
||||
void fnstsw_ax();
|
||||
void fwait();
|
||||
void fnclex();
|
||||
|
||||
void frndint();
|
||||
|
||||
void sahf();
|
||||
void setcc(Condition cc, Register reg);
|
||||
|
||||
void cpuid();
|
||||
|
||||
// SSE2 instructions
|
||||
void cvttss2si(Register dst, const Operand& src);
|
||||
void cvttsd2si(Register dst, const Operand& src);
|
||||
|
||||
void cvtsi2sd(XMMRegister dst, const Operand& src);
|
||||
|
||||
void addsd(XMMRegister dst, XMMRegister src);
|
||||
void subsd(XMMRegister dst, XMMRegister src);
|
||||
void mulsd(XMMRegister dst, XMMRegister src);
|
||||
void divsd(XMMRegister dst, XMMRegister src);
|
||||
|
||||
// Use either movsd or movlpd.
|
||||
void movdbl(XMMRegister dst, const Operand& src);
|
||||
void movdbl(const Operand& dst, XMMRegister src);
|
||||
|
||||
// Debugging
|
||||
void Print();
|
||||
|
||||
// Check the code size generated from label to here.
|
||||
int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
|
||||
|
||||
// Mark address of the ExitJSFrame code.
|
||||
void RecordJSReturn();
|
||||
|
||||
// Record a comment relocation entry that can be used by a disassembler.
|
||||
// Use --debug_code to enable.
|
||||
void RecordComment(const char* msg);
|
||||
|
||||
void RecordPosition(int pos);
|
||||
void RecordStatementPosition(int pos);
|
||||
void WriteRecordedPositions();
|
||||
|
||||
// Writes a single word of data in the code stream.
|
||||
// Used for inline tables, e.g., jump-tables.
|
||||
void dd(uint32_t data, RelocInfo::Mode reloc_info);
|
||||
|
||||
// Writes the absolute address of a bound label at the given position in
|
||||
// the generated code. That positions should have the relocation mode
|
||||
// internal_reference!
|
||||
void WriteInternalReference(int position, const Label& bound_label);
|
||||
|
||||
int pc_offset() const { return pc_ - buffer_; }
|
||||
int current_statement_position() const { return current_statement_position_; }
|
||||
int current_position() const { return current_position_; }
|
||||
|
||||
// Check if there is less than kGap bytes available in the buffer.
|
||||
// If this is the case, we need to grow the buffer before emitting
|
||||
// an instruction or relocation information.
|
||||
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
|
||||
|
||||
// Get the number of bytes available in the buffer.
|
||||
inline int available_space() const { return reloc_info_writer.pos() - pc_; }
|
||||
|
||||
// Avoid overflows for displacements etc.
|
||||
static const int kMaximalBufferSize = 512*MB;
|
||||
static const int kMinimalBufferSize = 4*KB;
|
||||
|
||||
protected:
|
||||
void movsd(XMMRegister dst, const Operand& src);
|
||||
void movsd(const Operand& dst, XMMRegister src);
|
||||
|
||||
void emit_sse_operand(XMMRegister reg, const Operand& adr);
|
||||
void emit_sse_operand(XMMRegister dst, XMMRegister src);
|
||||
|
||||
|
||||
private:
|
||||
byte* addr_at(int pos) { return buffer_ + pos; }
|
||||
byte byte_at(int pos) { return buffer_[pos]; }
|
||||
uint32_t long_at(int pos) {
|
||||
return *reinterpret_cast<uint32_t*>(addr_at(pos));
|
||||
}
|
||||
void long_at_put(int pos, uint32_t x) {
|
||||
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
|
||||
}
|
||||
|
||||
// code emission
|
||||
void GrowBuffer();
|
||||
inline void emit(uint32_t x);
|
||||
inline void emit(Handle<Object> handle);
|
||||
inline void emit(uint32_t x, RelocInfo::Mode rmode);
|
||||
inline void emit(const Immediate& x);
|
||||
inline void emit_w(const Immediate& x);
|
||||
|
||||
// Emit the code-object-relative offset of the label's position
|
||||
inline void emit_code_relative_offset(Label* label);
|
||||
|
||||
// instruction generation
|
||||
void emit_arith_b(int op1, int op2, Register dst, int imm8);
|
||||
|
||||
// Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
|
||||
// with a given destination expression and an immediate operand. It attempts
|
||||
// to use the shortest encoding possible.
|
||||
// sel specifies the /n in the modrm byte (see the Intel PRM).
|
||||
void emit_arith(int sel, Operand dst, const Immediate& x);
|
||||
|
||||
void emit_operand(Register reg, const Operand& adr);
|
||||
|
||||
void emit_farith(int b1, int b2, int i);
|
||||
|
||||
// labels
|
||||
void print(Label* L);
|
||||
void bind_to(Label* L, int pos);
|
||||
void link_to(Label* L, Label* appendix);
|
||||
|
||||
// displacements
|
||||
inline Displacement disp_at(Label* L);
|
||||
inline void disp_at_put(Label* L, Displacement disp);
|
||||
inline void emit_disp(Label* L, Displacement::Type type);
|
||||
|
||||
// record reloc info for current pc_
|
||||
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
|
||||
|
||||
friend class CodePatcher;
|
||||
friend class EnsureSpace;
|
||||
|
||||
// Code buffer:
|
||||
// The buffer into which code and relocation info are generated.
|
||||
byte* buffer_;
|
||||
int buffer_size_;
|
||||
// True if the assembler owns the buffer, false if buffer is external.
|
||||
bool own_buffer_;
|
||||
|
||||
// code generation
|
||||
byte* pc_; // the program counter; moves forward
|
||||
RelocInfoWriter reloc_info_writer;
|
||||
|
||||
// push-pop elimination
|
||||
byte* last_pc_;
|
||||
|
||||
// source position information
|
||||
int current_statement_position_;
|
||||
int current_position_;
|
||||
int written_statement_position_;
|
||||
int written_position_;
|
||||
};
|
||||
|
||||
|
||||
// Helper class that ensures that there is enough space for generating
|
||||
// instructions and relocation information. The constructor makes
|
||||
// sure that there is enough space and (in debug mode) the destructor
|
||||
// checks that we did not generate too much.
|
||||
class EnsureSpace BASE_EMBEDDED {
|
||||
public:
|
||||
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
|
||||
if (assembler_->overflow()) assembler_->GrowBuffer();
|
||||
#ifdef DEBUG
|
||||
space_before_ = assembler_->available_space();
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
~EnsureSpace() {
|
||||
int bytes_generated = space_before_ - assembler_->available_space();
|
||||
ASSERT(bytes_generated < assembler_->kGap);
|
||||
}
|
||||
#endif
|
||||
|
||||
private:
|
||||
Assembler* assembler_;
|
||||
#ifdef DEBUG
|
||||
int space_before_;
|
||||
#endif
|
||||
};
|
||||
|
||||
} } // namespace v8::internal
|
||||
|
||||
#endif // V8_X64_ASSEMBLER_X64_H_
|
||||
|
Loading…
Reference in New Issue
Block a user